Convergence Rate of Runge-Kutta-Type Regularization for Nonlinear Ill-Posed Problems under Logarithmic Source Condition
<p>Plots of (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>z</mi> <mo>=</mo> <mo>|</mo> <mn>1</mn> <mo>−</mo> <mi>τ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>τ</mi> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>z</mi> <mo>=</mo> <mo>|</mo> <mn>1</mn> <mo>+</mo> <mi>τ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>τ</mi> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>λ</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>τ</mi> <mo>≤</mo> <mn>500</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The plot of <math display="inline"><semantics> <mrow> <mrow> <mo form="prefix">ln</mo> <mo>∥</mo> </mrow> <msup> <mi>w</mi> <mo>+</mo> </msup> <mo>−</mo> <msubsup> <mi>w</mi> <mi>k</mi> <mi>ε</mi> </msubsup> <mrow> <mo>∥</mo> </mrow> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mo form="prefix">ln</mo> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </semantics></math> for (<b>a</b>) one−step RK methods and (<b>b</b>) for two−step methods with <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>. (<b>c</b>,<b>d</b>) Results with <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>. The parameters <math display="inline"><semantics> <mi>γ</mi> </semantics></math> are (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>1.1</mn> </mrow> </semantics></math>, (<b>b</b>) 25, (<b>c</b>) <math display="inline"><semantics> <mrow> <mn>1.1</mn> </mrow> </semantics></math>, and (<b>d</b>) 100. For (<b>a</b>–<b>d</b>), a harmonic sequence <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mn>1.1</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>ε</mi> <msub> <mi>w</mi> <mo>*</mo> </msub> </mrow> </semantics></math> are used.</p> ">
Abstract
:1. Introduction
2. Preliminary Results
3. Convergence Rate for the Iterative RK-Type Regularization
4. Convergence Rate for the Modified Version of the Iterative RK-Type Regularization
5. Numerical Example
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morozov, V.A. On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 1966, 7, 414–417. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill Posed Problems; V. H. Winston and Sons: New York, NY, USA, 1977. [Google Scholar]
- Bakushinsky, A.B.; Kokurin, M.Y. Iterative Methods for Approximate Solution of Inverse Problems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kaltenbacher, B.; Neubauer, A.; Scherzer, O. Iterative Regularization Methods For Nonlinear Ill-Posed Problems; Walter de Gruyter: Berlin, Germany, 2008. [Google Scholar]
- Hanke, M.; Neubauer, A.; Scherzer, O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 1995, 72, 21–37. [Google Scholar] [CrossRef]
- Hochbruck, M.; Hönig, M. On the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems. Numer. Math. 2010, 115, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q. On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems. Numer. Math. 2010, 115, 229–259. [Google Scholar] [CrossRef]
- Hanke, M. The regularizing Levenberg-Marquardt scheme is of optimal order. J. Integral Equ. Appl. 2010, 22, 259–283. [Google Scholar] [CrossRef]
- Tautenhahn, U. On the asymptotical regularization of nonlinear ill-posed problems. Inverse Probl. 1994, 10, 1405–1418. [Google Scholar] [CrossRef]
- Böckmann, C.; Pornsawad, P. Iterative Runge-Kutta-type methods for nonlinear ill-posed problems. Inverse Probl. 2008, 24, 025002. [Google Scholar] [CrossRef] [Green Version]
- Pornsawad, P.; Böckmann, C. Convergence rate analysis of the first-stage Runge-Kutta-type regularizations. Inverse Probl. 2010, 26, 035005. [Google Scholar] [CrossRef]
- Scherzer, O. A modified Landweber iteration for solving parameter estimation problems. Appl. Math. Optim. 1998, 38, 45–68. [Google Scholar] [CrossRef]
- Pornsawad, P.; Böckmann, C. Modified iterative Runge-Kutta-type methods for nonlinear ill-posed problems. Numer. Funct. Anal. Optim. 2016, 37, 1562–1589. [Google Scholar] [CrossRef] [Green Version]
- Pornsawad, P.; Sapsakul, N.; Böckmann, C. A modified asymptotical regularization of nonlinear ill-posed problems. Mathematics 2019, 7, 419. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hofmann, B. On the second order asymptotical regularization of linear ill-posed inverse problems. Appl. Anal. 2018, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Hohage, T. Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem. Inverse Probl. 1997, 13, 1279–1299. [Google Scholar] [CrossRef]
- Deuflhard, P.; Engl, W.; Scherzer, O. A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Probl. 1998, 14, 1081–1106. [Google Scholar] [CrossRef]
- Hohage, T. Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optimiz. 2000, 21, 439–464. [Google Scholar] [CrossRef]
- Pereverzyev, S.S.; Pinnau, R.; Siedow, N. Regularized fixed-point iterations for nonlinear inverse problems. Inverse Probl. 2005, 22, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mahale, P.; Nair, M.T. A simplified generalized Gauss-Newton method for nonlinear ill-posed problems. Math. Comput. 2009, 78, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Böckmann, C.; Kammanee, A.; Braunß, A. Logarithmic convergence rate of Levenberg–Marquardt method with application to an inverse potential problem. J. Inverse Ill-Posed Probl. 2011, 19, 345–367. [Google Scholar] [CrossRef]
- Pornsawad, P.; Sungcharoen, P.; Böckmann, C. Convergence rate of the modified Landweber method for solving inverse potential problems. Mathematics 2020, 8, 608. [Google Scholar] [CrossRef]
- Vainikko, G.; Veterennikov, A.Y. Iteration Procedures in Ill-Posed Problems; Nauka: Moscow, Russia, 1986. [Google Scholar]
0 | ||||||||||||
0 | 0 | 1 | 1 | 1 | 1 | |||||||
1 | 1 | |||||||||||
(a) | (b) | (c) | (d) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pornsawad, P.; Resmerita, E.; Böckmann, C. Convergence Rate of Runge-Kutta-Type Regularization for Nonlinear Ill-Posed Problems under Logarithmic Source Condition. Mathematics 2021, 9, 1042. https://doi.org/10.3390/math9091042
Pornsawad P, Resmerita E, Böckmann C. Convergence Rate of Runge-Kutta-Type Regularization for Nonlinear Ill-Posed Problems under Logarithmic Source Condition. Mathematics. 2021; 9(9):1042. https://doi.org/10.3390/math9091042
Chicago/Turabian StylePornsawad, Pornsarp, Elena Resmerita, and Christine Böckmann. 2021. "Convergence Rate of Runge-Kutta-Type Regularization for Nonlinear Ill-Posed Problems under Logarithmic Source Condition" Mathematics 9, no. 9: 1042. https://doi.org/10.3390/math9091042
APA StylePornsawad, P., Resmerita, E., & Böckmann, C. (2021). Convergence Rate of Runge-Kutta-Type Regularization for Nonlinear Ill-Posed Problems under Logarithmic Source Condition. Mathematics, 9(9), 1042. https://doi.org/10.3390/math9091042