Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter
<p>Block diagram of the proposed quantized-states-based adaptive tracking system in the presence of quantized input saturation.</p> "> Figure 2
<p>Quanser Aero 2-DOF Helicopter [<a href="#B37-mathematics-09-01062" class="html-bibr">37</a>].</p> "> Figure 3
<p>Tracking results for simulation (<b>a</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>d</mi> </mrow> </msub> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>d</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>Control input voltages <math display="inline"><semantics> <msub> <mi>V</mi> <mi>p</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>V</mi> <mi>y</mi> </msub> </semantics></math> for simulation.</p> "> Figure 5
<p>RBFNNs outputs and adaptive parameters for simulation (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi mathvariant="bold-italic">W</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mn>1</mn> </mrow> <mo>⊤</mo> </msubsup> <msub> <mi mathvariant="bold-italic">Q</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi mathvariant="bold-italic">W</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mn>2</mn> </mrow> <mo>⊤</mo> </msubsup> <msub> <mi mathvariant="bold-italic">Q</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mover accent="true"> <mi>B</mi> <mo stretchy="false">^</mo> </mover> </semantics></math>.</p> "> Figure 6
<p>Experiment setup.</p> "> Figure 7
<p>Tracking results for experiment (<b>a</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>d</mi> </mrow> </msub> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>d</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 8
<p>Control input voltage <math display="inline"><semantics> <msub> <mi>V</mi> <mi>p</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>V</mi> <mi>y</mi> </msub> </semantics></math> for experiment.</p> "> Figure 9
<p>RBFNNs outputs and adaptive parameters for experiment (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi mathvariant="bold-italic">W</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mn>1</mn> </mrow> <mo>⊤</mo> </msubsup> <msub> <mi mathvariant="bold-italic">Q</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi mathvariant="bold-italic">W</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mn>2</mn> </mrow> <mo>⊤</mo> </msubsup> <msub> <mi mathvariant="bold-italic">Q</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mover accent="true"> <mi>B</mi> <mo stretchy="false">^</mo> </mover> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Problem Statement
3. Adaptive Neural Tracking Control in the Presence of State Quantization and Quantized Input Saturation
3.1. Quantized-States-Based Adaptive Tracker Design Using Neural Networks
3.2. Quantization Errors and Closed-Loop Stability Analysis
4. Application to 2-DOF Helicopter
4.1. Mathematical Model
4.2. Design of Quantized-States-Based Adaptive Tracker
4.3. Simulation Results
4.4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karason, S.P.; Annaswamy, A.M. Adaptive control in the presence of input constraints. IEEE Trans. Autom. Cont. 1994, 39, 2325–2330. [Google Scholar] [CrossRef]
- Zhong, Y.S. Globally stable adaptive system design for minimum phase SISO plants with input saturation. Automatica 2005, 41, 1539–1547. [Google Scholar] [CrossRef]
- Wen, C.; Zhou, J.; Liu, Z.; Su, H. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Cont. 2011, 56, 1672–1678. [Google Scholar] [CrossRef]
- Li, Y.; Tong, S.; Li, T. Composite adaptive fuzzy output feedback control design for uncertain nonlinear stric-feedback systems with input saturation. IEEE Trans. Cyber. 2015, 45, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Tong, S.; Li, Y. Observer-based fuzzy adaptive prescribed performance trackingcontrol for nonlinear stochastic systems with input saturation. Neurocomputing 2015, 158, 100–108. [Google Scholar]
