Reading Dye-Based Colorimetric Inks: Achieving Color Consistency Using Color QR Codes
<p>A Back-compatible Color QR Code [<a href="#B18-chemosensors-12-00260" class="html-bibr">18</a>] for the evaluation of colorimetric indicators. This QR code is read by commercial scanners and should display the URL: <a href="http://c-s.is/#38RmtGVV6RQSf" target="_blank">c-s.is/#38RmtGVV6RQSf</a> (accessed on 12 December 2024). It includes up to 125 reference colors, and the colorimetric dye is printed above the lower finder pattern, represented here as seven purple modules.</p> "> Figure 2
<p>The structure of the color QR code from <a href="#chemosensors-12-00260-f001" class="html-fig">Figure 1</a>: (<b>a</b>,<b>b</b>) Possible sensor inks placements. (<b>a</b>) Big sensor outside the QR code. (<b>b</b>) Smaller factor forms (<math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <mn>1</mn> </mrow> </semantics></math>, …) within the QR code. (<b>c</b>) Color references and how they are spread over the QR code area. (<b>d</b>) Whole sensor layout of the gas-sensitive color QR code.</p> "> Figure 3
<p>The sensor changes from purple to yellow when exposed to <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>A mass-flow controller station, a capture station, and a user-access computer. The mass-flow controller station supplies a chamber in which the gas sensors are placed with modified atmospheres. The capture station takes time-lapse images of the sensor through an optical window of the chamber under controlled light settings. Finally, the user computer presents a web page interface to operate the system.</p> "> Figure 5
<p>A printed sensor featuring a color QR code and two different colorimetric indicators (<math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math> indicator above, <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>H</mi> <mn>3</mn> </msub> </mrow> </semantics></math> below, which was not used in this experiment) inside the sensor chamber. The image shows the sensor before exposure to the target gas under three different light conditions: 2500 K (<b>left</b>), 4500 K (<b>middle</b>) and 6500 K (<b>right</b>).</p> "> Figure 6
<p>Response of the green channel under nine different light conditions (2500 K to 6500 K) with all pulses overlapped in the same time frame and after correction of the measured values using a color correction method. Each target gas concentration (20%, 30%, 35%, 40%, 50%) was exposed three times under the respective light condition, resulting in a total of 27 pulses for every gas concentration.</p> "> Figure 7
<p><b>Up</b>: Fitting the responses to a model without performing any color correction (NONE), which is the worst-case scenario, with different color in the data points indicating different illumination conditions and different transparency indicating different repetition sample. <b>Down</b>: Fitting the responses to a model for the ground-truth responses (PERF), which is the best-case scenario, where all color corrections recover the D65 color of the sensor perfectly.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Experimental Conditions
2.3. Expected Response Model
2.4. Color Correction Methods
- Affine (AFF), with only linear terms [20];
- Vandermonde (VAN), with pure polynomial terms–i.e., , , , …–[32];
- Cheung (CHE), with polynomial terms and cross-terms–i.e., , , …–[21];
- Finlayson (FIN), with root-polynomial terms–i.e., , , , …–[22];
- Thin-plate splines (TPS), with radial-basis functions–i.e., , …–[23].
