Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines
<p>Anti-proliferation activity of eribulin against TNBC and IBC cells. Cells were seeded in 96-well plates and treated the next day with eribulin for 5 days. On day 5 following treatments, the cells were fixed with 5% trichloroacetic acid and then stained with 0.025% sulforhodamine B solution. The stained cells were dissolved in 10 mM Tris buffer. The optical density at 585 nm was measured using a Victor X3 plate reader. The data are representative of three independent experiments with three replications for each experiment. Cell viability is presented as a percentage of non-treated control cells. Data are presented as mean ± standard deviation. BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; LAR, luminal androgen receptor; M, mesenchymal; UC, unclassified.</p> "> Figure 2
<p>Network identified by the synthetic lethal high-throughput RNAi screening in SUM149 cells. (<b>A</b>) Synthetic lethal high-throughput RNAi screening was performed with a sensitivity index cutoff of 0.15 in SUM149 cells. (<b>B</b>) An ingenuity pathway analysis of pathways involving 135 potential target genes whose inhibition enhances the anti-proliferation effect of eribulin. (<b>C</b>) Protein–protein interaction analysis of target genes (STRING V11) identified the PI3K/Akt/mTOR and the MAPK/JNK pathways as the top candidates whose inhibition significantly enhances the anti-proliferation effect of eribulin against SUM149 cells.</p> "> Figure 3
<p>Fraction affected (Fa) and combination index (CI) of eribulin combined with other drugs in TNBC cell lines. CIs indicate the following: <0.1, very strong synergism; 0.10–0.30, strong synergism; 0.31–0.70, synergism; 0.71–0.85, moderate synergism; 0.86–0.90, slight synergism; 0.91–1.10, nearly additive; 1.11–1.20, slight antagonism; 1.21–1.45, moderate antagonism; 1.46–3.30, antagonism; 3.31–10, strong antagonism; >10, very strong antagonism. Fa 1.0 indicates 100% cell death. mt, mutated; wt, wild-type.</p> "> Figure 4
<p>Combination of eribulin with everolimus or copanlisib is more effective than monotherapies at inhibiting TNBC cell growth. The synergistic effects of combination treatment were determined using (<b>A</b>) a soft agar colony formation assay at weeks 3 or 4 and (<b>B</b>) an ex vivo model following treatment with eribulin alone, everolimus alone, copanlisib alone, eribulin plus everolimus, or eribulin plus copanlisib. Data are presented as mean ± standard deviation. In (<b>A</b>), colony numbers are presented as percentage of non-treated control cells. *, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001, ****, <span class="html-italic">p</span> < 0.0001 by two-tailed Student <span class="html-italic">t</span>-test. Eri., eribulin; Ever., everolimus; Cop., copanlisib; mt, mutated; wt, wild-type.</p> "> Figure 5
<p>Eribulin synergizes with everolimus or copanlisib by arresting cell cycle progression and inducing apoptosis. (<b>A</b>) Cells were treated with eribulin alone, everolimus alone, copanlisib alone, eribulin plus everolimus, or eribulin plus copanlisib for 24 h. Following treatment, proteins were extracted and subjected to Western blotting analysis. Anti–α-tubulin was used as a loading control. (<b>B</b>) Cells were treated with eribulin alone, everolimus alone, copanlisib alone, eribulin plus everolimus, or eribulin plus copanlisib for 72 h. Following treatment, the cells were fixed in 70% EtOH, stained with propidium iodide, and subjected to flow cytometry analysis. (<b>C</b>) Cells were treated with DMSO or Z-VAD-FMK for 1 h and then with eribulin alone, everolimus alone, copanlisib alone, eribulin plus everolimus, or eribulin plus copanlisib for 24 h. Caspase 3/7 activity was determined using