2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants
<p>2-DoF IMC design for the stabilised <span class="html-italic">j</span>-th order plant model.</p> "> Figure 2
<p>2-DoF IMC control of the first-order plants (<a href="#FD1-mathematics-09-01064" class="html-disp-formula">1</a>) based on the model (<a href="#FD2-mathematics-09-01064" class="html-disp-formula">2</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>=</mo> <msub> <mover> <mi>T</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and a setpoint feedforward generated either by a single transfer function <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (TF-IMC) or by the primary loop (PL-IMC) with 2-DoF P control of the plant model <math display="inline"><semantics> <mrow> <msub> <mover> <mi>S</mi> <mo>¯</mo> </mover> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; both augmented by a disturbance feedforward <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in (<a href="#FD9-mathematics-09-01064" class="html-disp-formula">9</a>).</p> "> Figure 3
<p>Interpretation of the disturbance feedforward impact in 2-DoF IMC transformed to a feedforward control of an equivalent plant <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. Modification of <a href="#mathematics-09-01064-f001" class="html-fig">Figure 1</a> by moving block <math display="inline"><semantics> <msub> <mi>C</mi> <mi>w</mi> </msub> </semantics></math> before summation point (<b>above</b>); replacement of internal feedback with blocks <math display="inline"><semantics> <mover> <mi>S</mi> <mo>¯</mo> </mover> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>o</mi> </msub> <msub> <mi>C</mi> <mi>w</mi> </msub> </mrow> </semantics></math> by controller <span class="html-italic">R</span> (<b>below</b>).</p> "> Figure 4
<p>Cascade SL-IMC with the first order plant stabilisation by 2-DoF P control (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>FSP structure for analysis according to [<a href="#B19-mathematics-09-01064" class="html-bibr">19</a>] with PI controller in the setpoint feedforward loop, prefilter <span class="html-italic">F</span> and output disturbance feedforward filter <math display="inline"><semantics> <msub> <mi>F</mi> <mi>r</mi> </msub> </semantics></math> from the reconstructed output disturbance <math display="inline"><semantics> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </semantics></math> for UFOTD.</p> "> Figure 6
<p>Transient responses corresponding to the FSP controller from <a href="#mathematics-09-01064-f005" class="html-fig">Figure 5</a> according to [<a href="#B19-mathematics-09-01064" class="html-bibr">19</a>] and demonstrating internal instability due to unbounded reconstructed disturbance signals <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>IMC-like structure of the internally unstable FSP controller scheme “for analysis” from <a href="#mathematics-09-01064-f005" class="html-fig">Figure 5</a>, with feedforward controller <math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>1</mn> </msup> <msub> <mi>C</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<a href="#FD24-mathematics-09-01064" class="html-disp-formula">24</a>), prefilter <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> (<a href="#FD22-mathematics-09-01064" class="html-disp-formula">22</a>) and disturbance feedforward filter <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<a href="#FD23-mathematics-09-01064" class="html-disp-formula">23</a>) of the reconstructed output disturbance <math display="inline"><semantics> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </semantics></math> for UFOTD according to [<a href="#B19-mathematics-09-01064" class="html-bibr">19</a>] (<b>above</b>) and the structure “for implementation” after eliminating the unbounded reconstructed disturbance <math display="inline"><semantics> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </semantics></math> and introducing an equivalent controller <math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>1</mn> </msup> <msub> <mi>C</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<a href="#FD26-mathematics-09-01064" class="html-disp-formula">26</a>) corresponding to the feedforward <math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>1</mn> </msup> <msub> <mi>C</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with the internal feedback blocks <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and the nominal plant model <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>−</mo> <msub> <mi>L</mi> <mi>n</mi> </msub> <mi>s</mi> </mrow> </msup> </mrow> </semantics></math> (<a href="#FD20-mathematics-09-01064" class="html-disp-formula">20</a>) (<b>below</b>).</p> "> Figure 8