3. Results and Discussion
- A fast response, achieving 90% of the response in less than 5 min for the highest concentration, and in less than 10 min for the lowest one;
- A reasonable maximum response above 150% for the higher target concentration of 50%;
- A slight saturation in the upper region of concentrations;
- Good reproducibility among the replicas of each pulse;
- A drift in the lower concentration area, as pulses did not end in the same response they started.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmitt, K.; Tarantik, K.R.; Pannek, C.; Wöllenstein, J. Colorimetric Materials for Fire Gas Detection—A Review. Chemosensors 2018, 6, 14. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ma, W.; Lu, R.; Zhou, W.; Gao, H. Recent developments in rhodamine-based chemosensors: A review of the years 2018–2022. Chemosensors 2022, 10, 399. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J.; Hu, G.; Zhang, E.; Yu, H.H. Colorimetric sensors for chemical and biological sensing applications. Sensors 2023, 23, 2749. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Yadav, L.; Laddha, H.; Agarwal, M.; Gupta, R. Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions. Trends Environ. Anal. Chem. 2022, 36, e00177. [Google Scholar] [CrossRef]
- Luo, X.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef]
- Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; Lamarca, R.S.; Gomes, P.C.F.L.; da S Petruci, J.F.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry—A review. Anal. Chim. Acta 2020, 1135, 187–203. [Google Scholar] [CrossRef]
- Long, K.D.; Woodburn, E.V.; Le, H.M.; Shah, U.K.; Lumetta, S.S.; Cunningham, B.T. Multimode smartphone biosensing: The transmission, reflection, and intensity spectral (TRI)-analyzer. Lab Chip 2017, 17, 3246–3257. [Google Scholar] [CrossRef]
- Soda, Y.; Bakker, E. Quantification of colorimetric data for paper-based analytical devices. ACS Sens. 2019, 4, 3093–3101. [Google Scholar] [CrossRef]
- Driau, C.; Fàbrega, C.; Benito-Altamirano, I.; Pfeiffer, P.; Casals, O.; Li, H.; Prades, J.D. How to implement a selective colorimetric gas sensor with off the shelf components? Sens. Actuators B Chem. 2019, 293, 41–44. [Google Scholar] [CrossRef]
- Idros, N.; Chu, D. Triple-indicator-based multidimensional colorimetric sensing platform for heavy metal ion detections. ACS Sens. 2018, 3, 1756–1764. [Google Scholar] [CrossRef]
- ISO ISO/IEC 18004:2015; Information Technology—Automatic Identification and Data Capture Techniques—QR Code Bar Code Symbology Specification. International Organization for Standardization: Geneva, Switzerland, 2015.
- Benito-Altamirano, I.; Pfeiffer, P.; Cusola, O.; Daniel Prades, J. Machine-Readable Pattern for Colorimetric Sensor Interrogation. Proceedings 2018, 2, 906. [Google Scholar] [CrossRef]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Dold, M.; Pannek, C.; Prades, J.D.; Wöllenstein, J. Printable Colorimetric Sensors for the Detection of Formaldehyde in Ambient Air. ECS Meet. Abstr. 2020; MA2020-01, 2029. [Google Scholar] [CrossRef]
- Escobedo, P.; Ramos-Lorente, C.E.; Ejaz, A.; Erenas, M.M.; Martínez-Olmos, A.; Carvajal, M.A.; García-Núñez, C.; de Orbe-Payá, I.; Capitán-Vallvey, L.F.; Palma, A.J. QRsens: Dual-purpose Quick Response code with built-in colorimetric sensors. Sens. Actuators B Chem. 2023, 376, 133001. [Google Scholar] [CrossRef]