the Caspase-Glo 3/7 reagent. Data are presented as mean ± standard deviation. Statistical significance was assessed by two-tailed Student <span class="html-italic">t</span>-test. *, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001. * indicates differences between the cells treated with eribulin alone and those treated with the eribulin-based combinations. <sup>##</sup>, <span class="html-italic">p</span> < 0.01; <sup>###</sup>, <span class="html-italic">p</span> < 0.001, <sup>####</sup>, <span class="html-italic">p</span> < 0.0001. <sup>#</sup> indicates differences between the cells treated with a kinase inhibitor alone and those given the combination with eribulin. Eri., eribulin; Ever., everolimus; Cop., copanlisib.</p> "> Figure 6
<p>The combination of eribulin with everolimus or copanlisib is more effective than monotherapies at inhibiting TNBC cell migration. Cells were pre-treated with eribulin alone, everolimus alone, copanlisib alone, eribulin plus everolimus, or eribulin plus copanlisib for 2 h and then tested for migration using a Transwell assay in the presence of inhibitors. Data are presented as mean ± standard deviation. ***, <span class="html-italic">p</span> < 0.001; ****, <span class="html-italic">p</span> < 0.0001 by two-tailed Student <span class="html-italic">t</span>-test. Eri., eribulin; Ever., everolimus; Cop., copanlisib.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Reagents
2.2. Small Molecules
2.3. Cell Proliferation Assay
2.4. Soft Agar Colony Formation Assay
2.5. High-Throughput RNAi Screening
2.6. Western Blotting
2.7. Caspase 3/7 Activity Measurement
2.8. Cell Cycle Analysis
2.9. Cell Migration Assay
2.10. Ex Vivo Determination of Drug Sensitivity
2.11. Statistical Analysis
3. Results
3.1. Eribulin Suppressed Proliferation of TNBC and TN-IBC Cells
3.2. PI3K/Akt/mTOR and MAPK/JNK Pathways Potentiate the Antitumor Efficacy of Eribulin in TNBC Cells
3.3. Combination with Inhibitors of Target Kinases Enhanced Anti-Proliferation Activity of Eribulin
3.4. Combination with Inhibitors of the PI3K/mTOR Pathway Enhanced Growth Inhibition Activity of Eribulin in 3D Culture
3.5. Combination of Eribulin with Inhibitors of Target Kinases Arrested Cell Cycle Progression and Induced Apoptosis in TNBC Cells
3.6. Combination with Inhibitors of Target Kinases Enhanced Inhibitory Activity of Eribulin against Cell Migration In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Morris, G.J.; Naidu, S.; Topham, A.K.; Guiles, F.; Xu, Y.; McCue, P.; Schwartz, G.F.; Park, P.K.; Rosenberg, A.L.; Brill, K.; et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 2007, 110, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitz, F.; Harter, P.; Lueck, H.J.; Fissler-Eckhoff, A.; Lorenz-Salehi, F.; Scheil-Bertram, S.; Traut, A.; du Bois, A. Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur. J. Cancer 2009, 45, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.K.; Carey, L.A. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin. Breast Cancer 2009, 9 (Suppl. S2), S73–S81. [Google Scholar] [CrossRef]
- Haffty, B.G.; Yang, Q.; Reiss, M.; Kearney, T.; Higgins, S.A.; Weidhaas, J.; Harris, L.; Hait, W.; Toppmeyer, D. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol. 2006, 24, 5652–5657. [Google Scholar] [CrossRef]
- Finn, R.S.; Bengala, C.; Ibrahim, N.; Roche, H.; Sparano, J.; Strauss, L.C.; Fairchild, J.; Sy, O.; Goldstein, L.J. Dasatinib as a single agent in triple-negative breast cancer: Results of an open-label phase 2 study. Clin. Cancer Res. 2011, 17, 6905–6913. [Google Scholar] [CrossRef] [Green Version]
- Baselga, J.; Gomez, P.; Greil, R.; Braga, S.; Climent, M.A.; Wardley, A.M.; Kaufman, B.; Stemmer, S.M.; Pego, A.; Chan, A.; et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J. Clin. Oncol. 2013, 31, 2586–2592. [Google Scholar] [CrossRef]
