A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding
<p>The flow diagram for the proposed model.</p> "> Figure 2
<p>Some segmented samples from dataset. (<b>top</b>) Original images; (<b>bottom</b>) Segmented images.</p> "> Figure 3
<p>ResNet’s blocks.</p> "> Figure 4
<p>Some samples of brain MRI.</p> "> Figure 5
<p>Comparison with existing methods on the Harvard dataset [<a href="#B32-biomedicines-11-01715" class="html-bibr">32</a>,<a href="#B33-biomedicines-11-01715" class="html-bibr">33</a>,<a href="#B34-biomedicines-11-01715" class="html-bibr">34</a>,<a href="#B35-biomedicines-11-01715" class="html-bibr">35</a>,<a href="#B36-biomedicines-11-01715" class="html-bibr">36</a>,<a href="#B37-biomedicines-11-01715" class="html-bibr">37</a>].</p> "> Figure 6
<p>Comparison plot with existing techniques [<a href="#B18-biomedicines-11-01715" class="html-bibr">18</a>,<a href="#B39-biomedicines-11-01715" class="html-bibr">39</a>,<a href="#B40-biomedicines-11-01715" class="html-bibr">40</a>,<a href="#B41-biomedicines-11-01715" class="html-bibr">41</a>,<a href="#B42-biomedicines-11-01715" class="html-bibr">42</a>,<a href="#B43-biomedicines-11-01715" class="html-bibr">43</a>,<a href="#B44-biomedicines-11-01715" class="html-bibr">44</a>].</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. MFO with Multi-Level Thresholding
Mating
3.2. Features Extraction (FE)
3.2.1. Histogram of Oriented Gradients (HOG)
3.2.2. ResNet-V2
3.3. Fusion Process
3.4. Classification
4. Experimental Evaluation
4.1. Implementation Details
4.2. Dataset
4.3. Metrics
4.4. Localization Results
4.5. Classification Results
4.6. Comparison with Existing Segmentation-Based Techniques
4.7. Comparison with Existing DL-Based Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 2021, 9, 153. [Google Scholar] [CrossRef]
- Amanullah, M.; Visumathi, J.; Sammeta, N.; Ashok, M. Convolutional neural network-based MRI brain tumor classification system. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022. [Google Scholar]
- Chatterjee, I. Artificial intelligence and patentability: Review and discussions. Int. J. Mod. Res. 2021, 1, 15–21. [Google Scholar]
- Anitha, V.; Murugavalli, S. Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Comput. Vis. 2016, 10, 9–17. [Google Scholar] [CrossRef]
- El-Dahshan, E.S.A.; Mohsen, H.M.; Revett, K.; Salem, A.B.M. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Syst. Appl. 2014, 41, 5526–5545. [Google Scholar] [CrossRef]
- Mahum, R.; Rehman, S.U.; Okon, O.D.; Alabrah, A.; Meraj, T.; Rauf, H.T. A novel hybrid approach based on deep CNN to detect glaucoma using fundus imaging. Electronics 2021, 11, 26. [Google Scholar] [CrossRef]
- Mahum, R.; Munir, H.; Mughal, Z.-U.; Awais, M.; Khan, F.S.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. Int. J. 2022, 29, 303–326. [Google Scholar] [CrossRef]
- Munir, M.H.; Mahum, R.; Nafees, M.; Aitazaz, M.; Irtaza, A. An Automated Framework for Corona Virus Severity Detection Using Combination of AlexNet and Faster RCNN. Int. J. Innov. Sci. Technol. 2022, 3, 197–209. [Google Scholar]
- Masood, M.; Maham, R.; Javed, A.; Tariq, U.; Khan, M.A.; Kadry, S. Brain MRI analysis using deep neural network for medical of internet things applications. Comput. Electr. Eng. 2022, 103, 108386. [Google Scholar] [CrossRef]
