Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Participants
2.3. Methodology Overview
- Requiring that patients meet the CDC surveillance case definition, have a CDC Western blot positive lab test or physician-diagnosed EM, and report characteristic symptoms of Lyme disease of such severity that they result in functional impairment.
- Excluding patients with a prior diagnosis of most common psychiatric conditions, CFS or FMS, or a diagnosis with a tick-borne coinfection.
3. Results
3.1. Prevalence of Commonly Used Eligibility Criteria in the MyLymeData Sample
3.2. Effect of Commonly Used Eligibility Criteria on Sample Attrition
3.3. Analysis of Results
4. Discussion
4.1. Clinical Diagnosis and Symptoms
4.2. Rash/WB+
4.3. Prior Misdiagnosis of CFS/FMS or Psychiatric Conditions
4.4. Coinfections
4.5. Functional Impairment
4.6. Small Trials
5. Recommendations and Future Directions
6. Strengths and Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHRQ | Agency for Healthcare Research and Quality |
ALD | acute Lyme disease |
BRFSS | Behavioral Risk Factor Surveillance System |
CDC | Centers for Disease Control and Prevention |
CFS | chronic fatigue syndrome |
EHR | electronic health records |
EM rash | erythema migrans rash |
FDA | U. S. Food and Drug Administration |
FMS | fibromyalgia syndrome |
IRB | Institutional Review Board |
MCID | minimal clinically important difference |
NHIS | National Health Interview Survey |
NIH | National Institutes of Health |
PCORI | Patient-Centered Outcomes Research Institute |
PLD | persistent Lyme disease |
PRO | patient-reported outcome |
RCT | randomized controlled trial |
RWD | real-world data |
RWE | real-world evidence |
SRHS | self-reported health status |
WB+ | Western blot positive test result |
References
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Aucott, J.N.; Crowder, L.A.; Kortte, K.B. Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int. J. Infect. Dis. 2013, 17, e443–e449. [Google Scholar] [CrossRef] [PubMed]
- Stricker, R.B.; Fessler, M. Chronic Lyme Disease: A Working Case Definition. Am. J. Infect. Dis. 2018, 14, 1–44. [Google Scholar] [CrossRef]
- DeLong, A.; Hsu, M.; Kotsoris, H. Estimation of cumulative number of post-treatment Lyme disease cases in the US, 2016 and 2020. BMC Public Health 2019, 19, 352. [Google Scholar] [CrossRef]
- Johnson, L.; Wilcox, S.; Mankoff, J.; Stricker, R.B. Severity of chronic Lyme disease compared to other chronic conditions: A quality of life survey. PeerJ 2014, 2, e322. [Google Scholar] [CrossRef]
- Fallon, B.A.; Madsen, T.; Erlangsen, A.; Benros, M.E. Lyme Borreliosis and Associations with Mental Disorders and Suicidal Behavior: A Nationwide Danish Cohort Study. Am. J. Psychiatry 2021, 178, 921–931. [Google Scholar] [CrossRef]
- Rebman, A.W.; Aucott, J.N. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front. Med. 2020, 7, 57. [Google Scholar] [CrossRef]
- Johnson, L.; Shapiro, M.; Janicki, S.; Mankoff, J.; Stricker, R.B. Does Biological Sex Matter in Lyme Disease? The Need for Sex-Disaggregated Data in Persistent Illness. Int. J. Gen. Med. 2023, 16, 2557–2571. [Google Scholar] [CrossRef]
- Hill, N.S.; Preston, I.R.; Roberts, K.E. Patients with Pulmonary Arterial Hypertension in Clinical Trials. Proc. Am. Thorac. Soc. 2008, 5, 603–609. [Google Scholar] [CrossRef]