- Schmid, P.; Abraham, J.; Chan, S.; Wheatley, D.; Brunt, A.M.; Nemsadze, G.; Baird, R.D.; Park, Y.H.; Hall, P.S.; Perren, T.; et al. Capivasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. J. Clin. Oncol. 2020, 38, 423–433. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu, S., II; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef]
- Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 2019, 30, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012, 486, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Samuels, Y.; Diaz, L.A., Jr.; Schmidt-Kittler, O.; Cummins, J.M.; Delong, L.; Cheong, I.; Rago, C.; Huso, D.L.; Lengauer, C.; Kinzler, K.W.; et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005, 7, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Ghodsinia, A.A.; Lego, J.M.T.; Garcia, R.L. Mutation-Associated Phenotypic Heterogeneity in Novel and Canonical PIK3CA Helical and Kinase Domain Mutants. Cells 2020, 9, 1116. [Google Scholar] [CrossRef]
- Hu, H.; Zhu, J.; Zhong, Y.; Geng, R.; Ji, Y.; Guan, Q.; Hong, C.; Wei, Y.; Min, N.; Qi, A.; et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann. Transl. Med. 2021, 9, 410. [Google Scholar] [CrossRef]
- Guo, S.; Loibl, S.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Denkert, C. PIK3CA H1047R Mutation Associated with a Lower Pathological Complete Response Rate in Triple-Negative Breast Cancer Patients Treated with Anthracycline-Taxane-Based Neoadjuvant Chemotherapy. Cancer Res. Treat. 2020, 52, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Di Cosimo, S.; Appierto, V.; Silvestri, M.; Pruneri, G.; Vingiani, A.; Perrone, F.; Busico, A.; Folli, S.; Scaperrotta, G.; de Braud, F.G.; et al. Targeted-Gene Sequencing to Catch Triple Negative Breast Cancer Heterogeneity before and after Neoadjuvant Chemotherapy. Cancers 2019, 11, 1753. [Google Scholar] [CrossRef] [Green Version]
- Zardavas, D.; Te Marvelde, L.; Milne, R.L.; Fumagalli, D.; Fountzilas, G.; Kotoula, V.; Razis, E.; Papaxoinis, G.; Joensuu, H.; Moynahan, M.E.; et al. Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data. J. Clin. Oncol. 2018, 36, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Cossu-Rocca, P.; Orru, S.; Muroni, M.R.; Sanges, F.; Sotgiu, G.; Ena, S.; Pira, G.; Murgia, L.; Manca, A.; Uras, M.G.; et al. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer. PLoS ONE 2015, 10, e0141763. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Ma, D.; Suo, C.; Shi, J.; Xue, M.; Hu, X.; Xiao, Y.; Yu, K.D.; Liu, Y.R.; Yu, Y.; et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell 2019, 35, 428–440.e425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeGraffenried, L.A.; Friedrichs, W.E.; Russell, D.H.; Donzis, E.J.; Middleton, A.K.; Silva, J.M.; Roth, R.A.; Hidalgo, M. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin. Cancer Res. 2004, 10, 8059–8067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towle, M.J.; Salvato, K.A.; Budrow, J.; Wels, B.F.; Kuznetsov, G.; Aalfs, K.K.; Welsh, S.; Zheng, W.; Seletsky, B.M.; Palme, M.H.; et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 2001, 61, 1013–1021. [Google Scholar] [PubMed]
- Smith, J.A.; Wilson, L.; Azarenko, O.; Zhu, X.; Lewis, B.M.; Littlefield, B.A.; Jordan, M.A. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010, 49, 1331–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Yu, W.; Ukon, N.; Tan, C.; Nishijima, K.I.; Shimizu, Y.; Higashikawa, K.; Shiga, T.; Yamashita, H.; Tamaki, N.; et al. Elimination of tumor hypoxia by eribulin demonstrated by (18)F-FMISO hypoxia imaging in human tumor xenograft models. EJNMMI Res. 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Ozawa, Y.; Kimura, T.; Sato, Y.; Kuznetsov, G.; Xu, S.; Uesugi, M.; Agoulnik, S.; Taylor, N.; Funahashi, Y.; et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br. J. Cancer 2014, 110, 1497–1505. [Google Scholar] [CrossRef]
