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Abstract: Learning high-dimensional chaos is a complex and challenging problem because
of its initial value-sensitive dependence. Based on an echo state network (ESN), we intro-
duce homotopy transformation in topological theory to learn high-dimensional chaos. On
the premise of maintaining the basic topological properties, our model can obtain the key
features of chaos for learning through the continuous transformation between different
activation functions, achieving an optimal balance between nonlinearity and linearity to
enhance the generalization capability of the model. In the experimental part, we choose the
Lorenz system, Mackey–Glass (MG) system, and Kuramoto–Sivashinsky (KS) system as
examples, and we verify the superiority of our model by comparing it with other models.
For some systems, the prediction error can be reduced by two orders of magnitude. The
results show that the addition of homotopy transformation can improve the modeling
ability of complex spatiotemporal chaotic systems, and this demonstrates the potential
application of the model in dynamic time series analysis.
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1. Introduction
In recent years, machine learning technologies have been widely applied to a vari-

ety of tasks, such as speech recognition, medical diagnosis, autonomous driving, image
encryption and recommendation systems [1–4]. Chaos control has always been the focus
of nonlinear research, and using machine learning technology to solve this problem has
gradually become a trend [5–8]. We note that usually only finite time series data from
certain dynamic processes are available. Thus, this method of learning only from the data
itself is called “model-free” learning. The most commonly used method for model-free
learning using dynamic time series is delayed coordinate embedding, which has been well
established [9–13].

However, delayed coordinate embedding is too complex, and the results often fail
to meet the accuracy required by the project. In 2004, the ESN proposed by Jaeger and
Haas achieved impressive results in “model-free” chaotic learning tasks, which was pub-
lished in Science [14]. In addition, many researchers have subsequently applied ESNs to
various chaotic learning tasks. For example, Pathak et al. used reservoir computing to
perform model-free estimates of the state evolution of chaotic systems and the Lyapunov
exponents [15,16]. Moreover, ESN can also infer the unmeasured state variables from
a limited set of continuously measured variables [17]. An ESN is very different from a
traditional neural network; the difference is that an ESN only needs to train the output

Mathematics 2025, 13, 894 https://doi.org/10.3390/math13060894

https://doi.org/10.3390/math13060894
https://doi.org/10.3390/math13060894
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0007-2587-9567
https://doi.org/10.3390/math13060894
https://www.mdpi.com/article/10.3390/math13060894?type=check_update&version=1


Mathematics 2025, 13, 894 2 of 16

weight, and it overcomes the problem of gradient disappearance and explosion when the
traditional neural network uses gradient descent on the weight matrix [18]. Therefore, In
the following years, many results using ESNs have emerged [19]. For instance, adaptive
reservoir computing can capture critical transitions in dynamical systems. This network
has been successful in predicting critical transitions in various low-dimensional dynamical
systems or high-dimensional systems with simple parameter structures [20]. Moreover,
data-informed reservoir computing, which relies solely on data to enhance prediction accu-
racy, not only effectively reduces computational costs but also minimizes the cumbersome
hyperparameter optimization process in reservoir computing [21].

The above results show that echo state networks can be effectively applied to chaos
prediction tasks, and our goal is to achieve long-term and accurate predictions. However,
chaotic systems are extremely sensitive to initial conditions, which makes long-term pre-
dictions more challenging. In the ESN structure, nonlinear activation can simulate the
nonlinear relationship of the chaotic system, model data characteristics, and solve complex
problems [22,23], so it is very important for the completion of the task.

The update process of the reservoir state largely depends on the activation function [24,25].
The activation function is a function of the network input, the previous state, and the feedback
output. According to the reservoir update equation, the network input plays a crucial role
in determining the reservoir state update. Different learning tasks involve distinct input
characteristics, necessitating different reservoir update methods. However, in traditional ESN
models, regardless of the characteristics of the input data, the activation function usually
remains unchanged, typically using fixed nonlinear functions such as tanh or sigmoid [26].
Additionally, when noise or interference in the training set increases, the generalization ability
of the ESN may decrease [27]. To overcome the shortcomings of traditional single activation
functions, in recent years, the double activation function echo state network (DAF-ESN) [28],
the echo state network activation function based on bistable stochastic resonance (SR-ESN) [29],
and the deep echo state network with multiple activation functions (MAF-DESN) have been
proposed [30]. By linearly combining activation functions, the resulting activation function
varies as the coefficients change, providing greater flexibility and adaptability than single
activation functions. This enhances the network’s expressive power, allowing the model to
better adapt to complex learning tasks.