<p>Stabilisation of UFOTD plant model by 2-DoF P controller.</p> "> Figure 9
<p>Equivalent scheme of the 2-DoF IMC control for the stabilised <span class="html-italic">j</span>th order plant model.</p> "> Figure 10
<p>2-DoF PL-IMC with PD controller (<a href="#FD49-mathematics-09-01064" class="html-disp-formula">49</a>) for 2nd order model of SL (<a href="#FD42-mathematics-09-01064" class="html-disp-formula">42</a>) (blue) approximating the UFOTD plant (<a href="#FD1-mathematics-09-01064" class="html-disp-formula">1</a>) stabilised by 2DoF P controller (white background) designed to yield a double real dominant pole; the disturbance reconstruction & disturbance feedforward (<a href="#FD44-mathematics-09-01064" class="html-disp-formula">44</a>) designed for the 2nd order SL approximation (<a href="#FD42-mathematics-09-01064" class="html-disp-formula">42</a>) (green); setpoint prefilter with the time constant <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>D</mi> <mi>f</mi> </mrow> </msub> </semantics></math> used to reduce the PD controller output kicks after setpoint step changes.</p> "> Figure 11
<p>Transient responses of the plant (<a href="#FD20-mathematics-09-01064" class="html-disp-formula">20</a>) for a setpoint step <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> and an input disturbance step <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, nominal plant parameters <math display="inline"><semantics> <mrow> <msub> <mover> <mi>K</mi> <mo>¯</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover> <mi>a</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>a</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover> <mi>T</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>=</mo> <msub> <mover> <mi>T</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>: with the 2-DoF FSP according to [<a href="#B19-mathematics-09-01064" class="html-bibr">19</a>], 1-DoF and 2-DoF SL-IMC controllers (denoted as P-FSP1 and P-FSP2) for unstable plant stabilised by 2-DoF P control derived by a two-step design from <a href="#sec4dot2-mathematics-09-01064" class="html-sec">Section 4.2</a> and <a href="#sec4dot3-mathematics-09-01064" class="html-sec">Section 4.3</a> and the controller with setpoint and disturbance reference models and disturbance observer from [<a href="#B20-mathematics-09-01064" class="html-bibr">20</a>]; <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p><math display="inline"><semantics> <mrow> <mi>I</mi> <mi>A</mi> <mi>E</mi> </mrow> </semantics></math> values corresponding to transients in <a href="#mathematics-09-01064-f011" class="html-fig">Figure 11</a>.</p> "> Figure 13
<p>Transient responses of the plant (<a href="#FD20-mathematics-09-01064" class="html-disp-formula">20</a>) for a setpoint step <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> and an input disturbance step <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>, nominal plant parameters <math display="inline"><semantics> <mrow> <msub> <mover> <mi>K</mi> <mo>¯</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover> <mi>a</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>a</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>=</mo> <msub> <mover> <mi>T</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>/</mo> <mn>1.3</mn> </mrow> </semantics></math> , <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>=</mo> <msub> <mover> <mi>T</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>: with the 2-DoF FSP according to [<a href="#B19-mathematics-09-01064" class="html-bibr">19</a>], 1-DoF and 2-DoF SL-IMC controllers (denoted as P-FSP1 and P-FSP2) for unstable plant stabilised by 2-DoF P control derived by a two-step design from <a href="#sec4dot2-mathematics-09-01064" class="html-sec">Section 4.2</a> and <a href="#sec4dot3-mathematics-09-01064" class="html-sec">Section 4.3</a> and the controller with setpoint and disturbance reference models and disturbance observer from [<a href="#B20-mathematics-09-01064" class="html-bibr">20</a>] with the modified tuning <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0.9</mn> <msub> <mi>L</mi> <mi>n</mi> </msub> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>o</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mrow> <mi>o</mi> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>d</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 14