- Pedersini, R.; di Mauro, P.; Amoroso, V.; Parati, M.C.; Turla, A.; Ghilardi, M.; Vassalli, L.; Ardine, M.; Volta, A.D.; Monteverdi, S.; et al. Efficacy of Eribulin mesylate in older patients with breast cancer: A pooled analysis of clinical trial and real-world data. J. Geriatr. Oncol. 2020, 11, 976–981. [Google Scholar] [CrossRef]
- Fujii, T.; Tokuda, S.; Nakazawa, Y.; Kurozumi, S.; Obayashi, S.; Yajima, R.; Shirabe, K. Eribulin Suppresses New Metastases in Patients With Metastatic Breast Cancer. In Vivo 2020, 34, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Manthri, S.; Sharma, P.; Mejbel, H.A.; Singal, S.; Jaishankar, D. Third Line Eribulin for Triple-negative Metastatic Breast Ductal Carcinoma Resulting in Extended Progression-free Survival of 57 Months. Cureus 2020, 12, e6980. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.; Murata, T.; Sugisawa, N.; Higuchi, T.; Tashiro, Y.; Nishino, H.; Inubushi, S.; Sun, Y.U.; Lim, H.; Miyake, K.; et al. Eribulin Regresses a Cisplatinum-resistant Rare-type Triple-negative Matrix-producing Breast Carcinoma Patient-derived Orthotopic Xenograft Mouse Model. Anticancer Res. 2020, 40, 2475–2479. [Google Scholar] [CrossRef]
- Cortes, J.; O’Shaughnessy, J.; Loesch, D.; Blum, J.L.; Vahdat, L.T.; Petrakova, K.; Chollet, P.; Manikas, A.; Dieras, V.; Delozier, T.; et al. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): A phase 3 open-label randomised study. Lancet 2011, 377, 914–923. [Google Scholar] [CrossRef]
- Jansen, V.M.; Bhola, N.E.; Bauer, J.A.; Formisano, L.; Lee, K.M.; Hutchinson, K.E.; Witkiewicz, A.K.; Moore, P.D.; Estrada, M.V.; Sanchez, V.; et al. Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Res. 2017, 77, 2488–2499. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Mu, Z.; Klinowska, T.; Dong, X.; Foster, E.; Womack, C.; Fernandez, S.V.; Cristofanilli, M. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor (EGFR), HER2, and HER3: Preclinical activity in HER2 non-amplified inflammatory breast cancer models. J. Exp. Clin. Cancer Res. 2014, 33, 47. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Prever, L.; Hirsch, E.; Gulluni, F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers 2021, 13, 3517. [Google Scholar] [CrossRef]
- Podhorecka, M.; Skladanowski, A.; Bozko, P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J. Nucleic Acids 2010, 2010, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Prvanovic, M.; Nedeljkovic, M.; Tanic, N.; Tomic, T.; Terzic, T.; Milovanovic, Z.; Maksimovic, Z.; Tanic, N. Role of PTEN, PI3K, and mTOR in Triple-Negative Breast Cancer. Life 2021, 11, 1247. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Yu, B.H.; Li, D.L.; Ke, H.L.; Guo, X.Z.; Xiao, X.Y. PI3K expression and PIK3CA mutations are related to colorectal cancer metastases. World J. Gastroenterol. 2012, 18, 3745–3751. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Sun, J.; Luo, J.; You, J.; Liao, L.; Li, M. Clinical value of CagA, c-Met, PI3K and Beclin-1 expressed in gastric cancer and their association with prognosis. Oncol. Lett. 2018, 15, 947–955. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zhang, J.; Li, L.; Liu, C. The expression and clinical significance of PI3K, pAkt and VEGF in colon cancer. Oncol. Lett. 2012, 4, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Lei, W.; Hou, X.; Li, H.; Ni, W. PUF60 accelerates the progression of breast cancer through downregulation of PTEN expression. Cancer Manag. Res. 2019, 11, 821–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouchery, V.; Perdrix, A.; Calbrix, C.; Berghian, A.; Lequesne, J.; Fontanilles, M.; Leheurteur, M.; Etancelin, P.; Sarafan-Vasseur, N.; Di Fiore, F.; et al. Circulating PIK3CA mutation detection at diagnosis in non-metastatic inflammatory breast cancer patients. Sci. Rep. 2021, 11, 24041. [Google Scholar] [CrossRef] [PubMed]