Recognizing this, in order to learn the key features of spatiotemporal chaotic systems,
this paper introduces the homotopy transformation in topological theory and proposes a
new chaotic prediction model, called the H-ESN. Under the premise of maintaining basic
topological properties, our model achieves the optimal balance between nonlinearity and
linearity by continuously transforming between different activation functions and adjusting
the homotopy parameter, thereby capturing the key features necessary for learning chaos.
In the experimental part of this paper, Our model has been successfully applied to the
following classical prototype systems in chaotic dynamics: Lorenz system, MG system, and
KS system, and it has obtained the following positive results compared to other models.

• With appropriately chosen parameters, the H-ESN can provide longer prediction times
for various high-dimensional chaotic systems.

• Under the same parameter conditions, the H-ESN demonstrates smaller predic-
tion errors compared to other models when predicting different dimensions of
chaotic systems.

• Compared to traditional methods, the H-ESN exhibits significant advantages in chaotic
prediction tasks, particularly in the estimation of the maximal Lyapunov exponent.

The remainder of this paper is organized as follows: Section 2 introduces the principles
and methods of the ESN and H-ESN and provides the sufficient conditions for the H-ESN
to satisfy the echo state property. Section 3 discusses the application of the H-ESN to
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three chaotic system examples and compares its performance with other models, achiev-
ing significant results. Section 4 summarizes our research findings and outlines future
research directions.

2. Correlation Method
2.1. Echo State Network

The ESN, proposed by Jaeger and Haas, has a relatively simple structure and requires
only a small number of parameter adjustments [31]. Compared to traditional neural
networks, it trains just a portion of the network’s connection weights, specifically, the
output weights, while the input weights and the weights of the recurrent connections within
the reservoir are randomly generated and remain fixed [32,33]. This simplification makes
the learning process faster and more efficient. It can significantly reduce computational
costs and helps mitigate the vanishing gradient problem to some extent. Furthermore,
when the number of reservoir nodes is much greater than one, we can expect a wide range
of desired outputs. ESN is a machine learning framework that has been shown to reproduce
the chaotic attractors of its dynamical systems and includes the fractal dimension and the
Lyapunov exponential spectrum [34–36].

The operation of the ESN during the training phase is shown in Figure 1a; the D-
dimensional input vector u(t) = [u1(t), u2(t), · · · , uD(t)]T is mapped into the reservoir R
with Dr nodes via the input coupling I/R and the input weight matrix Win ∈ RDr×D. The
reservoir state evolves according to Equation (1)

r(t + ∆t) = (1 − α)r(t) + αtanh(Ar(t) + Winu(t) + ξe), (1)

for the vector g = [g1, g2, · · · , gDr ]
T , the activation function tanh(g) is expressed as

(tanh(g1), tanh(g2), · · · , tanh(gDr ))
T , which is the hyperbolic tangent function tanh(x). α is

the leakage rate, which adjusts the update speed of the reservoir states and affects the dy-
namic characteristics of the system. ξe is the biased term, where e = (1, 1, · · · , 1)T ∈ RDr×1.
This introduces an additional degree of freedom to the reservoir, allowing the network
to better fit complex nonlinear dynamic systems. In addition to ∆t, α, ξ, and Win in
Equation (1), the reservoir dynamics are also related to the spectral radius ρ and spar-
sity d of the matrix A ∈ RDr×Dr . The spectral radius ρ determines the stability and memory
capacity of the reservoir, while the sparsity d influences the computational efficiency and
dynamic diversity of the reservoir by controlling the proportion of non-zero elements in the
matrix A. In Equation (2), Wout ∈ RDv×Dr is linearly combined with the Dr-dimensional
vector r(t) to obtain the output vector v(t) ∈ RDv×1 as follows

v(t + ∆t) = Woutr(t + ∆t). (2)