<p><math display="inline"><semantics> <mrow> <mi>I</mi> <mi>A</mi> <mi>E</mi> </mrow> </semantics></math> values corresponding to transients in <a href="#mathematics-09-01064-f013" class="html-fig">Figure 13</a>.</p> "> Figure 15
<p>The shape related <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mi>y</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> </semantics></math> values corresponding to transients in <a href="#mathematics-09-01064-f013" class="html-fig">Figure 13</a>.</p> ">
Abstract
:1. Introduction
2. Setpoint Feedforward with Compensation of Output Disturbances by IMC
2.1. Two Ways of the Setpoint Feedforward Implementation for First-Order Delay-Free Plants
2.2. 2-DoF PL-IMC: Impact of the Stabilising Feedback on the Loop Behavior
2.3. Cascade SL-IMC Design Based on Stabilised Plants
3. Model Based Feedforward Control Design for UFOTD Plants
3.1. Example: Concentration Control of an Unstable Reactor by FSP
3.2. FSP: Structure for Analysis Versus Structure for Implementation
4. Main Results: Two-Step FSP Design by Stabilisation of UFOTD Plants
4.1. UFOTD Plant Stabilisation by 2-DoF P Control
- From the disturbance transfer functions and (30) follows that the acting constant disturbances have non-zero effect on the output variable in steady states. Thus, an appropriate disturbance reconstruction and compensation have to be considered;
- In the 2-DoF PL-IMC implementation with 2-DoF P control according to Figure 2 applied to stabilise the plant, in steady states, the reconstructed input disturbance signal required to eliminate the input disturbance (see the derivation of (19)) may be calculated from the reconstructed filtered output disturbance according to
4.2. 1-DoF and 2-DoF SL-IMC Design Based on the TF-IMC with 2nd-Order SL Approximation
4.3. PD Controller for SL-IMC Design Based on the PL with 2nd Order SL Approximation
5. Simulation: Nominal Dynamics and the Robustness Evaluation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1-DoF | One Degree of Freedom |
2-DoF | Two Degree of Freedom |
DTC | Dead Time Compensator |
FOTD | First Order Time Delayed |
FSP | Filtered Smith Predictor |
IMC | Internal Model Control |
PID | Proportional-Integrative-Derivative |
PL | Primary Loop |
SL | Stabilised Loop |
SP | Smith Predictor |
TF | Transfer Function |
UFOTD | Unstable First Order Time Delayed |
References
- O’Dwyer, A. Handbook of PI and PID Controller Tuning Rules, 3rd ed.; Imperial College Press: London, UK, 2009. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Vítečková, M.; Víteček, A. 2DOF PID controller tuning for integrating plants. In Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; pp. 793–797. [Google Scholar]
- Sladka, K.; Viteckova, M. 2DOF PI Controller Tuning for Integrating Plants with the Setting of Setpoint Weight. In Proceedings of the 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019; pp. 1–4. [Google Scholar]
- Rodríguez, C.; Aranda-Escolástico, E.; Guzmán, J.L.; Berenguel, M.; Hägglund, T. Revisiting the simplified IMC tuning rules for low-order controllers: Novel 2DoF feedback controller. IET Control Theory Appl. 2020, 14, 1700–1710. [Google Scholar] [CrossRef]
- Vrečko, D.; Vrančič, D.; Jurčič, D.; Strmčnik, S. A new modified Smith predictor: The concept, design and tuning. ISA Trans. 2001, 40, 111–121. [Google Scholar] [CrossRef]
- Zhong, Q.; Normey-Rico, J. Control of integral processes with dead-time. Part 1: Disturbance observer-based 2DOF control scheme. IEE Proc. Control Theory Appl. 2002, 149, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Mirkin, L. Control of integral processes with dead-time. Part 2: Quantitative analysis. IEE Proc. Control Theory Appl. 2002, 149, 291–296. [Google Scholar] [CrossRef]
- Zhong, Q. Control of integral processes with dead-time. Part 3: Dead-beat disturbance response. IEEE Trans. AC 2003, 48, 153–159. [Google Scholar] [CrossRef]
- Normey-Rico, J.; Camacho, E. Dead-time compensators: A survey. Control Eng. Pract. 2008, 16, 407–428. [Google Scholar] [CrossRef]
- Torrico, B.; Normey-Rico, J. 2 DOF discrete dead-time compensators for stable and integrative processes with dead-time. J. Process Control 2005, 15, 341–352. [Google Scholar] [CrossRef]
- Santos, T.L.; Botura, P.E.; Normey-Rico, J.E. Dealing with noise in unstable dead-time process control. J. Process Control 2010, 20, 840–847. [Google Scholar] [CrossRef]