- Lehman, H.L.; Van Laere, S.J.; van Golen, C.M.; Vermeulen, P.B.; Dirix, L.Y.; van Golen, K.L. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBalpha phosphorylation of RhoC GTPase. Mol. Cancer Res. 2012, 10, 1306–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.M. Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway. Cell Commun. Signal. 2012, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Vacher, S.; Boulai, A.; Bernard, V.; Baulande, S.; Bohec, M.; Bieche, I.; Lerebours, F.; Callens, C. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018, 20, 88. [Google Scholar] [CrossRef]
- Martinez-Saez, O.; Chic, N.; Pascual, T.; Adamo, B.; Vidal, M.; Gonzalez-Farre, B.; Sanfeliu, E.; Schettini, F.; Conte, B.; Braso-Maristany, F.; et al. Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res. 2020, 22, 45. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: Beyond AKT. Curr. Opin. Cell Biol. 2017, 45, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014, 46, 372–383. [Google Scholar] [CrossRef]
- Guerrero-Zotano, A.; Mayer, I.A.; Arteaga, C.L. PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016, 35, 515–524. [Google Scholar] [CrossRef]
- Baselga, J.; Im, S.A.; Iwata, H.; Cortes, J.; De Laurentiis, M.; Jiang, Z.; Arteaga, C.L.; Jonat, W.; Clemons, M.; Ito, Y.; et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 904–916. [Google Scholar] [CrossRef]
- Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kalpha-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Andre, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef]
- Martin, M.; Chan, A.; Dirix, L.; O’Shaughnessy, J.; Hegg, R.; Manikhas, A.; Shtivelband, M.; Krivorotko, P.; Batista Lopez, N.; Campone, M.; et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann. Oncol. 2017, 28, 313–320. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Schafer, J.M.; Pendleton, C.S.; Tang, L.; Johnson, K.C.; Chen, X.; Balko, J.M.; Gomez, H.; Arteaga, C.L.; et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014, 16, 406. [Google Scholar] [CrossRef] [Green Version]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Granata, S.; Dalla Gassa, A.; Carraro, A.; Brunelli, M.; Stallone, G.; Lupo, A.; Zaza, G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int. J. Mol. Sci. 2016, 17, 735. [Google Scholar] [CrossRef]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., 3rd; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Piccart-Gebhart, M.J.; Noguchi, S.; Pritchard, K.I.; Burris, H.A.; Rugo, H.S.; Gnant, M.; Baselga, J. Everolimus for postmenopausal women with advanced breast cancer: Updated results of the BOLERO-2 phase III trial. J. Clin. Oncol. 2012, 30, 559. [Google Scholar] [CrossRef]
- Singh, J.; Novik, Y.; Stein, S.; Volm, M.; Meyers, M.; Smith, J.; Omene, C.; Speyer, J.; Schneider, R.; Jhaveri, K.; et al. Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res. 2014, 16, R32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Angulo, A.M.; Akcakanat, A.; Liu, S.; Green, M.C.; Murray, J.L.; Chen, H.; Palla, S.L.; Koenig, K.B.; Brewster, A.M.; Valero, V.; et al. Open-label randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC versus the combination of paclitaxel and everolimus followed by FEC in women with triple receptor-negative breast cancerdagger. Ann. Oncol. 2014, 25, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Cree, I.A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Wu, J.; Chen, Y.; Nie, J.; Chen, C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front. Pharmacol. 2021, 12, 628690. [Google Scholar] [CrossRef]
- Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014, 159, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e310. [Google Scholar] [CrossRef] [Green Version]
Gene Symbol | Full Gene Name | Accession # | Synergy Score | Viability (%) |
---|---|---|---|---|
TXNDC3 (also called NME8) | thioredoxin domain containing 3 (spermatozoa) | NM_016616 | 0.37 | 65.64 |
CMPK1 | cytidine monophosphate (UMP-CMP) kinase 1 | NM_016308 | 0.33 | 39.38 |
MAPK12 | mitogen-activated protein kinase 12 | NM_002969 | 0.32 | 26.68 |
PNCK | pregnancy up-regulated non-ubiquitously expressed CaM kinase | NM_001039582 | 0.31 | 34.45 |
TESK2 | testis-specific kinase 2 | NM_007170 | 0.29 | 25.63 |
TESK1 | testis-specific kinase 1 | NM_006285 | 0.29 | 49.32 |
NADK | NAD kinase | NM_023018 | 0.29 | 70.86 |
PANK1 | pantothenate kinase 1 | NM_138316 | 0.29 | 49.30 |
TAF1L | TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor | NM_153809 | 0.28 | 43.73 |
STK36 | serine/threonine kinase 36, fused homolog (Drosophila) | NM_015690 | 0.28 | 35.39 |
ALPK2 | alpha-kinase 2 | NM_052947 | 0.28 | 13.26 |
TRIB2 | tribbles homolog 2 (Drosophila) | NM_021643 | 0.27 | 41.05 |
MVK | mevalonate kinase | NM_000431 | 0.27 | 44.02 |
SIK1 | salt-inducible kinase 1 | NM_173354 | 0.27 | 32.81 |
RIPK2 | receptor-interacting serine-threonine kinase 2 | NM_003821 | 0.27 | 43.54 |
MAP3K7IP2 (also called TAB2) | mitogen-activated protein kinase kinase kinase 7 interacting protein 2 | NM_015093 | 0.26 | 34.00 |
COL4A3BP | collagen, type IV, alpha 3 (Goodpasture antigen) binding protein | NM_031361 | 0.26 | 40.39 |
BMX | BMX non-receptor tyrosine kinase | NM_001721 | 0.26 | 21.39 |
MAK | male germ cell-associated kinase | NM_005906 | 0.26 | 34.30 |
MAP3K6 | mitogen-activated protein kinase kinase kinase 6 | NM_004672 | 0.26 | 36.35 |
EEF2K | eukaryotic elongation factor-2 kinase | NM_013302 | 0.26 | 49.71 |
PIK3C3 | phosphatidylinositol 3-kinase, catalytic subunit type 3 | NM_002647 | 0.25 | 40.15 |
TWF1 | twinfilin, actin-binding protein, homolog 1 (Drosophila) | NM_002822 | 0.24 | 23.90 |
MAPK9 | mitogen-activated protein kinase 9 | NM_139070 | 0.24 | 22.54 |
NUAK1 | NUAK family, SNF1-like kinase, 1 | NM_014840 | 0.24 | 25.75 |
STK11IP | serine/threonine kinase 11 interacting protein | NM_052902 | 0.24 | 66.15 |
MAPKSP1 | MAPK scaffold protein 1 | NM_021970 | 0.24 | 67.86 |
PRKCI | protein kinase C, iota | NM_002740 | 0.24 | 26.06 |
CAMK2B | calcium/calmodulin-dependent protein kinase II beta | NM_001220 | 0.23 | 29.12 |
DYRK1B | dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B | NM_006484 | 0.23 | 72.87 |
CD2 | CD2 molecule | NM_001767 | 0.23 | 35.95 |
PHKG2 | phosphorylase kinase, gamma 2 (testis) | NM_000294 | 0.23 | 21.42 |
PRPS1 | phosphoribosyl pyrophosphate synthetase 1 | NM_002764 | 0.23 | 48.18 |
AKAP12 | A kinase (PRKA) anchor protein 12 | NM_005100 | 0.22 | 8.19 |
PFKP | phosphofructokinase, platelet | NM_002627 | 0.22 | 40.62 |
MKNK2 | MAP kinase interacting serine/threonine kinase 2 | NM_199054 | 0.22 | 58.20 |
PLK2 | polo-like kinase 2 | NM_006622 | 0.22 | 24.76 |
DNAJC6 | DnaJ (Hsp40) homolog, subfamily C, member 6 | NM_014787 | 0.22 | 31.94 |
PDPK1 | 3-phosphoinositide dependent protein kinase-1 | NM_002613 | 0.22 | 35.37 |
CDKL1 | cyclin-dependent kinase-like 1 (CDC2-related kinase) | NM_004196 | 0.22 | 15.47 |
TEK | TEK tyrosine kinase, endothelial | NM_000459 | 0.22 | 18.50 |
MAP3K2 | mitogen-activated protein kinase kinase kinase 2 | NM_006609 | 0.22 | 62.80 |
ALPK1 | alpha-kinase 1 | NM_025144 | 0.21 | 46.55 |
IP6K1 | inositol hexakisphosphate kinase 1 | NM_153273 | 0.21 | 34.06 |
STK17A | serine/threonine kinase 17a | NM_004760 | 0.21 | 46.33 |