Generally, the output v(t) obtained in Figure 1a is expected to approximate the desired
output vd(t). During the training phase −T ≤ t ≤ 0, the data for u(t) and vd(t) are already
known. The output weight matrix Wout is determined by minimizing Equation (3) using
ridge regression

∑
−T≤t≤0

∥Woutr(t)− vd(t)∥2 + β∥Wout∥2, (3)

where β > 0 is the penalty parameter, ∥ · ∥2 is the sum of squares of each element, and the
minimized loss function’s deduced as follows

∥Woutr(t)− vvd(t)∥2 + β∥Wout∥2 = (Woutr(t)− vd(t))T(Woutr(t)− vd(t))

+ βWT
outWout,

(4)
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∂

∂Wout
[(Woutr − vd)

T(Woutr − vd) + βWT
outWout] = 0,

∂

∂Wout
[rTWT

outWoutr − rTWT
outvd − vT

d Woutr + vT
d vd + βWT

outWout] = 0,

∂

∂Wout
[rTWT

outWoutr − 2rTWT
outvd + vT

d vd + βWT
outWout] = 0,

2WoutrrT − 2vdrT + 2βWout = 0,

2WoutrrT + 2βWout = 2vdrT ,

Wout(rrT + βI) = vdrT ,

Wout = vdrT(rrT + βI)−1.

(5)

After completing the training phase −T ≤ t ≤ 0 and obtaining the output weight
matrix, the system enters the prediction phase t > 0. The desired method is to make the
expected output equal to the input, i.e., vd(t + ∆t) = u(t + ∆t), and after obtaining the
output weight matrix, at t = 0, the system transitions from Figure 1a to Figure 1b and
autonomously operates according to the following formula

r(t + ∆t) = (1 − α)r(t) + αtanh(Ar(t) + Win(Woutr(t)) + ξe). (6)

(a)

(b)

Figure 1. Echo state network architecture: (a) training phase, and (b) testing phase. I/R and R/O
denote the input-to-reservoir and reservoir-to-output couplers, respectively. R denotes the reservoir.

2.2. Echo State Network Based on Homotopy Transformation (H-ESN)
2.2.1. Introduction to H-ESN

The activation function refers to the nonlinear function in neurons. The introduction
of nonlinear characteristics into artificial neural networks improves the expression ability
of the networks [37]. If a network lacks a nonlinear function, it can only perform linear
combinations, making the activation function crucial in neural networks.

This section introduces an ESN model based on homotopy theory. The concept of
homotopy originated from topological theory and has been applied to recovery algo-
rithms. The core of the homotopy method lies in the use of continuous changing ideas and
homotopy paths.

Theorem 1 ([38]). Let f , g : X → Y be a continuous function on a topological space. A homotopy
from f to g is a continuous function F : X × [0, 1] → Y, such that for all x ∈ X, F(x, 0) = f (x)
and F(x, 1) = g(x). If such a homotopy exists between f and g, then f is said to be homotopic to g
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for all x ∈ X. Denote this by f ≃ g. F is continuous on t, which means that the transformation
from f to g is continuous, that is, the path from one function to another.

Theorem 2 ([38]). Let C be a convex set. If for x, y ∈ C, then, there is θ ∈ [0, 1], θx + (1 −
θ)y ∈ C, so we consider F(x, θ) = θ f (x) + (1 − θ)g(x), because C is a convex set, so for any
f (x), g(x) ∈ C and for any θ ∈ [0, 1], θ f (x)+ (1− θ)g(x) ∈ C, that is, a function from X × [0, 1]
to C, so F is homotopy.

On the premise of maintaining the basic topological properties, our model can obtain
the key features of chaos for learning through a continuous homotopy transformation
between different activation functions. The activation function of our model is shown below

F(x, θ) = (1 − θ)(
ex − e−x

ex + e−x ) + θx, (7)

in which θ is the homotopy parameter. Figure 2 shows the graph of F(x, θ) as the function
transitions from tanh to x for different values of θ.