- Mahum, R.; Aladhadh, S. Skin Lesion Detection Using Hand-Crafted and DL-Based Features Fusion and LSTM. Diagnostics 2022, 12, 2974. [Google Scholar] [CrossRef]
- Mahum, R.; Rehman, S.U.; Meraj, T.; Rauf, H.T.; Irtaza, A.; El-Sherbeeny, A.M.; El-Meligy, M.A. A novel hybrid approach based on deep cnn features to detect knee osteoarthritis. Sensors 2021, 21, 6189. [Google Scholar] [CrossRef]
- Jungo, A.; Meier, R.; Ermis, E.; Blatti-Moreno, M.; Herrmann, E.; Wiest, R.; Reyes, M. On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. Cnn based multiclass brain tumor detection using medical imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Vimal Kurup, R.; Sowmya, V.; Soman, K. Effect of data pre-processing on brain tumor classification using capsulenet. In Proceedings of the International Conference on Intelligent Computing and Communication Technologies, Tehri, India, 20–21 April 2019; Springer: Singapore, 2019. [Google Scholar]
- Toğaçar, M.; Cömert, Z.; Ergen, B. Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method. Expert Syst. Appl. 2020, 149, 113274. [Google Scholar] [CrossRef]
- Raja, P.S. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern. Biomed. Eng. 2020, 40, 440–453. [Google Scholar] [CrossRef]
- Çinar, A.; Yildirim, M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Med. Hypotheses 2020, 139, 109684. [Google Scholar] [CrossRef] [PubMed]
- Toğaçar, M.; Ergen, B.; Cömert, Z. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Med. Hypotheses 2020, 134, 109531. [Google Scholar] [CrossRef]
- Nayak, D.R.; Dash, R.; Majhi, B. Automated diagnosis of multi-class brain abnormalities using MRI images: A deep convolutional neural network based method. Pattern Recognit. Lett. 2020, 138, 385–391. [Google Scholar] [CrossRef]
- Sachdeva, J.; Kumar, V.; Gupta, I.; Khandelwal, N.; Ahuja, C.K. A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Appl. Soft Comput. 2016, 47, 151–167. [Google Scholar] [CrossRef]
- Tahir, B.; Iqbal, S.; Khan, M.U.G.; Saba, T.; Mehmood, Z.; Anjum, A.; Mahmood, T. Feature enhancement framework for brain tumor segmentation and classification. Microsc. Res. Tech. 2019, 82, 803–811. [Google Scholar] [CrossRef]
- Kurdi, S.Z.; Ali, M.H.; Jaber, M.M.; Saba, T.; Rehman, A.; Damaševičius, R. Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional Neural Networks. J. Pers. Med. 2023, 13, 181. [Google Scholar] [CrossRef]
- Aurna, N.F.; Abu Yousuf, M.; Abu Taher, K.; Azad, A.; Moni, M.A. A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models. Comput. Biol. Med. 2022, 146, 105539. [Google Scholar] [CrossRef] [PubMed]
- Badjie, B.; Ülker, E.D. A Deep Transfer Learning Based Architecture for Brain Tumor Classification Using MR Images. Inf. Technol. Control 2022, 51, 332–344. [Google Scholar] [CrossRef]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM. Medicina 2022, 58, 1090. [Google Scholar] [CrossRef] [PubMed]
- Rajinikanth, V.; Kadry, S.; Nam, Y. Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Inf. Technol. Control 2021, 50, 342–356. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Hamamci, A.; Kucuk, N.; Karaman, K.; Engin, K.; Unal, G. Tumor-cut: Segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 2011, 31, 790–804. [Google Scholar] [CrossRef]