- Gao, Y.F.; Sun, X.; Wen, C.; Wang, W. Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation. IEEE Trans. Autom. Cont. 2017, 62, 2498–2504. [Google Scholar] [CrossRef]
- Gao, Y.F.; Sun, X.; Wen, C.; Wang, W. Oberver-based adaptive NN control for a class of uncertain nonlinear systems with nonsymmetric input saturation. IEEE Trans. Nerual Netw. Learn. Syst. 2017, 28, 1520–1530. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, C.; Shi, P. Observer-based adaptive fuzzy tracking control of nonlinear systems with time delay and input saturation. Fuzzy Sets Syst. 2017, 316, 49–68. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, J. Disturbance-observer-based adaptive fuzzy control for nonlinear state constrained systems with input saturation and input delay. Fuzzy Sets Syst. 2020, 392, 77–92. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, X. Robust adaptive control for state-constrained nonlinear systems with input saturation and unknown control direction. IEEE Trans. Syst. Man Cyber. Syst. 2021, 51, 1192–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Wang, J.; Xing, X. Adaptive neural novel prescribed performance control for non-affine pure-feedback systems with input saturation. Nonlinear Dyn. 2018, 93, 1241–1259. [Google Scholar] [CrossRef]
- Zerari, N.; Chemachema, M.; Essounbouli, N. Neural network based adaptive tracking control for a class of pure feedback nonlinear systems with input saturation. IEEE/CAA J. Autom. Sin. 2019, 6, 278–290. [Google Scholar] [CrossRef]
- Chen, M.; Ge, S.S.; Ren, B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 2011, 47, 452–465. [Google Scholar] [CrossRef]
- Cui, G.; Yu, J.; Wang, Q. Finite-time adaptive fuzzy control for MIMO nonlinear systems with input saturation via inproved command-filtered backstepping. IEEE Trans. Syst. Man Cyber. Syst. 2020. [Google Scholar] [CrossRef]
- Si, W.; Dong, X. Adaptive neural control for MIMO stochastic nonlinear pure-feedback systems with input saturation and full-state constraints. Neurocomputing 2018, 275, 298–307. [Google Scholar] [CrossRef]
- Sui, S.; Tong, S.; Li, Y. Adaptive fuzzy backstepping output feedback tracking control of MIMO stochastic pure-feedback nonlinear systems with input saturation. Fuzzy Sets Syst. 2014, 254, 26–46. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, D.; Yuan, D. Adaptive neural tracking control of a class of MIMO pure-feedback time-delay nonlinear systems with input saturation. Int. J. Syst. Sci. 2015, 47, 3730–3740. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Dong, Y.; Zhao, T. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans. Nerual Netw. Learn. Syst. 2019, 30, 97–108. [Google Scholar] [CrossRef]
- Lian, F.L.; Moyne, J.R.; Tilbury, D.M. Performance evaluation of control networks: Ethernet, controlnet, and devicenet. Control Syst. IEEE 2001, 21, 66–83. [Google Scholar]
- Zhou, J.; Wen, C.Y.; Yang, G.H. Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control. 2014, 59, 460–464. [Google Scholar] [CrossRef]
- Lai, G.Y.; Liu, Z.; Philip Chen, C.L.; Zhang, Y. Adaptive asymptotic tracking control of uncertain nonlinear system with input quantization. Syst. Control. Lett. 2016, 96, 23–29. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, G.H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica 2016, 72, 177–185. [Google Scholar] [CrossRef]
- Xing, L.T.; Wen, C.Y.; Su, H.Y. Robust control for a class of uncertain nonlinear systems with input quantization. Int. J. Robust Nonlinear 2016, 26, 1585–1596. [Google Scholar] [CrossRef]
- Yu, X.W.; Lin, Y. Adaptive backstepping quantized control for a class of nonlinear systems. IEEE Trans. Autom. Control. 2017, 62, 981–985. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Z.; Li, S. Adaptive output feedback quantised tracking control for stochastic nonstrict-feedback nonlinear systems with input saturation. Int. J. Syst. Sci. 2018, 49, 3130–3145. [Google Scholar] [CrossRef]