Figure 2. Transition of F(x, θ) from tanh to x under different values of θ.

To provide a detailed explanation of the H-ESN training and prediction process, the
specific flow of the algorithm, as well as its time and space complexity, are presented below
(Algorithm 1).

Algorithm 1 H-ESN standard algorithm process.

Require: Observed data u(t); Dimensions of the input data, reservoir, and predicted data
is D × 1, Dr × Dr and Dv × 1.

Ensure: Predicted data v(t)
1: Fix a random seed and generate the input weight matrix Win and reservoir weight

matrix A.
2: Set the spectral radius ρ and sparsity d of A.
3: Determine the homotopy parameter θ.
4: for i = −T to 0 do
5: Update the reservoir state r(t) using Equation (1) with the activation function

replaced by F(x, θ).
6: end for
7: Obtain the output weight matrix Wout by minimizing Equation (3).
8: for t = 0 to Ttest do
9: Use Equation (6) with the activation function replaced by F(x, θ) to predict the

output.
10: end for
11: Obtain the H-ESN prediction results.
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2.2.2. Echo State Property of the H-ESN

The Echo State Property (ESP) is the core theoretical foundation of the ESN, ensuring
that the dynamic behavior of the reservoir has good stability and predictability [39,40].
A sufficient condition for the H-ESN to exhibit the echo state property is given below
(Table 1).

Table 1. Time complexity and space complexity of the H-ESN algorithm.

Time Complexity: O(d × Dr + (T + Ttest)× D2
r + D3

r )

Generating Reservoir Weight Matrix A: O(d × Dr)
Reservoir State Update: O(T × D2

r )
Output Weight Matrix: O(D3

r )
Prediction Phase: O(Ttest × D2

r )

Space Complexity: O((d + T + Dv)× Dr + Dv × Ttest)

Reservoir Weight Matrix A: O(d × Dr)
State Matrix: O(T × Dr)

Output Weight Matrix: O(Dr × Dv)
Storing Prediction Results: O(Dv × Ttest)

Assumption 1. The nonlinear activation function f : X → Y is a function from set X to set Y.
There exists a constant L ≥ 0 such that for any two points x1, x2 in X, the Lipschitz condition
is satisfied

∥ f (u, x1)− f (u, x2)∥ ≤ L∥x1 − x2∥

where L is a constant, typically taken as 1.

Theorem 3. If the following conditions are satisfied for the H-ESN model

(1) F(x) = (1 − θ)tanh + θx (the parameter θ satisfies θ ∈ [0, 1]);
(2) The spectral radius ρA of the internal weight matrix A of the reservoir satisfies ρA < 1;

The H-ESN model has the ESP.

Proof. Consider two arbitrary initial states r1(0) and r2(0), and the same input sequence
u(n). As n → ∞, the state difference is ∆r(n) = r1(n) − r2(n). According to the state
update equation

r(n + 1) = (1 − α)r(n) + α((1 − θ)tanh(Ar(n) + Winu(n) + ξe)

+ θ(Ar(t) + Winu(n) + ξe)),

∆r(n + 1) = (1 − α)∆r(n) + α((1 − θ)(tanh(Ar1(n) + Winu(n) + ξe)

− tanh(Ar2(n) + Winu(n) + ξe)) + θ(A∆r(n)),

The tanh function is Lipschitz continuous, with a Lipschitz constant of 1.

∥∆r(n + 1)∥ ≤ (1 − α)∥∆r(n)∥+ α((1 − θ)∥A∥∥∆r(n)∥+ θ∥A∥∥∆r(n)∥),
= (1 − α)∥∆r(n)∥+ α∥A∥∥∆r(n)∥,

≤ (1 − α)∥∆r(n)∥+ αρA∥∆r(n)∥,

< (1 − α)∥∆r(n)∥+ α∥∆r(n)∥,

= ∥∆r(n)∥,

∥∆r(n + 1)∥ < ∥∆r(n)∥.