- He, Z.; Tang, X.; Yang, X.; Guo, Y.; George, T.J.; Charness, N.; Quan Hem, K.B.; Hogan, W.; Bian, J. Clinical Trial Generalizability Assessment in the Big Data Era: A Review. Clin. Transl. Sci. 2020, 13, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, H.; Idnay, B.; Ta, C.; Marder, K.; Weng, C. A data-driven approach to optimizing clinical study eligibility criteria. J. Biomed. Inform. 2023, 142, 104375. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Rizzo, S.; Whipple, S.; Pal, N.; Pineda, A.L.; Lu, M.; Arnieri, B.; Lu, Y.; Capra, W.; Copping, R.; et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 2021, 592, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. Trials Commun. 2018, 11, 156–164. [Google Scholar] [CrossRef]
- Kennedy-Martin, T.; Curtis, S.; Faries, D.; Robinson, S.; Johnston, J. A literature review on the representativeness of randomized controlled trial samples and implications for the external validity of trial results. Trials 2015, 16, 495. [Google Scholar] [CrossRef]
- Meeker-O’Connell, A.; Glessner, C.; Behm, M.; Mulinde, J.; Roach, N.; Sweeney, F.; Tenaerts, P.; Landray, M.J. Enhancing clinical evidence by proactively building quality into clinical trials. Clin. Trials 2016, 13, 439–444. [Google Scholar] [CrossRef]
- Dane, A.; Ashraf, S.; Timmis, J.; Bos, M.; Uyl-de Groot, C.; van der Kuy, P.H.M. Barriers to patient enrolment in phase III cancer clinical trials: Interviews with clinicians and pharmaceutical industry representatives. BMJ Open 2022, 12, e055165. [Google Scholar] [CrossRef]
- Peelen, L.; Peek, N.; de Jonge, E.; Scheffer, G.J.; de Keizer, N.F. The use of a registry database in clinical trial design: Assessing the influence of entry criteria on statistical power and number of eligible patients. Int. J. Med. Inform. 2007, 76, 176–183. [Google Scholar] [CrossRef]
- Weng, C. Optimizing Clinical Research Participant Selection with Informatics. Trends Pharmacol. Sci. 2015, 36, 706–709. [Google Scholar] [CrossRef]
- Fallon, B.A.; Keilp, J.G.; Corbera, K.M.; Petkova, E.; Britton, C.B.; Dwyer, E.; Slavov, I.; Cheng, J.; Dobkin, J.; Nelson, D.R.; et al. A randomized, placebo-controlled trial of repeated IV antibiotic therapy for Lyme encephalopathy. Neurology 2008, 70, 992–1003. [Google Scholar] [CrossRef]
- Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Klempner, M.; Hu, L.; Evans, J.; Schmid, C.; Johnson, G.; Trevino, R.; Norton, D.; Levy, L.; Wall, D.; McCall, J.; et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N. Engl. J. Med. 2001, 345, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Shapiro, M.; Mankoff, J. Removing the Mask of Average Treatment Effects in Chronic Lyme Disease Research Using Big Data and Subgroup Analysis. Healthcare 2018, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Workshop Report: Evaluating Inclusion Exclusion Criteria in Clinical Trials; Food and Drug Administration: Washington, DC, USA, 2018; Available online: https://www.fda.gov/media/134754/download (accessed on 14 October 2024).
- Evans, S.R.; Paraoan, D.; Perlmutter, J.; Raman, S.R.; Sheehan, J.J.; Hallinan, Z.P. Real-World Data for Planning Eligibility Criteria and Enhancing Recruitment: Recommendations from the Clinical Trials Transformation Initiative. Ther. Innov. Regul. Sci. 2021, 55, 545–552. [Google Scholar] [CrossRef]
- Johnson, L.; Aylward, A.; Stricker, R.B. Healthcare access and burden of care for patients with Lyme disease: A large United States survey. Health Policy 2011, 102, 64–71. [Google Scholar] [CrossRef]
- Vendrow, J.; Haddock, J.; Needell, D.; Johnson, L. Feature Selection on Lyme Disease Patient Survey Data. arXiv 2020, arXiv:2009.09087. [Google Scholar]
- Johnson, L.; Shapiro, M.; Stricker, R.B.; Vendrow, J.; Haddock, J.; Needell, D. Antibiotic Treatment Response in Chronic Lyme Disease: Why Do Some Patients Improve While Others Do Not? Healthcare 2020, 8, 383. [Google Scholar] [CrossRef]