- Xing, L.; Wen, C.; Liu, Z.; Cai, J.; Zhang, M. Adaptive control for a class of uncertain nonlinear systems subject to saturated input quantization. In Proceedings of the 2020 16th International Conference Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 472–477. [Google Scholar]
- Zhou, J.; Wen, C.; Wang, W.; Yang, F. Adaptive backstepping control of nonlinear uncertain systems with quantized states. IEEE Trans. Autom. Cont. 2019, 64, 4756–4763. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yoo, S.J. Quantized feedback adaptive command filtered backstepping control for a class of uncertain nonlinear strict-feedback systems. Nonlinear Dyn. 2020, 99, 2907–2918. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yoo, S.J. Neural-networks-based adaptive quantized feedback tracking of uncertain nonlinear strict-feedback systems with unknown time delays. J. Frankl. Inst. 2020, 357, 10691–10715. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yoo, S.J. Quantized-feedback-based adaptive event-triggered control of a class of uncertain nonlinear systems. Mathematic 2020, 8, 1603. [Google Scholar] [CrossRef]
- Meng, W.; Yang, Q.; Sun, Y. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1074–1085. [Google Scholar] [CrossRef]
- Brockett, R.W.; Liberzon, D. Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Cont. 2000, 45, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Polycarpou, M.M. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Cont. 1996, 41, 447–451. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Wang, C.; Hill, D.J.; Ge, G.G.; Chen, G. An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica 2006, 42, 625–635. [Google Scholar] [CrossRef]
- Kurdila, A.J.; Narcowich, F.J.; Ward, J.D. Persistency of excitation in identification using radial basis function approximants. SIAM J. Cont. Optim. 1995, 33, 625–642. [Google Scholar] [CrossRef]
- Quanser Inc. Quanser AERO Laboratory Guide; Technical Report; Quanser: Arkham, ON, Canada, 2016. [Google Scholar]
- Labdai, S.; Chrifi-Alaoui, L.; Drid, S.; Delahoche, L.; Bussy, P. Real-time implementation of an optimized fractional sliding mode controller on the quanser-aero helicopter. In Proceedings of the 2020 International Conference Control, Automation and Diagnosis (ICCAD), Paris, France, 7–9 October 2020. [Google Scholar]
- Lambert, P.; Reyhanoglu, M. Observer-based sliding mode control of a 2-DoF Helicopter system. In Proceedings of the IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Schlanbusch, S.; Zhou, J. Adaptive backstepping control of a 2-DOF helicopter. In Proceedings of the 2019 IEEE 7th International Conference on Control, Mechatronics and Automation, Delft, The Netherlands, 6–8 November 2019. [Google Scholar]
- Schlanbusch, S.; Zhou, J. Adaptive backstepping control of a 2-DOF helicopter system with uniform quantized inputs. In Proceedings of the IECON 2020 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar]
- Sands, T. Control of DC motors to guide unmanned underwater vehicles. Appl. Sci. 2021, 11, 2144. [Google Scholar] [CrossRef]
Symbol | Value | SI Unit |
---|---|---|
1.0750 | kg·m | |
g | 9.8065 | m/s |
0.002 | m | |
0.0215 | kg·m | |
0.0237 | kg·m | |
0.0071 | N/V | |
0.0220 | N/V | |
0.0220 | N· m/V | |
0.0221 | N· m/V | |
−0.0227 | N· m/V | |
0.0022 | N· m/V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.M.; Yoo, S.J. Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter. Mathematics 2021, 9, 1062. https://doi.org/10.3390/math9091062
Kim BM, Yoo SJ. Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter. Mathematics. 2021; 9(9):1062. https://doi.org/10.3390/math9091062
Chicago/Turabian StyleKim, Byung Mo, and Sung Jin Yoo. 2021. "Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter" Mathematics 9, no. 9: 1062. https://doi.org/10.3390/math9091062
APA StyleKim, B. M., & Yoo, S. J. (2021). Approximation-Based Quantized State Feedback Tracking of Uncertain Input-Saturated MIMO Nonlinear Systems with Application to 2-DOF Helicopter. Mathematics, 9(9), 1062. https://doi.org/10.3390/math9091062