The ESN activated by homotopy transformation Equation (7) is a new chaotic predic-
tion method proposed in this paper. In Section 3, we show the effect of predicting chaotic
Lorenz, MG, and KS systems based on the new ESN model (H-ESN).
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3. Results
We will provide three examples, the Lorenz, Mackey–Glass, and Kuramoto–Sivashinsky

systems, to illustrate the advantages of using the H-ESN in predicting chaotic systems.

3.1. Lorenz System

The Lorenz system, proposed by Edward Lorenz in 1963 [41], is a three-dimensional
nonlinear dynamical system originally designed to study atmospheric convection. As a
fundamental model in chaos theory, it is known for its simplicity and complex dynamics.
The system’s differential equations are as follows

dx/dt = −ax + ay,

dy/dt = bx − y − xz,

dz/dt = −cz + xy,

(8)

where a = 10, b = 28, and c = 8/3. The system variables x, y, z are known, and the input
u(t) = (x(t), y(t), z(t))T is used to obtain the output weight matrix Wout through training.
Afterward, the system enters the prediction phase for t > 0. Taking into account the
symmetry of the Lorenz equations, Equation (2) is modified to vd(t) = Wout r̃, where r̃ is a
vector of dimensions Dr in which half of the elements of r̃ are r̃ = r2

i , with ith representing
the components of r̃. Based on this, we compare the H-ESN with other commonly used
ESN models, and the results are illustrated in Figure 3, with the parameters shown in
Table 2. Additionally, the accurate prediction data lengths for the three models on the three
variables of the Lorenz system are presented in Table 3.

(a)

(b)

(c)

Figure 3. Prediction results of the ESN, H-ESN, and DeepESN for each dimension of the Lorenz
system. (a) Lorenz-x, (b) Lorenz-y, and (c) Lorenz-z.
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Table 2. Parameters for the Lorenz system prediction task.

Parameter Value Parameter Value

Dr 300 α 1
ρ 0.7 ξ 0
∆ t 0.02 θ 0.7

Table 3. Accurate prediction data lengths for the three variables of the Lorenz system using the ESN,
Deep-ESN, and H-ESN.

ESN Deep-ESN H-ESN

Lorenz-x 378 262 521
Lorenz-y 382 260 522
Lorenz-z 393 273 530

According to Figure 3 and Table 3, in the initial stages, all three models—Deep ESN,
ESN, and H-ESN—can achieve relatively accurate predictions for the three variables of the
Lorenz system. However, as the number of data points increases, the prediction trajectory
of the Deep ESN deviates first from the true values, with the purple dotted line diverging
from the blue solid line. This is because we selected a Deep ESN with three layers, each
containing 100 nodes, which results in weaker nonlinear modeling capability compared to
an ESN with a single reservoir (300 nodes). Later, the predicted trajectory of the ESN also
starts to deviate from the true state with an increase in data points, with the green dotted
line moving away from the blue solid line. In contrast, H-ESN demonstrates a significant
advantage in prediction duration compared to the other two models, achieving accurate
predictions for approximately 500 data points for the three variables of the Lorenz system.
For comparison, we computed the mean squared error (MSE) values of the three models
for the three variables of the Lorenz system at different prediction lengths in Table 4.

Table 4. Comparison table of MSE values for the three dimensions of the Lorenz system at different
prediction lengths using the ESN, Deep ESN, and H-ESN.

MSE

300 350 400 450 500

Lorenz-x
ESN 0.80367 0.78542 1.0564 3.5907 3.6537

Deep ESN 2.9228 3.0528 6.9675 25.3735 41.3386
H-ESN 0.5315 0.51897 0.51815 0.69162 0.65461

Lorenz-y
ESN 1.8692 1.7847 2.6831 8.5373 8.3973

Deep ESN 7.2936 7.019 12.0632 37.1467 55.8747
H-ESN 1.2166 1.1686 1.1761 1.6599 1.5405

Lorenz-z
ESN 2.7321 2.6891 2.8106 12.8135 12.4176

Deep ESN 10.4869 11.1452 27.9924 49.5561 55.6685
H-ESN 1.8054 1.7662 1.7419 2.4817 2.3127

As shown in Table 4, the MSE between the predicted values at 300, 350, 400, 450,
and 500 data points and the true values of the three variables of the Lorenz system were
calculated separately. Additionally, in Table 5, the average MSE percentage improvement
of the H-ESN over the ESN for the three variables of the Lorenz system was calculated
based on Equation (9). It can be concluded that the MSE value for the H-ESN model is
minimal at different prediction stages, indicating that the model proposed in this paper
achieves the best performance in this prediction task.
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ESNMSE − H-ESNMSE

ESNMSE
× 100% (9)

Table 5. MSE percentage improvement of the H-ESN over the ESN.