- Richard, J.P. Time-delay systems: An overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- O’Dwyer, A. An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes. In PID Control in the Third Millennium. Lessons Learned and New Approaches; Vilanova, R., Visioli, A., Eds.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Chen, S.; Xue, W.; Zhong, S.; Huang, Y. On comparison of modified ADRCs for nonlinear uncertain systems with time delay. Sci. China Inf. Sci. 2018, 61, 70223. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Gao, Z. Modified active disturbance rejection control for time-delay systems. ISA Trans. 2014, 53, 882–888. [Google Scholar] [CrossRef] [Green Version]
- Pekař, L. On Simple Algebraic Control Design and Possible Controller Tuning for Linear Systems with Delays. Int. J. Mech. 2018, 12, 178–191. [Google Scholar]
- Pekař, L.; Gao, Q. Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results. IEEE Access 2018, 6, 35457–35491. [Google Scholar] [CrossRef]
- Normey-Rico, J.; Camacho, E. Unified approach for robust dead-time compensator design. J. Process Control 2009, 19, 38–47. [Google Scholar] [CrossRef]
- Huba, M.; Bisták, P.; Vrančić, D.; Zakova, K. Asymmetries in the Disturbance Compensation Methods for the Stable and Unstable First Order Plants. Symmetry 2020, 12, 1595. [Google Scholar] [CrossRef]
- Morari, M.; Zafiriou, E. Robust Process Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Smith, O. Closser control of loops with dead time. Chem. Eng. Prog. 1957, 53, 217–219. [Google Scholar]
- Schrijver, E.; van Dijk, J. Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design. ASME J. Dyn. Sys. Meas. Control 2002, 124, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Reswick, J.B. Disturbance-Response Feedback - a new control concept. Trans. ASME 1956, 1, 153–162. [Google Scholar]
- Huba, M.; Kuľha, P. Saturating Control for the Dominant First Order Plants. In Proceedings of the IFAC Workshop “Motion Control“, Munich, Germany, 9–11 October 1995; pp. 197–204. [Google Scholar]
- Huba, M.; Kuľha, P.; Žákova, K. Observer-Based Control of Unstable Process with Dead Time. In Proceedings of the 10th Conference Process Control ’95, Tatranské Matliare, Slovakia, 4–7 June 1995; Volume 1, pp. 35–38. [Google Scholar]
- Huba, M.; Bisták, P.; Skachová, Z.; Žáková, K. P- and PD-Controllers for I1 and I2 Models with Dead Time. In Proceedings of the 6th IEEE Mediterranean Conference, Theory and Practice of Control and Systems, Alghero, Sardinia, Italy, 9–11 June 1998; Volume 11, pp. 514–519. [Google Scholar]
- Huba, M.; Bisták., P.; Skachová, Z.; Žáková, K. Predictive Antiwindup PI and PID-Controllers Based on I1 and I2 Models with Dead Time. In Proceedings of the 6th IEEE Mediterranean Conference, Theory and Practice of Control and Systems, Alghero, Sardinia, Italy, 9–11 June 1998; Volume 11, pp. 532–535. [Google Scholar]
- Garcia, P.; Albertos, P. A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica 2008, 44, 1062–1071. [Google Scholar] [CrossRef]
- Albertos, P.; García, P. Robust control design for long time-delay systems. J. Process Control 2009, 19, 1640–1648. [Google Scholar] [CrossRef]
- Sanz, R.; García, P.; Albertos, P. A generalized smith predictor for unstable time-delay SISO systems. ISA Trans. 2018, 72, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Åström, K.J.; Hägglund, T. Advanced PID Control; ISA: Research Triangle Park, NC, USA, 2006. [Google Scholar]
- Torrico, B.C.; Cavalcante, M.U.; Braga, A.P.S.; Normey-Rico, J.E.; Albuquerque, A.A.M. Simple Tuning Rules for Dead-Time Compensation of Stable, Integrative, and Unstable First-Order Dead-Time Processes. Ind. Eng. Chem. Res. 2013, 52, 11646–11654. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, C. Problem and its solution for actuator saturation of integrating process with dead time. ISA Trans. 2008, 47, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Huba, M.; Ťapák, P. Experimenting with Modified Smith Predictors Using B&R Automation Studio Target for Simulink. IFAC Proc. Vol. 2012, 45, 366–371. [Google Scholar]
- Normey-Rico, J.; Bordons, C.; Camacho, E. Improving the robustness of dead-time compensating PI controllers. Control Eng. Pract. 1997, 5, 801–810. [Google Scholar] [CrossRef]
- Normey-Rico, J.; Camacho, E. Control of Dead-Time Processes; Springer: London, UK, 2007. [Google Scholar]
- Huba, M.; Halas, M. New Filtered Smith Predictors for FOPDT Plants. Part 1. First Order Disturbance Filter. In ERK 2010—Devetnajsta Mednarodna Elektrotehniska in Racunalniska Konferenca; IEEE: Portoroz, Slovenija, 2010; pp. 339–342. [Google Scholar]