- Liu, T.; Yan, B.; Pan, J.S. Color visual secret sharing for QR code with perfect module reconstruction. Appl. Sci. 2019, 9, 4670. [Google Scholar] [CrossRef]
- Chou, K.C.; Wang, R.Z. Dual-Message QR Codes. Sensors 2024, 24, 3055. [Google Scholar] [CrossRef] [PubMed]
- Benito-Altamirano, I.; Crugeira, F.; Marchena, M.; Prades, J.D. The Application of Back-Compatible Color QR Codes to Colorimetric Sensors. Proceedings 2024, 97, 3. [Google Scholar] [CrossRef]
- Benito-Altamirano, I.; Martínez-Carpena, D.; Casals, O.; Fábrega, C.; Waag, A.; Prades, J.D. Back-compatible Color QR Codes for colorimetric applications. Pattern Recognit. 2023, 133, 108981. [Google Scholar] [CrossRef]
- Benito-Altamirano, I.; Martínez-Carpena, D.; Lizarzaburu-Aguilar, H.; Ventura, C.; Fàbrega, C.; Prades, J.D. Image color consistency in datasets: The Smooth-TPS3D method. arXiv 2024, arXiv:2409.05159. [Google Scholar]
- Finlayson, G.; Hordley, S.; Xu, R. Convex programming colour constancy with a diagonal-offset model. In Proceedings of the IEEE International Conference on Image Processing 2005, Genova, Italy, 14 September 2005. [Google Scholar] [CrossRef]
- Cheung, V.; Westland, S.; Connah, D.; Ripamonti, C. A comparative study of the characterisation of colour cameras by means of neural networks and polynomial transforms. Color. Technol. 2004, 120, 19–25. [Google Scholar] [CrossRef]
- Finlayson, G.D.; MacKiewicz, M.; Hurlbert, A. Color Correction Using Root-Polynomial Regression. IEEE Trans. Image Process. 2015, 24, 1460–1470. [Google Scholar] [CrossRef]
- Menesatti, P.; Angelini, C.; Pallottino, F.; Antonucci, F.; Aguzzi, J.; Costa, C. RGB color calibration for quantitative image analysis: The "3D Thin-Plate Spline" warping approach. Sensors 2012, 12, 7063–7079. [Google Scholar] [CrossRef]
- Fernández, L.; Pons, A.; Monereo, O.; Benito-Altamirano, I.; Xuriguera, E.; Casals, O.; Fàbrega, C.; Waag, A.; Prades, J.D. NO2 Measurements with RGB Sensors for Easy In-Field Test. Proceedings 2017, 1, 471. [Google Scholar] [CrossRef]
- Schmitt, K.; Tarantik, K.; Pannek, C.; Benito-Altamirano, I.; Casals, O.; Fàbrega, C.; Romano-Rodríguez, A.; Wöllenstein, J.; Prades, J.D. Colorimetric sensor for bad odor detection using automated color correction. In SPIE Proceedings; Fonseca, L., Prunnila, M., Peiner, E., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Leach, R.; Leach, R.; Pierce, R. The Printing Ink Manual; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Zhang, Y.; Lim, L.T. Inkjet-printed CO2 colorimetric indicators. Talanta 2016, 161, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Brooks Instruments. Brooks® Smart-Series Digital Mass Flow Meters and Controllers—Models 5800-S; Brooks Instrument: Hatfield, PA, USA, 2008. [Google Scholar]
- Pagnutti, M.; Ryan, R.E.; Cazenavette, G.; Gold, M.; Harlan, R.; Leggett, E.; Pagnutti, J. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes. J. Electron. Imaging 2017, 26, 013014. [Google Scholar] [CrossRef]
- Cusano, C.; Napoletano, P.; Schettini, R. Evaluating color texture descriptors under large variations of controlled lighting conditions. J. Opt. Soc. Am. A 2016, 33, 17. [Google Scholar] [CrossRef]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.D.; Wöllenstein, J. Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sens. Actuators B Chem. 2021, 330, 129281. [Google Scholar] [CrossRef]