300 350 400 450 500

Lorenz-x H-ESN 33.87% 33.92% 50.95% 80.74% 82.08%

Lorenz-y H-ESN 34.91% 34.52% 56.17% 80.56% 81.65%

Lorenz-z H-ESN 33.92% 34.32% 38.02% 80.63% 81.38%

In chaotic prediction tasks, the focus is on the duration and accuracy of predictions.
Effective prediction time (EPT) is an important metric for evaluating the performance
of time series prediction models. It refers to the limited period during which accurate
predictions can be made using the model in chaotic scenarios. This period is finite because
chaotic systems are extremely sensitive to initial conditions, leading to significant uncer-
tainty in long-term predictions. In this paper, the effective prediction time is defined as
EPT = |u(t)− v(t)|. The prediction is considered invalid at time t, when the prediction
error exceeds the set threshold ϵ, that is, when EPT > ϵ (ϵ is a given error).

The parameter θ is a very important hyperparameter, and its selection significantly
affects the system’s predictive performance. Figure 4 shows the EPT for the three variables
under different values of θ. Overall, When θ is small, the EPT tends to decrease because
the nonlinearity is too strong, making it difficult for the network to train or generalize
effectively. When θ is large, the EPT also tends to decrease due to excessive linearization,
causing the network to fail to capture the key dynamics of the chaotic system. However,
after reaching the intermediate region at θ = 0.65, the EPT starts to increase and reaches its
maximum value, as the balance between nonlinearity and linearity is optimized. To ensure
that the three variables have a longer prediction duration, it is recommended to choose a θ

value of approximately 0.7.

Figure 4. EPT variation curves of the three dimensions of the Lorenz system with respect to θ are
shown, with blue for Lorenz-x, red for Lorenz-y, and green for Lorenz-z.

The H-ESN introduces a linear component (θx) through homotopy transformation,
finding the optimal balance between nonlinearity and linearity. However, the value of θ

generally varies for different chaotic systems. Currently, we primarily determine the value
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of θ through grid search or empirical tuning. While effective, this method can be computa-
tionally expensive when dealing with high-dimensional or complex systems. Finding the
optimal value of θ quickly and efficiently is a major challenge faced by the H-ESN.

3.2. Mackey–Glass Equation

The Mackey–Glass (MG) equation is a commonly used delay differential equation
used to model complex dynamic behaviors in biological and physical systems with time
delays, especially in biology and ecology [42]. Its standard form is as follows

dx
dt

=
βx(t − τ)

1 + x(t − τ)n − γx(t), (10)

where β = 0.2, γ = 0.1, τ = 17, and n = 10. The above equation is numerically solved using
the Euler method to obtain the chaotic time series of the MG system. The first 2000 data
points are used as the training set, and the next 1000 data points as the testing set. Figure 5
shows a comparison of the prediction performance of the ESN and H-ESN on the MG time
series, with the parameters listed in Table 6.

Table 6. Parameters for the MG time series prediction task.

Parameter Value Parameter Value

Dr 1000 α 0.7
ρ 0.9 ξ 0
∆ t 0.1 θ 0.08

Figure 5. Comparison of the prediction results for the MG time series between the ESN and H-ESN;
the upper panel shows the ESN predictions, and the lower panel shows the H-ESN predictions.

As shown in Figure 5, both models can make good short-term predictions for the
MG time series. The ESN can accurately predict 533 data points, but it fails to accurately
predict the peak information in the time interval between 533 and 800 time steps. On the
other hand, the H-ESN can predict for 1000 time steps and is capable of capturing the peak
information effectively, indicating that the H-ESN has a clear advantage in predicting the
MG time series.