- Huba, M.; Halas, M. New Filtered Smith Predictors for FOPDT Plants. Part 2. Second Order Disturbance Filters. In ERK 2010—Devetnajsta mednarodna Elektrotehniska in racunalniska konferenca; IEEE: Portoroz, Slovenija, 2010; pp. 343–345. [Google Scholar]
- Huba, M. Modified Filtered Smith Predictors for FOPDT Plants. In Preprints of the Workshop “Selected Topics on Constrained and Nonlinear Control“; Huba, M., Skogestad, S., Fikar, M., Hovd, M., Johansen, T., Roháľ-Ilkiv, B., Eds.; STU Bratislava—NTNU Trondheim: Bratislava, Slovakia, 2011; pp. 185–191. [Google Scholar]
- Huba, M.; Ťapák, P. Experimenting with the Modified Filtered Smith Predictors for FOPDT Plants. In World Congress; Bittanti, S., Cenedese, A., Zampieri, S., Eds.; IFAC-PapersOnLine: Milano, Italy, 2011; Volume 18, pp. 2452–2457. [Google Scholar]
- Huba, M.; Bélai, I. Limits of a Simplified Controller Design Based on IPDT models. ProcIMechE Part I J. Syst. Control Eng. 2018, 232, 728–741. [Google Scholar] [CrossRef]
- Torrico, B.C.; Correia, W.B.; Nogueira, F.G. Simplified dead-time compensator for multiple delay SISO systems. ISA Trans. 2016, 60, 254–261. [Google Scholar] [CrossRef]
- Torrico, B.C.; de Almeida Filho, M.P.; Lima, T.A.; do N. Forte, M.D.; Sá, R.C.; Nogueira, F.G. Tuning of a dead-time compensator focusing on industrial processes. ISA Trans. 2018, 83, 189–198. [Google Scholar] [CrossRef]
- Torrico, B.C.; de Almeida Filho, M.P.; Lima, T.A.; Santos, T.L.; Nogueira, F.G. New simple approach for enhanced rejection of unknown disturbances in LTI systems with input delay. ISA Trans. 2019, 94, 316–325. [Google Scholar] [CrossRef]
- Rodrigues, R.S.; Sombra, A.; Torrico, B.; Pereira, R.; de Almeida Filho, M.; Nogueira, F.G. Tuning rules for unstable dead-time processes. Eur. J. Control 2020. in Press. [Google Scholar] [CrossRef]
- DePaor, A. A modified Smith predictor and controller for unstable processes with time delay. Int. J. Control 1985, 41, 1025–1036. [Google Scholar]
- DePaor, A.; O’Malley, M. Controller of Ziegler-Nichols type for unstable process with time delay. Int. J. Control 1989, 49, 1273–1284. [Google Scholar] [CrossRef]
- Majhi, S.; Atherton, D.P. A new Smith predictor and controller for unstable and integrating processes with time delay. In Proceedings of the IEEE Conference on Control and Decision, Tampa, FL, USA, 18 December 1998; pp. 1341–1345. [Google Scholar]
- Liu, T.; Cai, Y.; Gu, D.; Zhang, W. New modified Smith predictor scheme for integrating and unstable processes with time delay. IEE Proc. 2005, 152, 238–246. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, W.; Gu, D. Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with delay. J. Process Control 2005, 15, 559–572. [Google Scholar] [CrossRef]
- Lu, X.; Yang, Y.; Wang, Q.; Zheng, W. A double two-degree-of-freedom control scheme for improved control of unstable delay processes. J. Process Control 2005, 15, 605–614. [Google Scholar] [CrossRef]
- Vrancic, D.; Huba, M. Design of feedback control for unstable processes with time delay. In Proceedings of the 18th International Conference Process Control, Tatranská Lomnica, Slovakia, 14–17 June 2011; pp. 100–105. [Google Scholar]
- Sigurd Skogestad, C.G. Should we forget the Smith Predictor? IFAC-PapersOnLine 2018, 51, 769–774. [Google Scholar] [CrossRef]
- Huba, M.; Vrančić, D.; Bisták, P. PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access 2021, 9, 2478–2495. [Google Scholar] [CrossRef]
- Boskovic, M.C.; Sekara, T.B.; Rapaic, M.R. Novel tuning rules for PIDC and PID load frequency controllers considering robustness and sensitivity to measurement noise. Int. J. Electr. Power Energy Syst. 2020, 114, 105416. [Google Scholar] [CrossRef]
- Huba, M. Performance measures, performance limits and optimal PI control for the IPDT plant. J. Process Control 2013, 23, 500–515. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huba, M.; Bistak, P.; Vrancic, D. 2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants. Mathematics 2021, 9, 1064. https://doi.org/10.3390/math9091064
Huba M, Bistak P, Vrancic D. 2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants. Mathematics. 2021; 9(9):1064. https://doi.org/10.3390/math9091064
Chicago/Turabian StyleHuba, Mikulas, Pavol Bistak, and Damir Vrancic. 2021. "2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants" Mathematics 9, no. 9: 1064. https://doi.org/10.3390/math9091064
APA StyleHuba, M., Bistak, P., & Vrancic, D. (2021). 2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants. Mathematics, 9(9), 1064. https://doi.org/10.3390/math9091064