Changes in Alprazolam Metabolism by CYP3A43 Mutants
<p>Production rates of the alprazolam metabolites 4-hydroxyalprazolam (4-OH alp; black columns), α-hydroxyalprazolam (α-OH alp; red columns), and 5-N-O alprazolam (5-N-O alp; green columns) after biotransformation with recombinant human CYP3A enzymes as indicated; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.005 versus control (3A43 4-OH alp). The CYP3A43 mutants are CYP3A43:p.Leu293Pro (3A43L), CYP3A43:p.Pro340Ala (3A43P), and CYP3A43:p.Thr409Arg (3A43T), respectively.</p> "> Figure 2
<p>Postulated metabolic pathways of alprazolam by human CYP3A43.1 and its mutants as indicated.</p> "> Figure 3
<p>Suggested docking conformations of alprazolam as substrate of CYP3A5 (<b>A</b>) and CYP3A43 (<b>B</b>). Interactions between alprazolam and the studied CYPs are presented in 3D pharmacophore (<b>left</b>) and their 2D representation (<b>right</b>). In both 3D and 2D pharmacophore schemes, red arrows stand for hydrogen bond donors, the violet arrows stand for halogen bonds, and the yellow spheres represent hydrophobic contacts.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fine Chemicals
2.2. Fission Yeast Strains and Media
2.3. Biotransformation with Permeabilized Fission Yeast Cells (Enzyme Bags)
2.4. HPLC-MS Analysis
2.5. Statistical Analysis
2.6. Prediction of Oxidation Sites
2.7. Homology Modeling
2.8. Molecular Docking
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durairaj, P.; Li, S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Eng. Microbiol. 2022, 2, 100011. [Google Scholar] [CrossRef]
- Nebert, D.W.; Wikvall, K.; Miller, W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20120431. [Google Scholar] [CrossRef] [Green Version]
- Gorski, J.C.; Jones, D.R.; Hamman, M.A.; Wrighton, S.A.; Hall, S.D. Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily. Xenobiotica 1999, 29, 931–944. [Google Scholar] [CrossRef]
- Hirota, N.; Ito, K.; Iwatsubo, T.; Green, C.E.; Tyson, C.A.; Shimada, N.; Suzuki, H.; Sugiyama, Y. In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm. Drug Dispos. 2001, 22, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Ring, B.J.; Cantrell, V.E.; Jones, D.R.; Eckstein, J.; Ruterbories, K.; Hamman, M.A.; Hall, S.D.; Wrighton, S.A. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos 2002, 30, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Kommaddi, R.P.; Valli, K.; Ryder, D.; Hyde, T.M.; Kleinman, J.E.; Strobel, H.W.; Ravindranath, V. Drug metabolism in human brain: High levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS ONE 2008, 3, e2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharm. 2000, 38, 41–57. [Google Scholar] [CrossRef]
- Allqvist, A.; Miura, J.; Bertilsson, L.; Mirghani, R.A. Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur. J. Clin. Pharm. 2007, 63, 173–179. [Google Scholar] [CrossRef]
- Boulenc, X.; Nicolas, O.; Hermabessiere, S.; Zobouyan, I.; Martin, V.; Donazzolo, Y.; Ollier, C. CYP3A4-based drug-drug interaction: CYP3A4 substrates’ pharmacokinetic properties and ketoconazole dose regimen effect. Eur. J. Drug Metab. Pharm. 2016, 41, 45–54. [Google Scholar] [CrossRef]