- Bechtold, K.T.; Rebman, A.W.; Crowder, L.A.; Johnson-Greene, D.; Aucott, J.N. Standardized Symptom Measurement of Individuals with Early Lyme Disease Over Time. Arch. Clin. Neuropsychol. 2017, 32, 129–141. [Google Scholar] [CrossRef]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Measuring Healthy Days; CDC: Atlanta, GA, USA, 2000. [Google Scholar]
- Fallon, B.A.; Zubcevik, N.; Bennett, C.; Doshi, S.; Rebman, A.W.; Kishon, R.; Moeller, J.R.; Octavien, N.R.; Aucott, J.N. The General Symptom Questionnaire-30 (GSQ-30): A Brief Measure of Multi-System Symptom Burden in Lyme Disease. Front. Med. 2019, 6, 283. [Google Scholar] [CrossRef]
- Preskorn, S.H.; Macaluso, M.; Trivedi, M. How Commonly Used Inclusion and Exclusion Criteria in Antidepressant Registration Trials Affect Study Enrollment. J. Psychiatr. Pract. 2015, 21, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Y.; Papez, V.; Chang, W.H.; Mueller, S.H.; Denaxas, S.; Lai, A.G. Comparing clinical trial population representativeness to real-world populations: An external validity analysis encompassing 43 895 trials and 5 685 738 individuals across 989 unique drugs and 286 conditions in England. Lancet Healthy Longev. 2022, 3, e674–e689. [Google Scholar] [CrossRef] [PubMed]
- Rebman, A.W.; Bechtold, K.T.; Yang, T.; Mihm, E.A.; Soloski, M.J.; Novak, C.B.; Aucott, J.N. The Clinical, Symptom, and Quality-of-Life Characterization of a Well-Defined Group of Patients with Posttreatment Lyme Disease Syndrome. Front. Med. 2017, 4, 224. [Google Scholar] [CrossRef]
- Chung, M.K.; Caboni, M.; Strandwitz, P.; D’Onofrio, A.; Lewis, K.; Patel, C.J. Systematic comparisons between Lyme disease and post-treatment Lyme disease syndrome in the U.S. with administrative claims data. eBioMedicine 2023, 90, 104524. [Google Scholar] [CrossRef]
- Lantos, P.M. Chronic Lyme disease: The controversies and the science. Expert Rev. Anti-Infect. Ther. 2011, 9, 787–797. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Lyme Disease Surveillance and Data. Available online: https://www.cdc.gov/lyme/data-research/facts-stats/index.html (accessed on 14 October 2024).
- Marvel, C.L.; Alm, K.H.; Bhattacharya, D.; Rebman, A.W.; Bakker, A.; Morgan, O.P.; Creighton, J.A.; Kozero, E.A.; Venkatesan, A.; Nadkarni, P.A.; et al. A multimodal neuroimaging study of brain abnormalities and clinical correlates in post treatment Lyme disease. PLoS ONE 2022, 17, e0271425. [Google Scholar] [CrossRef]
- Aucott, J.N.; Yang, T.; Yoon, I.; Powell, D.; Geller, S.A.; Rebman, A.W. Risk of post-treatment Lyme disease in patients with ideally-treated early Lyme disease: A prospective cohort study. Int. J. Infect. Dis. 2022, 116, 230–237. [Google Scholar] [CrossRef]
- Stricker, R.B.; Johnson, L. Lyme wars: Let’s tackle the testing. BMJ 2007, 335, 1008. [Google Scholar] [CrossRef]
- Kravitz, R.L.; Duan, N.; Braslow, J. Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages. Milbank Q. 2004, 82, 661–687. [Google Scholar] [CrossRef]
- Wright, A.; Hannon, J.; Hegedus, E.J.; Kavchak, A.E. Clinimetrics corner: A closer look at the minimal clinically important difference (MCID). J. Man. Manip. Ther. 2012, 20, 160–166. [Google Scholar] [CrossRef]
- Delong, A.K.; Blossom, B.; Maloney, E.; Phillips, S.E. Antibiotic retreatment of Lyme disease in patients with persistent symptoms: A biostatistical review of randomized, placebo-controlled, clinical trials. Contemp. Clin. Trials 2012, 33, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.E.; Kelley, K.; Rausch, J.R. Sample Size Planning for Statistical Power and Accuracy in Parameter Estimation. Annu. Rev. Psychol. 2008, 59, 537–563. [Google Scholar] [CrossRef] [PubMed]