The hyperparameters in ESN have a significant impact on the prediction performance
of chaotic systems. The following analysis examines how the MSE between the predicted
and true values changes with the spectral radius ρ over the first 500 time steps. Overall, as
the spectral radius increases, the MSE decreases, and the H-ESN shows higher prediction
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accuracy compared to the other two models. For small values of ρ, the prediction accuracy
already reaches 1 × 10−4, and the MSE value reaches 1 × 10−7 when ρ = 1.3.

In addition to the spectral radius ρ, which affects the prediction accuracy of the model,
the number of reservoir nodes Dr also plays a crucial role in chaotic prediction. The size
of Dr directly influences the complexity of the state space that the network can represent.
Generally speaking, the larger the number of reservoir nodes, the more dynamic and
complex patterns the network can capture. Figure 6 illustrates how the MSE between
the predicted and true values changes with Dr for two different spectral radii. It can be
observed that when ρ = 1.2 and Dr = 950, the corresponding MSE is minimized, and the
prediction accuracy reaches 10−9. Furthermore, Figure 6 shows that for different reservoir
sizes, for Dr = 300, the MSE corresponding to ρ = 1.2 is smaller than that corresponding to
ρ = 1.25, which is the opposite trend compared to the one observed for H-ESN in Figure 7.
This indicates that different reservoir sizes have a significant impact on the prediction
ability of the H-ESN.

Figure 6. Prediction error curves of the H-ESN with ρ = 1.2 and ρ = 1.25 as functions of varying
reservoir sizes Dr.

Figure 7. Variation curves of the prediction errors of the ESN, H-ESN, and DeepESN at different
spectral radius ρ values.

3.3. Kuramoto–Sivashinsky Equations

Now consider a modified version of the Kuramoto–Sivashinsky(KS) system defined
by the following partial differential Equation [43]

yt = −yyx − [1 + µcos(
2πx

λ
)]yxx − yxxx. (11)

If µ = 0, this equation is reduced to the standard KS equation, and if µ ̸= 0, the
cosine term makes the equation spatially inhomogeneous. We will focus on the case where
µ = 0 below.
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We take into consideration the fact that the KS system has periodic boundary con-
ditions at 0 ≤ x < L, that is, y(x + L, t) = y(x, t), and the KS equation is numerically
integrated into a uniformly spaced grid of size Q. The simulated data consists of Q time
series with time step ∆t, represented by vector u(t) = (y1(t), y2(t), · · · , yQ(t))T , where
yi(t) = y(i∆t), ∆x = L/Q.

Considering that the Kuramoto–Sivashinsky equation has high dimensional spatiotem-
poral chaos and a certain symmetry, we modify Equation (2) by analogy with the Lorenz
system. After the training stage −T ≤ t ≤ 0, the system uses Tikhonov regularization
regression to obtain Wout. When the output parameters are determined, the system enters
the prediction stage t > 0 and independently evolves according to Figure 1b.

As shown in Figure 8, the ESN model achieves the prediction of 7 Λmaxt steps for
the KS system, while the H-ESN model can predict up to 12 Λmaxt steps, in almost twice
the duration taken by the ESN model. In terms of prediction accuracy, the error panel
of the H-ESN model is close to 0 during the early prediction stages. For comparison, we
have plotted the root mean square error (RMSE) of both models at different prediction
dimensions Q in Figure 9. The RMSE values of the H-ESN are consistently below 0.15, with
relatively small fluctuations. In contrast, the RMSE values of the ESN model are mostly
above 0.15, with a significant difference between the maximum and minimum values.
Therefore, the H-ESN model is more accurate in prediction and also more stable in terms of
prediction performance.

Figure 8. Comparison of the prediction results for the KS system between the ESN and H-ESN: the
left panel shows the ESN predictions, while the right panel shows the H-ESN predictions, where
Λmaxt represents the Lyapunov time.