- Molanaei, H.; Stenvinkel, P.; Qureshi, A.R.; Carrero, J.J.; Heimburger, O.; Lindholm, B.; Diczfalusy, U.; Odar-Cederlof, I.; Bertilsson, L. Metabolism of alprazolam (a marker of CYP3A4) in hemodialysis patients with persistent inflammation. Eur. J. Clin. Pharm. 2012, 68, 571–577. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Z.; Wang, H.; Zhao, Z.Q.; Rao, Y. Influence of ethanol on the metabolism of alprazolam. Expert Opin. Drug Metab. Toxicol. 2018, 14, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Machalz, D.; Pach, S.; Bermudez, M.; Bureik, M.; Wolber, G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov. Today 2021, 26, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Domanski, T.L.; Finta, C.; Halpert, J.R.; Zaphiropoulos, P.G. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol. Pharmacol. 2001, 59, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Soderberg, M.M.; Dahl, M.L. Pharmacogenetics of olanzapine metabolism. Pharmacogenomics 2013, 14, 1319–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandl, E.J.; Chowdhury, N.I.; Tiwari, A.K.; Lett, T.A.; Meltzer, H.Y.; Kennedy, J.L.; Muller, D.J. Genetic variation in CYP3A43 is associated with response to antipsychotic medication. J. Neural. Transm. 2015, 122, 29–34. [Google Scholar] [CrossRef]
- Zhao, J.; Machalz, D.; Liu, S.; Wolf, C.A.; Wolber, G.; Parr, M.K.; Bureik, M. Metabolism of the antipsychotic drug olanzapine by CYP3A43. Xenobiotica 2022, 52, 413–425. [Google Scholar] [CrossRef]
- Zeigler-Johnson, C.; Friebel, T.; Walker, A.H.; Wang, Y.; Spangler, E.; Panossian, S.; Patacsil, M.; Aplenc, R.; Wein, A.J.; Malkowicz, S.B.; et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res. 2004, 64, 8461–8467. [Google Scholar] [CrossRef] [Green Version]
- Stone, A.; Ratnasinghe, L.D.; Emerson, G.L.; Modali, R.; Lehman, T.; Runnells, G.; Carroll, A.; Carter, W.; Barnhart, S.; Rasheed, A.A.; et al. CYP3A43 Pro(340)Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Siemes, C.; Visser, L.E.; de Jong, F.H.; Coebergh, J.W.; Uitterlinden, A.G.; Hofman, A.; Stricker, B.H.; van Schaik, R.H. Cytochrome P450 3A gene variation, steroid hormone serum levels and prostate cancer—The Rotterdam Study. Steroids 2010, 75, 1024–1032. [Google Scholar] [CrossRef]
- Neunzig, I.; Widjaja, M.; Dragan, C.A.; Peters, F.T.; Maurer, H.H.; Bureik, M. Engineering of human CYP3A enzymes by combination of activating polymorphic variants. Appl. Biochem. Biotechnol. 2012, 168, 785–796. [Google Scholar] [CrossRef]
- Durairaj, P.; Fan, L.; Du, W.; Ahmad, S.; Mebrahtu, D.; Sharma, S.; Ashraf, R.A.; Liu, J.; Liu, Q.; Bureik, M. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett. 2019, 593, 1372–1380. [Google Scholar] [CrossRef]
- Alfa, C.; Fantes, P.; Hyams, J.; McLeod, M.; Warbrick, E. Experiments with Fission Yeast: A Laboratory Course Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1993. [Google Scholar]
- Dragan, C.A.; Peters, F.T.; Bour, P.; Schwaninger, A.E.; Schaan, S.M.; Neunzig, I.; Widjaja, M.; Zapp, J.; Kraemer, T.; Maurer, H.H.; et al. Convenient Gram-Scale Metabolite Synthesis by Engineered Fission Yeast Strains Expressing Functional Human P450 Systems. Appl. Biochem. Biotechnol. 2011, 163, 965–980. [Google Scholar] [CrossRef]
- Neunzig, I.; Dragan, C.A.; Widjaja, M.; Schwaninger, A.E.; Peters, F.T.; Maurer, H.H.; Bureik, M. Whole-cell biotransformation assay for investigation of the human drug metabolizing enzyme CYP3A7. Biochim. Biophys. Acta 2011, 1814, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Durairaj, P.; Bureik, M. Rapid and convenient biotransformation procedure for human drug metabolizing enzymes using permeabilized fission yeast cells. Anal. Biochem. 2020, 607, 113704. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Buchman, C.D.; Seetharaman, J.; Miller, D.J.; Huber, A.D.; Wu, J.; Chai, S.C.; Garcia-Maldonado, E.; Wright, W.C.; Chenge, J.; et al. Unraveling the Structural Basis of Selective Inhibition of Human Cytochrome P450 3A5. J. Am. Chem. Soc. 2021, 143, 18467–18480. [Google Scholar] [CrossRef]