- Kalman, D. The Generalized Vandermonde Matrix. Math. Mag. 1984, 57, 15–21. [Google Scholar] [CrossRef]
- Sensirion. Datasheet Sensirion SCD30 Sensor Module—CO2, Humidity, and Temperature Sensor; Version 0.94; Sensirion: Stäfa, Switzerland, 2019. [Google Scholar]
Pulse | Expected [%] | Measured [%] |
---|---|---|
1 | 20.0 | 25.210.00 |
2 | 20.0 | 25.220.22 |
3 | 20.0 | 25.220.22 |
4 | 30.0 | 36.620.22 |
5 | 30.0 | 36.670.31 |
6 | 30.0 | 36.670.31 |
7 | 35.0 | 42.100.40 |
8 | 35.0 | 42.300.40 |
9 | 35.0 | 42.200.40 |
10 | 40.0 | 46.900.40 |
11 | 40.0 | 47.300.40 |
12 | 40.0 | 47.400.40 |
13 | 50.0 | 57.600.50 |
14 | 50.0 | 57.600.50 |
15 | 50.0 | 57.600.50 |
Correction | m | n | ||||||
---|---|---|---|---|---|---|---|---|
NONE | 9080 | 200130 | 0.04 | 0.00 | 88 | 249 | 440 | 497 |
PERF | 982 | −143.0 | 0.99 | 0.99 | 2 | 5 | 9 | 10 |
AFF0 | 10119 | −1731 | 0.56 | 0.10 | 18 | 51 | 90 | 102 |
AFF1 | 10014 | −1623 | 0.69 | 0.45 | 14 | 38 | 68 | 77 |
AFF2 | 9810 | −1616 | 0.81 | 0.34 | 10 | 27 | 48 | 55 |
AFF3 | 1003 | −195 | 0.98 | 0.97 | 3 | 8 | 14 | 16 |
VAN0 | 1094 | −316 | 0.97 | 0.96 | 3 | 10 | 17 | 19 |
VAN1 | 1094 | −307 | 0.97 | 0.97 | 4 | 11 | 19 | 21 |
VAN2 | 1074 | −286 | 0.97 | 0.97 | 3 | 10 | 17 | 20 |
VAN3 | 1064 | −266 | 0.97 | 0.97 | 4 | 10 | 18 | 20 |
CHE0 | 1014 | −206 | 0.97 | 0.94 | 3 | 9 | 17 | 19 |
CHE1 | 1034 | −256 | 0.98 | 0.97 | 3 | 9 | 16 | 18 |
CHE2 | 1054 | −256 | 0.97 | 0.97 | 3 | 9 | 17 | 19 |
CHE3 | 1094 | −326 | 0.97 | 0.96 | 3 | 10 | 17 | 20 |
FIN0 | 1084 | −297 | 0.97 | 0.95 | 4 | 11 | 19 | 21 |
FIN1 | 978 | −1512 | 0.88 | 0.62 | 7 | 21 | 37 | 42 |
FIN2 | 1048 | −2313 | 0.88 | 0.77 | 8 | 22 | 38 | 43 |
FIN3 | 989 | −1515 | 0.83 | 0.35 | 9 | 26 | 46 | 52 |
TPS0 | 1026 | −199 | 0.94 | 0.97 | 5 | 15 | 27 | 31 |
TPS1 | 1025 | −209 | 0.95 | 0.97 | 5 | 14 | 26 | 29 |
TPS2 | 1036 | −2210 | 0.92 | 0.88 | 6 | 17 | 30 | 33 |
TPS3 | 1055 | −258 | 0.95 | 0.94 | 4 | 13 | 22 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito-Altamirano, I.; Engel, L.; Crugeira, F.; Marchena, M.; Wöllenstein, J.; Prades, J.D.; Fàbrega, C. Reading Dye-Based Colorimetric Inks: Achieving Color Consistency Using Color QR Codes. Chemosensors 2024, 12, 260. https://doi.org/10.3390/chemosensors12120260
Benito-Altamirano I, Engel L, Crugeira F, Marchena M, Wöllenstein J, Prades JD, Fàbrega C. Reading Dye-Based Colorimetric Inks: Achieving Color Consistency Using Color QR Codes. Chemosensors. 2024; 12(12):260. https://doi.org/10.3390/chemosensors12120260
Chicago/Turabian StyleBenito-Altamirano, Ismael, Laura Engel, Ferran Crugeira, Miriam Marchena, Jürgen Wöllenstein, Joan Daniel Prades, and Cristian Fàbrega. 2024. "Reading Dye-Based Colorimetric Inks: Achieving Color Consistency Using Color QR Codes" Chemosensors 12, no. 12: 260. https://doi.org/10.3390/chemosensors12120260
APA StyleBenito-Altamirano, I., Engel, L., Crugeira, F., Marchena, M., Wöllenstein, J., Prades, J. D., & Fàbrega, C. (2024). Reading Dye-Based Colorimetric Inks: Achieving Color Consistency Using Color QR Codes. Chemosensors, 12(12), 260. https://doi.org/10.3390/chemosensors12120260