Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model
<p>Definition of an IT2FN.</p> "> Figure 2
<p>T2FDP around eight.</p> "> Figure 3
<p>The alpha-cut operation toward T2FDP.</p> "> Figure 4
<p>The illustration of the correlation between alpha values and T2FDPs.</p> "> Figure 5
<p>The processes of defining, fuzzification, type-reduction and defuzzification towards T2FDP.</p> "> Figure 6
<p>The example of T2FIBsC model: (<b>a</b>) with T2FCP; (<b>b</b>) without T2FCP.</p> "> Figure 7
<p>The example T2FIBsS model: with (<b>a</b>) and; without (<b>b</b>) type-2 fuzzy data net.</p> "> Figure 8
<p>The example fuzzified T2FIBsS model with fuzzified type-2 fuzzy data net.</p> "> Figure 9
<p>The example of type-reduced fuzzified T2FIBsS together with type-reduced fuzzified T2FDPs net.</p> "> Figure 10
<p>The example of defuzzification-reduced T2FIBsS with defuzzification-reduced T2FDPs.</p> "> Figure 11
<p>Illustration of procedure in taking depth data point (in meter) of the seabed, which consists of uncertainty complex data.</p> "> Figure 12
<p>The T2FIBsS modeling through fuzzification until defuzzification processes along with the error plot.</p> "> Figure 13
<p>The T2FIBsS modeling through fuzzification until defuzzification processes with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> along the error plot.</p> "> Figure 14
<p>The T2FIBsS modeling through fuzzification until defuzzification processes with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> along the error plot.</p> ">
Abstract
:1. Introduction
2. Previous Work
3. Method: Type-2 Fuzzy Data Points
- .
- andgenerate a function that is convex andgenerate a normal function.
- for.
- If the maximum of the membership function generated byis the level, that is, then.
4. Results: Type-2 Fuzzy B-Spline Model
5. Application: Seabed Modeling
Algorithm 1. Modeling T2FDP using interpolation type-2 B-spline surface. |
|
Step 9:Find and plot the error between defuzzification-reduced T2FDPs and crisp data points of seabed depth data using the following equation: |
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations Index
Notations | Explanation |
Type-2 fuzzy set (T2FS) | |
Interval T2FS | |
Type-2 fuzzy relation | |
Data point | |
Type-2 fuzzy data point (T2FDP) | |
Membership function of T2FDP | |
Left footprint of membership values | |
Right footprint of membership values | |
Left-left membership grade value | |
Left membership grade value | |
Right-left membership grade value | |
Left-right membership grade value | |
Right membership grade value | |
Right-right membership grade value | |
Fuzzification process (alpha-cut process) against ith T2FDP | |
Left interval fuzzification process (alpha-cut process) against ith T2FDP | |
Right interval fuzzification process (alpha-cut process) against ith T2FDP | |
Left-left fuzzification process (alpha-cut process) against ith T2FDP | |
Left fuzzification process (alpha-cut process) against ith T2FDP | |
Right-left fuzzification process (alpha-cut process) against ith T2FDP | |
Left-right fuzzification process (alpha-cut process) against ith T2FDP | |
Right fuzzification process (alpha-cut process) against ith T2FDP | |
Right-right fuzzification process (alpha-cut process) against ith T2FDP | |
Type-reduction of T2FDP after fuzzification process | |
Left type-reduction of ith T2FDP after fuzzification process | |
Right type-reduction of ith T2FDP after fuzzification process | |
Defuzzification of ith T2FDP after type-reduction process | |
ith T2FDP of type-2 fuzzy interpolation B-spline curve (T2FIBsC) | |