- wwPDB Consortium. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019, 47, D520–D528. [Google Scholar] [CrossRef] [Green Version]
- Labute, P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009, 75, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105, 6474–6487. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Halgren, T.A.; Nachbar, R.B. Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615. [Google Scholar] [CrossRef]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. J. Chem. Inf. Model 2005, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: Their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev. 2010, 110, 949–1017. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, P.; Ryde, U.; Olsen, L. Prediction of activation energies for aromatic oxidation by cytochrome P450. J. Phys. Chem. A 2008, 112, 13058–13065. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.C.; Skillman, A.G.; Nicholls, A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 2007, 50, 74–82. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L. Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2017, 114, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Redhair, M.; Hackett, J.C.; Pelletier, R.D.; Atkins, W.M. Dynamics and Location of the Allosteric Midazolam Site in Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2020, 59, 766–779. [Google Scholar] [CrossRef]
- Khan, K.K.; He, Y.Q.; Domanski, T.L.; Halpert, J.R. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: An evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol. Pharm. 2002, 61, 495–506. [Google Scholar] [CrossRef]
Strain | Parental Strain | Expressed Protein(s) | Genotype | Reference |
---|---|---|---|---|
CAD62 | NCYC2036 | hCPR | h-ura4-D.18 leu1::pCAD1-CPR | [23] |
CAD67 | CAD62 | hCPR, CYP3A4.1 | h-ura4-D.18 leu1::pCAD1-CPR/pREP1-CYP3A4*1 | [23] |
INA20 | CAD62 | hCPR, CYP3A5.1 | h-ura4-D.18 leu1:: pCAD1-CPR/pREP1-CYP3A5*1 | [20] |
INA2 | CAD62 | hCPR, CYP3A7.1 | h-ura4-D.18 leu1:: pCAD1-CPR/pREP1-CYP3A7*1 | [24] |
INA43 | CAD62 | hCPR, CYP3A43.1 | h-ura4-D.18 leu1::pCAD1-CPR/pREP1-CYP3A43*1 | [21] |
ZJ1 | CAD62 | hCPR, CYP3A43:p.Leu293Pro | h-ura4-D.18 leu1::pCAD1-CPR/pREP1-CYP3A43-L293P | [16] |
ZJ2 | CAD62 | hCPR, CYP3A43:p.Pro340Ala | h-ura4-D.18 leu1::pCAD1-CPR/pREP1-CYP3A43*3 | [16] |
ZJ3 | CAD62 | hCPR, CYP3A43:p.Thr409Arg | h-ura4-D.18 leu1::pCAD1-CPR/pREP1-CYP3A43-T409R | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liu, S.; Wolf, C.A.; Wolber, G.; Parr, M.K.; Bureik, M. Changes in Alprazolam Metabolism by CYP3A43 Mutants. Biomedicines 2022, 10, 3022. https://doi.org/10.3390/biomedicines10123022
Zhao J, Liu S, Wolf CA, Wolber G, Parr MK, Bureik M. Changes in Alprazolam Metabolism by CYP3A43 Mutants. Biomedicines. 2022; 10(12):3022. https://doi.org/10.3390/biomedicines10123022
Chicago/Turabian StyleZhao, Jie, Sijie Liu, Clemens Alexander Wolf, Gerhard Wolber, Maria Kristina Parr, and Matthias Bureik. 2022. "Changes in Alprazolam Metabolism by CYP3A43 Mutants" Biomedicines 10, no. 12: 3022. https://doi.org/10.3390/biomedicines10123022
APA StyleZhao, J., Liu, S., Wolf, C. A., Wolber, G., Parr, M. K., & Bureik, M. (2022). Changes in Alprazolam Metabolism by CYP3A43 Mutants. Biomedicines, 10(12), 3022. https://doi.org/10.3390/biomedicines10123022