- Fallon, B.A.; Petkova, E.; Keilp, J.; Britton, C. A reappraisal of the U.S. clinical trials of Post-Treatment Lyme Disease Syndrome. Open Neurol. J. 2012, 6, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kasenda, B.; Liu, J.; Jiang, Y.; Gajewski, B.; Wu, C.; von Elm, E.; Schandelmaier, S.; Moffa, G.; Trelle, S.; Schmitt, A.M.; et al. Prediction of RECRUITment In randomized clinical Trials (RECRUIT-IT)—Rationale and design for an international collaborative study. Trials 2020, 21, 731. [Google Scholar] [CrossRef]
- Burmeister, E.; Aitken, L.M. Sample size: How many is enough? Aust. Crit. Care 2012, 25, 271–274. [Google Scholar] [CrossRef]
- Bayliss, M.; Rendas-Baum, R.; White, M.K.; Maruish, M.; Bjorner, J.; Tunis, S.L. Health-related quality of life (HRQL) for individuals with self-reported chronic physical and/or mental health conditions: Panel survey of an adult sample in the United States. Health Qual. Life Outcomes 2012, 10, 154. [Google Scholar] [CrossRef]
PLD l n (%) | ALD 2 n (%) | Diff | p-Value 3 | |
---|---|---|---|---|
Sample size | 3589 | 594 | ||
Mean age +/− SD (years) a | 51.2 (14.8) | 51.2 (16.1) | NS | |
Sex b Female | 2871 (81%) | 448 (76%) | 5% | (0.0053) |
Male | 678 (19%) | 142 (24%) | −5% | |
Family income c | NS | |||
<$75,000 | 1286 (51%) | 205 (48%) | 3% | |
≥$75,000 | 1237 (49%) | 220 (52%) | −3% | |
US region d | ||||
East | 1205 (34%) | 268 (45%) | −11% | |
Midwest | 547 (15%) | 112 (19%) | −4% | |
South | 1067 (30%) | 151 (26%) | 4% | |
West | 725 (21%) | 58 (10%) | 11% |
PLD l n (%) | ALD 2 n (%) | Diff | p-Value 3 | |
---|---|---|---|---|
Symptoms (≥1 moderate-very severe) a | 3224 (98) | 488 (93) | 5% | (<0.0001) |
Rash/WB+ b | 2103 (67) | 407 (73) | −6% | (<0.0023) |
Rash c | 1321 (45) | 294 (54) | −9% | (<0.0001) |
WB+ d | 1217 (36) | 193 (36) | 0 | NS |
Misdiagnosis e | 2516 (74) | 237 (43) | 31% | (<0.0001) |
CFS alone 4 | 1104 (31) | 28 (5) | 26% | (<0.0001) |
FMS alone 5 | 1100 (31) | 35 (6) | 25% | (<0.0001) |
Psych alone 6 | 1361 (38) | 65 (11) | 27% | (<0.0001) |
CFS or FMS | 1449 (40) | 48 (8) | 32% | (<0.0001) |
CFS, FMS, or Psych | 1892 (53) | 94 (16) | 37% | (<0.0001) |
Coinfections ≥ 1 f | 2125 (76) | 125 (34) | 42% | (<0.0001) |
Quality of life | ||||
Activity limited days ≥ 1 g | 2687 (93) | 403 (90) | 3% | (<0.0057) |
Bed days ≥ 8 h | 1048 (36) | 120 (27) | 9% | (<0.0001) |
SRHS fair/poor i | 1884 (74) | 138 (36) | 38% | (<0.0001) |
Disabled j | 836 (28) | 29 (6) | 22% | (<0.0001) |
Lyme diagnosis < 1 month k | 318 (9) | 221 (40) | −31% | (<0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, L.; Shapiro, M.; Needell, D.; Stricker, R.B. Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data. Healthcare 2025, 13, 20. https://doi.org/10.3390/healthcare13010020
Johnson L, Shapiro M, Needell D, Stricker RB. Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data. Healthcare. 2025; 13(1):20. https://doi.org/10.3390/healthcare13010020
Chicago/Turabian StyleJohnson, Lorraine, Mira Shapiro, Deanna Needell, and Raphael B. Stricker. 2025. "Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data" Healthcare 13, no. 1: 20. https://doi.org/10.3390/healthcare13010020
APA StyleJohnson, L., Shapiro, M., Needell, D., & Stricker, R. B. (2025). Optimizing Exclusion Criteria for Clinical Trials of Persistent Lyme Disease Using Real-World Data. Healthcare, 13(1), 20. https://doi.org/10.3390/healthcare13010020