T2FIBsC model | |
ith type-2 fuzzy control point (T2FCP) of T2FIBsS | |
T2FDP of Type -2 fuzzy interpolation B-spline surface (T2FIBsS) | |
T2FIBsS function modeling after fuzzification process | |
Fuzzification (alpha-cut operation) against T2FDP of T2FIBsS with | |
Fuzzification (alpha-cut operation) against T2FCP of T2FIBsS with | |
T2FIBsS function modeling after type-reduction process | |
Type reduction process against T2FDP of T2FIBsS after fuzzification process | |
Type reduction process against T2FCP of T2FIBsS after fuzzification process | |
Defuzzify modeling of T2FIBsS after type-reduction process | |
T2FDP defuzzification of T2FIBsS | |
T2FCP defuzzification of T2FIBsS | |
T2FIBsS model of Seabed data collection (depth) in meter | |
T2FIBsS fuzzification model with the alpha value is 0.2 | |
T2FIBsS type-reduction model after fuzzification process | |
T2FIBsS defuzzification model after type-reduction process |
References
- Zulkifly, M.I.E.; Wahab, A.F.; Zakaria, R. B-Spline Curve Interpolation Model by using Intuitionistic Fuzzy Approach. IAENG Int. J. Appl. Math. 2020, 50, 1–7. [Google Scholar]
- Bidin, M.S.; Wahab, A.F.; Zulkifly, M.I.E.; Zakaria, R. Generalized Fuzzy Linguistic Cubic B-spline Curve Model for Uncertainty Fuzzy Linguistic Data. Adv. Appl. Discret. Math. 2020, 25, 285–302. [Google Scholar] [CrossRef]
- Adesah, R.S.; Zakaria, R. The Definition of Complex Uncertainties in B-spline Surface by using Normal Type-2 Triangular Fuzzy Number. ASM Sci. J. 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Zakaria, R.; Wahab, A.F.; Gobithaasan, R.U. Fuzzy B-Spline Surface Modeling. J. Appl. Math. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Aguero, J.R.; Vargas, A. Calculating Functions of Interval Type-2 Fuzzy Numbers for Fault Current Analysis. IEEE Trans. Fuzzy Syst. 2007, 15, 31–40. [Google Scholar] [CrossRef]
- Coupland, S.; John, R. An Approach to Type-2 Fuzzy Arithmetic. In Proceedings of the UK Workshop on Computational Intelligence, Bristol, UK, 1–3 September 2003; pp. 107–114. [Google Scholar]
- Dinagar, D.S.; Anbalagan, A. A New Type-2 Fuzzy Number Arithmetic Using Extension Principle. In Proceedings of the International Conference on Advances in Engineering, Science and Management (ICAESM), Tamil Nadu, India, 30–31 March 2012; pp. 113–118. [Google Scholar]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-Part II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-Part III. Inf. Sci. 1975, 9, 43–80. [Google Scholar] [CrossRef]
- Hu, J.; Chen, P.; Yang, Y. An Interval Type-2 Fuzzy Similarity-Based MABAC Approach for Patient-Centered Care. Mathematics 2019, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.F. An Introduction to NURBS: With Historical Perspective; Academic Press: San Diego, CA, USA, 2001. [Google Scholar] [CrossRef]
- Farin, G. Curves and Surfaces for CAGD: A Practical Guide, 5th ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Salomon, D. Curves and Surfaces for Computer Graphics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Aminifar, S.; Marzuki, A. Uncertainty in Interval Type-2 Fuzzy System. Math. Probl. Eng. 2013, 2013, 16. [Google Scholar] [CrossRef]
- Nie, M.; Tan, W.W. Modeling Capability of Type-1 Fuzzy Set and Interval Type-2 Fuzzy Set. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Shen, W.; Mahfouf, M. Multi-Objective Optimisation for Fuzzy Modelling Using Interval Type-2 Fuzzy Sets. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Liang, Q.; Mendel, J.M. Interval type-2 fuzzy logic systems: Theory and design. IEEE Trans. Fuzzy Syst. 2000, 8, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Türk, S.; Deveci, M.; Özcan, E.; Canıtez, F.; John, R. Interval type-2 fuzzy sets improved by Simulated Annealing for locating the electric charging stations. Inf. Sci. 2021, 547, 641–666. [Google Scholar] [CrossRef]
