Differential Games for an Infinite 2-Systems of Differential Equations
Abstract
:1. Introduction
2. Motivation
3. Statement of Problem
4. Result
5. Guaranteed Evasion Time
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Isaacs, R. Differential Games; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Berkovitz, L.D. A Survey of Differential Games, Mathematical Theory of Control; Academic Press: New York, NY, USA, 1967; pp. 373–385. [Google Scholar]
- Elliot, R.J.; Kalton, N.J. The Existence of Value for Differential Games; American Mathematical Soc.: Providence, RI, USA, 1972. [Google Scholar]
- Fleming, W.H. A note on differential games of prescribed duration. Contrib. Theory Games 1957, 3, 407–416. [Google Scholar]
- Fleming, W.H. The convergence problem for differential games. J. Math. Anal. Appl. 1961, 3, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A. Differential Games; Wiley Interscience: New York, NY, USA, 1971. [Google Scholar]
- Hajek, O. Pursuit Games; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Ho, Y.; Bryson, A.; Baron, S. Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 1965, 10, 385–389. [Google Scholar] [CrossRef]
- Pontryagin, L.S. Selected Works; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Krasovskii, N.N.; Subbotin, A.I. Game-Theoretical Control Problems; Springer: New York, NY, USA, 1988. [Google Scholar]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993. [Google Scholar]
- Pshenichnii, B.N. Simple pursuit by several objects. Cybern. Syst. Anal. 1976, 12, 484–485. [Google Scholar] [CrossRef]
- Subbotin, A.I.; Chentsov, A.G. Optimization of Guaranteed Result in Control Problems; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Chikrii, A.A. Conflict-Controlled Processes; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Ibragimov, G.I.; Allahabi, F.; Kuchkarov, A.S. A pursuit problem in an infinite system of second-order differential equations. UKR. Math. J. 2014, 65, 1203–1216. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Risman, M.H. Pursuit and Evasion Differential game in Hilbert space. Int. Game Theory Rev. 2010, 12, 239–251. [Google Scholar] [CrossRef]
- Ibragimov, G.; Norshakila, A.R.; Kuchkarov, A.; Fudziah, I. Multi Pursuer Differential Game of Optimal Approach with Integral Constraints on Controls of Players. Taiwan J. Math. 2015, 19, 963–976. [Google Scholar] [CrossRef]
- Idham, A.A.; Gafurjan, I.; Askar, R. Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space. Dyn. Games Appl. 2017. [Google Scholar] [CrossRef]
- Salimi, M.; Ibragimov, G.I.; Siegmund, S.; Sharifi, S. On a fixed duration pursuit differential game with geometric and integral constraints. Dyn. Games Appl. 2016, 6, 409–425. [Google Scholar] [CrossRef]
- Ibragimov, G.I. The optimal pursuit problem reduced to an infinite system of differential equation. J. Appl. Math. Mech. 2013, 77, 470–476. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit with countably many pursuers and one evader. Differ. Equ. 2005, 41, 627–635. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. Sci. Asia 2013, 39, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Salimi, M.; Ferrara, M. Differential game of optimal pursuit of one evader by many pursuers. Int. J. Game Theory 2019, 48, 481–490. [Google Scholar] [CrossRef]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications, Translations of Math. Monographs; American Mathematical Soc.: Providence, RI, USA, 2000. [Google Scholar]
- Albeverio, S.; Alimov, S.A. On a time-optimal control problem associated with the heat exchange process. Appl. Math. Optim. 2008, 57, 58–68. [Google Scholar] [CrossRef]
- Chaves-Silva, F.; Zhang, X.; Zuazua, E. Controllability of evolution equations with memory. SIAM J. Control Optim. 2017, 55, 2437–2459. [Google Scholar] [CrossRef] [Green Version]
- Philippe, M.; Lionel, R.; Pierre, R. Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 2013, 51, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl Akad. Nauk SSSR 1975, 223, 1314–1317. [Google Scholar]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Butkovskiy, A.G. Theory of Optimal Control of Distributed Parameter Systems; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Chernous’ko, F.L. Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 1992, 56, 707–723. [Google Scholar] [CrossRef]
- Ibragimov, G.I. A Problem of Optimal Pursuit in Systems with Distributed Parameters. J. Appl. Math. Mech. 2002, 66, 719–724. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. Kraevye Zadachi Matematicheskoy Fiziki; Boundary value Problems of Mathematical Physics: Moscow, Russia, 1973. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tukhtasinov, M.; Ibragimov, G.; Kuchkarova, S.; Mat Hasim, R. Differential Games for an Infinite 2-Systems of Differential Equations. Mathematics 2021, 9, 1467. https://doi.org/10.3390/math9131467
Tukhtasinov M, Ibragimov G, Kuchkarova S, Mat Hasim R. Differential Games for an Infinite 2-Systems of Differential Equations. Mathematics. 2021; 9(13):1467. https://doi.org/10.3390/math9131467
Chicago/Turabian StyleTukhtasinov, Muminjon, Gafurjan Ibragimov, Sarvinoz Kuchkarova, and Risman Mat Hasim. 2021. "Differential Games for an Infinite 2-Systems of Differential Equations" Mathematics 9, no. 13: 1467. https://doi.org/10.3390/math9131467
APA StyleTukhtasinov, M., Ibragimov, G., Kuchkarova, S., & Mat Hasim, R. (2021). Differential Games for an Infinite 2-Systems of Differential Equations. Mathematics, 9(13), 1467. https://doi.org/10.3390/math9131467