- Vishnuvarthanan, G.; Rajasekaran, M.P.; Subbaraj, P.; Vishnuvarthanan, A. An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput. 2016, 38, 190–212. [Google Scholar] [CrossRef]
- Sharif, M.; Tanvir, U.; Munir, E.U.; Khan, M.A.; Yasmin, M. Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J. Ambient. Intell. Humaniz. Comput. 2018, 1–20. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Chen, S.; Wang, S.-H.; Yang, J.-F.; Phillips, P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int. J. Imaging Syst. Technol. 2015, 25, 317–327. [Google Scholar] [CrossRef]
- Wang, S.; Du, S.; Atangana, A.; Liu, A.; Lu, Z. Application of stationary wavelet entropy in pathological brain detection. Multimed. Tools Appl. 2018, 77, 3701–3714. [Google Scholar] [CrossRef]
- Nazir, M.; Wahid, F.; Khan, S.A. A simple and intelligent approach for brain MRI classification. J. Intell. Fuzzy Syst. 2015, 28, 1127–1135. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.; Yang, J.; Ji, G.; Dong, Z.; Wang, S.; Feng, C.; Wang, Q. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed. Tools Appl. 2016, 75, 15601–15617. [Google Scholar] [CrossRef]
- Vani, N.; Sowmya, A.; Jayamma, N. Brain tumor classification using support vector machine. Int. Res. J. Eng. Technol. 2017, 4, 792–796. [Google Scholar]
- Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain tumor classification via convolutional neural network and extreme learning machines. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 25–26 October 2018. [Google Scholar]
- Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 2018, 3, 68–71. [Google Scholar] [CrossRef]
- Citak-Er, F.; Firat, Z.; Kovanlikaya, I.; Ture, U.; Ozturk-Isik, E. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Comput. Biol. Med. 2018, 99, 154–160. [Google Scholar] [CrossRef]
- Shahzadi, I.; Tang, T.B.; Meriadeau, F.; Quyyum, A. CNN-LSTM: Cascaded framework for brain Tumour classification. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018. [Google Scholar]
- Saxena, P.; Maheshwari, A.; Maheshwari, S. Predictive modeling of brain tumor: A Deep learning approach. In Innovations in Computational Intelligence and Computer Vision; Springer: Singapore, 2021; pp. 275–285. [Google Scholar]
- Sultan, H.H.; Salem, N.M.; Al-Atabany, W. Multi-classification of brain tumor images using deep neural network. IEEE Access 2019, 7, 69215–69225. [Google Scholar] [CrossRef]
- Kaplan, K.; Kaya, Y.; Kuncan, M.; Ertunç, H. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 2020, 139, 109696. [Google Scholar] [CrossRef]
Sr. No. | Ref. | Type | Dataset | Issues | Advantages | Algorithm | Features | Performance |
---|---|---|---|---|---|---|---|---|
1 | [12] | Segmentation | BraTs2021 | High computational complexity is required. | Better results of segmentation | CNN-Transformer | CNN | 93.50% Dice score |
2 | [26] | segmentation | Figshare and BRATS | Extra computational means are required. | Computationally efficient. | M-SVM | MobileNetV2 | Accuracy: 98.92% |
3 | [23] | Classification | Kaggle | Minimum optimized feature selection. | Locates the tumor accurately. | CNN | CNN | Accuracy: 98% |
4 | [24] | Classification | 3 benchmarks | High computational resources used. | Significant generalization. | Ensemble method | Xception, VGG19, EfficientNet, ResNet-50, and Inception-V3 | Accuracy: 98.96% |