- Karagöz, S.; Deveci, M.; Simic, V.; Aydin, N. Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl. Soft Comput. 2021, 102, 107107. [Google Scholar] [CrossRef]
- Gallo, G.; Spagnuolo, M.; Spinello, S. Fuzzy B-Splines: A Surface Model Encapsulating Uncertainty. Graph. Models 2000, 62, 40–55. [Google Scholar] [CrossRef]
- Gallo, G.; Spagnuolo, M.; Spinello, S. Rainfall Estimation from Sparse Data with Fuzzy B-Splines. J. Geogr. Inf. Decis. Anal. 1998, 2, 194–203. [Google Scholar]
- Sarwar, M.; Akram, M. Certain Algorithms for Modeling Uncertain Data Using Fuzzy Tensor Product Bézier Surfaces. Mathematics 2018, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Du, G.N.; Zhu, Z.Y. Modelling spatial vagueness based on type-2 fuzzy sets. J. Zhejiang Univ. Sci. A 2006, 7, 250–256. [Google Scholar] [CrossRef]
- Zakaria, R.; Wahab, A.F.; Gobithaasan, R.U. Perfectly Normal Type-2 Fuzzy Interpolation B-spline Curve. Appl. Math. Sci. 2013, 7, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Nie, M.; Tan, W.W. Towards an Efficient Type-Reduction Method for Interval Type-2 Fuzzy Logic Systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE World Congress on Computational Intelligence, Hong Kong, China, 1–6 June 2008; pp. 1425–1432. [Google Scholar] [CrossRef]
- Greenfield, S.; Chiclana, F.; John, R. Type-Reduction of the Discretised Interval Type-2 Fuzzy Set. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jeju, Korea, 20–24 August 2009; pp. 738–743. [Google Scholar] [CrossRef]
- Runkler, T.A.; Chen, C.; John, R. Type reduction operators for interval type–2 defuzzification. Inf. Sci. 2018, 467, 464–476. [Google Scholar] [CrossRef]
- Karnik, N.N.; Mendel, J.M. Centroid of a type-2 fuzzy set. Inf. Sci. 2001, 132, 195–220. [Google Scholar] [CrossRef]
- Runkler, T.A.; Coupland, S.; John, R. Properties of Interval Type-2 Defuzzification Operators. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Zakaria, R.; Wahab, A.F. Pemodelan Titik Data Kabur Teritlak. Sains Malays. 2014, 43, 799–805. [Google Scholar]
- Wahab, A.F.; Ali, J.M.; Majid, A.A.; Tap, A.O.M. Fuzzy Set in Geometric Modeling. In Proceedings of the International Conference on Computer Graphics, Imaging and Visualization (CGIV 2004), Penang, Malaysia, 2–2 July 2004; pp. 227–232. [Google Scholar] [CrossRef]
- Karim, N.A.A.; Wahab, A.F.; Gobithaasan, R.U.; Zakaria, R. Model of Fuzzy B-Spline Interpolation for Fuzzy Data. Far East J. Math. Sci. (FJMS) 2013, 72, 269–280. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, R.; Wahab, A.F.; Ismail, I.; Zulkifly, M.I.E. Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model. Mathematics 2021, 9, 1054. https://doi.org/10.3390/math9091054
Zakaria R, Wahab AF, Ismail I, Zulkifly MIE. Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model. Mathematics. 2021; 9(9):1054. https://doi.org/10.3390/math9091054
Chicago/Turabian StyleZakaria, Rozaimi, Abd. Fatah Wahab, Isfarita Ismail, and Mohammad Izat Emir Zulkifly. 2021. "Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model" Mathematics 9, no. 9: 1054. https://doi.org/10.3390/math9091054
APA StyleZakaria, R., Wahab, A. F., Ismail, I., & Zulkifly, M. I. E. (2021). Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model. Mathematics, 9(9), 1054. https://doi.org/10.3390/math9091054