PLXND1 | plexin D1 | NM_015103 | 0.21 | 23.60 |
STK32B | serine/threonine kinase 32B | NM_018401 | 0.21 | 26.07 |
MAGI1 | membrane associated guanylate kinase, WW and PDZ domain containing 1 | NM_015520 | 0.21 | 33.63 |
RNASEL | ribonuclease L (2′,5′-oligoisoadenylate synthetase-dependent) | NM_021133 | 0.21 | 41.61 |
RFK | riboflavin kinase | NM_018339 | 0.21 | 38.20 |
RBKS | ribokinase | NM_022128 | 0.21 | 49.71 |
PLXNA1 | plexin A1 | NM_032242 | 0.21 | 9.90 |
KSR2 | kinase suppressor of ras 2 | NM_173598 | 0.21 | 34.22 |
FN3K | fructosamine 3 kinase | NM_022158 | 0.21 | 18.83 |
PRKCSH | protein kinase C substrate 80K-H | NM_002743 | 0.20 | 26.97 |
PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha | NM_006218 | 0.20 | 13.90 |
PIK3C2B | phosphoinositide-3-kinase, class 2, beta polypeptide | NM_002646 | 0.20 | 44.78 |
CIB4 | calcium and integrin binding family member 4 | NM_001029881 | 0.20 | 21.53 |
PASK | PAS domain containing serine/threonine kinase | NM_015148 | 0.20 | 44.89 |
PAK1 | p21 protein (Cdc42/Rac)-activated kinase 1 | NM_002576 | 0.20 | 30.68 |
MPP2 | membrane protein, palmitoylated 2 (MAGUK p55 subfamily member 2) | NM_005374 | 0.20 | 44.16 |
TAOK3 | TAO kinase 3 | NM_016281 | 0.20 | 64.51 |
UCK2 | uridine-cytidine kinase 2 | NM_012474 | 0.20 | 64.99 |
KIT | v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog | NM_000222 | 0.20 | 33.10 |
CHUK | component of inhibitor of nuclear factor kappa B kinase complex | NM_001278 | 0.19 | 25.06 |
PRKD3 | protein kinase D3 | NM_005813 | 0.19 | 16.40 |
STK32C | serine/threonine kinase 32C | NM_173575 | 0.19 | 35.58 |
TGFBR1 | transforming growth factor, beta receptor 1 | NM_004612 | 0.19 | 18.35 |
TYK2 | tyrosine kinase 2 | NM_003331 | 0.19 | 35.85 |
ETNK2 | ethanolamine kinase 2 | NM_018208 | 0.19 | 15.00 |
PRKCDBP | protein kinase C, delta binding protein | NM_145040 | 0.19 | 56.60 |
MAP3K7 | mitogen-activated protein kinase kinase kinase 7 | NM_003188 | 0.19 | 22.81 |
MAP3K1 | mitogen-activated protein kinase kinase kinase 1 | XM_042066 | 0.18 | 35.73 |
DGKZ | diacylglycerol kinase, zeta 104 kDa | NM_201532 | 0.18 | 21.25 |
PCTK1 | PCTAIRE protein kinase 1 | NM_033018 | 0.18 | 48.22 |
NME1 | NME/NM23 nucleoside diphosphate kinase 1 | NM_198175 | 0.18 | 46.25 |
TLK2 | tousled-like kinase 2 | NM_006852 | 0.18 | 73.65 |
NME4 | NME/NM23 nucleoside diphosphate kinase 4 | NM_005009 | 0.18 | 40.34 |
MERTK | c-mer proto-oncogene tyrosine kinase | NM_006343 | 0.18 | 29.48 |
CAMKK2 | calcium/calmodulin-dependent protein kinase kinase 2, beta | NM_172216 | 0.18 | 23.41 |
MAPK4 | mitogen-activated protein kinase 4 | NM_002747 | 0.18 | 20.95 |
PAK7 | p21 protein (Cdc42/Rac)-activated kinase 7 | NM_020341 | 0.17 | 54.89 |
ADCK2 | aarF domain containing kinase 2 | NM_052853 | 0.17 | 42.05 |
MAST3 | microtubule associated serine/threonine kinase 3 | XM_038150 | 0.17 | 54.17 |
MAP3K13 | mitogen-activated protein kinase kinase kinase 13 | NM_004721 | 0.17 | 12.55 |
TNNI3K | TNNI3 interacting kinase | NM_015978 | 0.17 | 50.06 |
SNX16 | sorting nexin 16 | NM_022133 | 0.17 | 46.02 |
PIP5K1B | phosphatidylinositol-4-phosphate 5-kinase, type I, beta | NM_003558 | 0.17 | 26.13 |
EIF2AK3 | eukaryotic translation initiation factor 2-alpha kinase 3 | NM_004836 | 0.17 | 57.26 |
MET | met proto-oncogene | NM_000245 | 0.17 | 34.39 |
DCK | deoxycytidine kinase | NM_000788 | 0.17 | 22.10 |
GALK1 | galactokinase 1 | NM_000154 | 0.17 | 1.74 |
ULK1 | unc-51-like kinase 1 (C. elegans) | XM_001133335 | 0.17 | 26.18 |
ERN1 | endoplasmic reticulum to nucleus signaling 1 | NM_001433 | 0.17 | 62.25 |
KIAA1804 | mixed lineage kinase 4 | NM_032435 | 0.17 | 20.09 |
CDK5 | cyclin-dependent kinase 5 | NM_004935 | 0.17 | 17.19 |
TWF2 | twinfilin actin-binding protein 2 | NM_007284 | 0.16 | 34.93 |