5 | [27] | Segmentation and classification | TCIA | Additional computational resources | Identifies tumor locations accurately. | Hybrid approach | Hand-crafted + CNN | Accuracy: 98.89% |
Type | Output Shape | Number of Parameters |
---|---|---|
Feature input | - | 0 |
LSTM-1 (Forward pass) | 100, 500 | 161,700 |
LSTM-2 (Backward pass) | 100, 500 | 161,700 |
Max pooling layer | 500 | 0 |
FC + ReLU | 50 | 20,070 |
Dropout | 50 | 0 |
FC (Sigmoid) | 3 | - |
Hardware | Conditions |
---|---|
RAM | 16 GB |
Graphical Processing Unit | NVIDIA GEFORCE GTX × 4 |
Central Processing Unit | Intel Core i5 |
GPU Memory | 4 GB |
Image | TC (%) | DOI (%) | Pixels | Area (nm2) |
---|---|---|---|---|
Image 1 | 90 | 96 | 3244 | 7.1 × 1011 |
Image 2 | 92 | 97 | 2234 | 8.2 × 1012 |
Image 3 | 92 | 97 | 2321 | 8.3 × 1011 |
Image 4 | 96 | 98 | 3243 | 6.2 × 1014 |
Image 5 | 93 | 97 | 3421 | 6.3 × 1011 |
Image 6 | 90 | 94 | 2933 | 5.6 × 1013 |
Image 7 | 91 | 95 | 3284 | 7.2 × 1012 |
Image 8 | 97 | 99 | 4122 | 5.1 × 1010 |
Image 9 | 96 | 98 | 2847 | 3.5 × 1012 |
Image 10 | 98 | 98 | 4354 | 8.6 × 1010 |
Image 11 | 91 | 97 | 5121 | 7.0 × 1012 |
Image 12 | 98 | 99 | 2038 | 4.4 × 1013 |
Image | TC (%) | DOI (%) | Pixels | Area (nm2) |
---|---|---|---|---|
Image 1 | 91 | 93 | 2215 | 6.1 × 1013 |
Image 2 | 92 | 96 | 2225 | 5.1 × 1012 |
Image 3 | 93 | 96 | 3235 | 7.4 × 1014 |
Image 4 | 99 | 98 | 3357 | 5.4 × 1013 |
Image 5 | 93 | 97 | 3452 | 6.1 × 1014 |
Image 6 | 91 | 95 | 5312 | 6.8 × 1013 |
Image 7 | 92 | 95 | 4463 | 7.3 × 1013 |
Image 8 | 98 | 97 | 4471 | 6.1 × 1014 |
Image 9 | 99 | 99 | 3386 | 6.8 × 1012 |
Image 10 | 98 | 98 | 3496 | 6.8 × 1013 |
Image 11 | 0.99 | 98 | 2323 | 6.3 × 1014 |
Image 12 | 0.99 | 91 | 4344 | 7.3 × 1013 |
Technique | TC (%) | DOI (%) |
---|---|---|
Graph Cut | 27 | 43 |
SOM | 23 | 37 |
SOM-FKM | 31 | 47 |
FKM | 22 | 36 |
Kernel | 22 | 36 |
Our approach | 99 | 97 |
Algorithm | Accuracy (%) | Recall (%) | Precision (%) | AUC | F1 Score (%) |
---|---|---|---|---|---|
DT | 97.3 | 96.8 | 97.2 | 0.900 | 97.2 |
SVM | 98.3 | 98.1 | 98.9 | 0.912 | 98.5 |
BiLSTM | 99.3 | 99.1 | 98.3 | 0.989 | 99.1 |
Algorithm | Accuracy (%) | Recall (%) | Precision (%) | AUC | F1 Score (%) |
---|---|---|---|---|---|
DT | 99.0 | 98.2 | 98.9 | 0.921 | 98.0 |
SVM | 98.1 | 97.4 | 97.9 | 0.901 | 97.2 |
BiLSTM | 99.1 | 98.1 | 98.2 | 0.974 | 98.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahum, R.; Sharaf, M.; Hassan, H.; Liang, L.; Huang, B. A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding. Biomedicines 2023, 11, 1715. https://doi.org/10.3390/biomedicines11061715
Mahum R, Sharaf M, Hassan H, Liang L, Huang B. A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding. Biomedicines. 2023; 11(6):1715. https://doi.org/10.3390/biomedicines11061715
Chicago/Turabian StyleMahum, Rabbia, Mohamed Sharaf, Haseeb Hassan, Lixin Liang, and Bingding Huang. 2023. "A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding" Biomedicines 11, no. 6: 1715. https://doi.org/10.3390/biomedicines11061715
APA StyleMahum, R., Sharaf, M., Hassan, H., Liang, L., & Huang, B. (2023). A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding. Biomedicines, 11(6), 1715. https://doi.org/10.3390/biomedicines11061715