MAPK7 | mitogen-activated protein kinase 7 | NM_139034 | 0.16 | 49.65 |
BMPR1A | bone morphogenetic protein receptor, type IA | NM_004329 | 0.16 | 11.85 |
CDK2 | cyclin-dependent kinase 2 | NM_001798 | 0.16 | 43.72 |
PKMYT1 | protein kinase, membrane associated tyrosine/threonine 1 | NM_004203 | 0.16 | 11.64 |
LTK | leukocyte receptor tyrosine kinase | NM_206961 | 0.16 | 15.55 |
CDK10 | cyclin-dependent kinase 10 | NM_003674 | 0.16 | 12.80 |
FGFRL1 | fibroblast growth factor receptor-like 1 | NM_021923 | 0.16 | 24.80 |
RPS6KA6 | ribosomal protein S6 kinase, 90 kDa, polypeptide 6 | NM_014496 | 0.16 | 24.56 |
GNE | glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase | NM_005476 | 0.16 | 31.57 |
MARK1 | MAP/microtubule affinity-regulating kinase 1 | NM_018650 | 0.16 | 39.49 |
PLK3 | polo like kinase 3 | NM_004073 | 0.16 | 24.31 |
NRK | Nik related kinase | NM_198465 | 0.16 | 17.66 |
SH3BP5L | SH3-binding domain protein 5-like | NM_030645 | 0.16 | 34.86 |
UHMK1 | U2AF homology motif (UHM) kinase 1 | NM_175866 | 0.16 | 48.37 |
AK5 | adenylate kinase 5 | NM_012093 | 0.16 | 28.30 |
MAP3K9 | mitogen-activated protein kinase kinase kinase 9 | NM_033141 | 0.16 | 29.05 |
CKB | creatine kinase B | NM_001823 | 0.16 | 39.76 |
PIK3CB | phosphoinositide-3-kinase, catalytic, beta polypeptide | NM_006219 | 0.16 | 33.44 |
CDC42BPG | CDC42 binding protein kinase gamma (DMPK-like) | NM_017525 | 0.16 | 11.56 |
GUK1 | guanylate kinase 1 | NM_000858 | 0.15 | 29.61 |
TRIB1 | tribbles pseudokinase 1 | NM_025195 | 0.15 | 20.63 |
MPP3 | membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3) | NM_001932 | 0.15 | 35.52 |
DAK | dihydroxyacetone kinase 2 homolog | NM_015533 | 0.15 | 50.20 |
TEC | tec protein tyrosine kinase | NM_003215 | 0.15 | 14.44 |
CHKA | choline kinase alpha | NM_212469 | 0.15 | 41.37 |
MAP3K3 | mitogen-activated protein kinase kinase kinase 3 | NM_203351 | 0.15 | 33.43 |
NRGN | neurogranin (protein kinase C substrate, RC3) | NM_006176 | 0.15 | 45.45 |
FUK | fucokinase | NM_145059 | 0.15 | 23.89 |
FLT1 | fms-related tyrosine kinase 1 | NM_002019 | 0.15 | 19.52 |
PIP4K2B | phosphatidylinositol-5-phosphate 4-kinase type 2 beta | NM_003559 | 0.15 | 29.44 |
NME9 | NME/NM23 family member 9 | NM_178130 | 0.15 | 35.70 |
ROR1 | receptor tyrosine kinase like orphan receptor 1 | NM_001083592 | 0.15 | 48.46 |
MAP2K2 | mitogen-activated protein kinase kinase 2 | NM_030662 | 0.15 | 63.34 |
MAP4K3 | mitogen-activated protein kinase kinase kinase kinase 3 | NM_003618 | 0.15 | 54.72 |
PTK6 | protein tyrosine kinase 6 | NM_005975 | 0.15 | 21.38 |
MAP3K19 | mitogen-activated protein kinase kinase kinase 19 | NM_025052 | 0.15 | 52.52 |
DCAKD | dephospho-CoA kinase domain containing | NM_024819 | 0.15 | 45.86 |
PRKCG | protein kinase C gamma | NM_002739 | 0.15 | 33.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Lee, J.; Fuson, J.A.; Liu, H.; Iwase, T.; Yun, K.; Margain, C.; Tripathy, D.; Ueno, N.T. Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines. Biomedicines 2023, 11, 735. https://doi.org/10.3390/biomedicines11030735
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines. Biomedicines. 2023; 11(3):735. https://doi.org/10.3390/biomedicines11030735
Chicago/Turabian StyleXie, Xuemei, Jangsoon Lee, Jon A. Fuson, Huey Liu, Toshiaki Iwase, Kyuson Yun, Cori Margain, Debu Tripathy, and Naoto T. Ueno. 2023. "Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines" Biomedicines 11, no. 3: 735. https://doi.org/10.3390/biomedicines11030735
APA StyleXie, X., Lee, J., Fuson, J. A., Liu, H., Iwase, T., Yun, K., Margain, C., Tripathy, D., & Ueno, N. T. (2023). Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines. Biomedicines, 11(3), 735. https://doi.org/10.3390/biomedicines11030735