The most important characteristic of chaotic dynamics is their extreme sensitivity
to initial conditions. In chaotic systems, long-term predictions of the system’s state are
impossible, as even the smallest errors will exponentially amplify, quickly eroding pre-
dictive capability. In predicting chaotic systems, not only is it necessary to optimize the
hyperparameters to extend the effective prediction time of various variables, but it is also
essential to evaluate the prediction accuracy in terms of the system’s inherent chaotic
characteristics. The maximum Lyapunov exponent (Λmax) is a key metric for measuring
the chaotic nature of dynamic systems. It evaluates whether the system exhibits a chaotic
behavior by quantifying the rate of divergence of nearby trajectories in the phase space. By
comparing the Λmax of the KS system, as shown in Table 7, it can be observed that the Λmax

estimated from the predicted data of the H-ESN model is closest to the true Λmax of the
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KS system, with a difference of 0.0001. In contrast, the Λmax obtained from the predicted
data of the ESN model deviates from the true value by 0.0017. This difference indicates
that the H-ESN model demonstrates a stronger ability to capture the chaotic characteristics
and sensitivity of the system. Particularly at longer time scales, the H-ESN is able to more
accurately reflect the system’s dynamical behavior, highlighting its advantages in modeling
complex dynamical systems.

Figure 9. MSE plot of the predicted values and true values for different dimensions of the KS system
using the ESN and H-ESN.

Table 7. Comparison table of Λmax for the ESN and H-ESN, Λmax represents the maximum
Lyapunov exponent.

Actual KS ESN H-ESN

Λmax 0.0471 0.0488 0.0470
Error (%) 3.61% 0.21%

Chaotic systems are often disturbed by noise in practical applications, which can
significantly reduce the performance of prediction models. To verify the robustness of the
H-ESN under noisy conditions, we added Gaussian noise with varying intensities (noise
levels of 0.01, 0.02, and 0.03) to the KS system, simulating real-world measurement errors.
The experiment was conducted with the parameters listed in Table 8, aiming to evaluate
the performance of H-ESN under noise conditions.

Table 8. Parameters for the KS system prediction task.

Parameter Value Parameter Value

Dr 5000 d 3
ρ 0.4 ξ 0
Q 60 θ 0.3

As shown in Figure 10, when the Gaussian noise intensity is 0.01, the H-ESN can still
maintain good predictive capability, with a prediction duration reaching 6 Λmax. However,
as the noise intensity increases, the predictive capability of the H-ESN gradually declines.
This indicates that in low-noise environments, the H-ESN can effectively handle noise
interference and maintain high prediction accuracy; however, under high-noise conditions,
the impact of noise on model performance becomes more pronounced.
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Figure 10. Comparison of prediction errors of the H-ESN under different Gaussian noise intensities.

4. Summary and Future Directions
4.1. Summary

A trained ESN can approximate the ergodic properties of its real system, and an ESN
based on homotopy theory has demonstrated better performance for short-term predictions
in chaotic systems. As shown in Section 3, with the Lorenz and MG system, the choice
of parameters has a significant impact on prediction performance. Once the parameters
are properly selected, our method has demonstrated longer prediction durations and
better accuracy. For high-dimensional spatiotemporal chaotic systems, the H-ESN has
demonstrated better performance in chaotic prediction compared to the ESN, doubling
the prediction duration and providing more precise estimates of the Lyapunov exponent.
Moreover, the H-ESN exhibits a certain degree of robustness in low-noise environments,
where it retains reliable prediction capabilities even under mild noise interference. This
resilience not only highlights its practical applicability but also ensures the preservation
of chaotic system dynamics, making it a promising tool for real-world scenarios where
complete noise elimination is challenging.

4.2. Future Directions

From a broader perspective, this paper reveals that echo state networks based on
homotopy theory (H-ESN) represent a highly fruitful and detailed research direction in the
field of chaotic system measurement data. However, despite its promising potential, the
current H-ESN framework still exhibits certain limitations that need to be addressed.

• Computational inefficiency arises in parameter optimization, particularly in selecting
the homotopy parameter θ.

• H-ESN exhibits certain limitations under high-noise conditions, with prediction accu-
racy gradually decreasing as noise intensity increases.

• Reservoir design varies by task, but the lack of universal guidelines makes selecting
the right structure and parameters challenging.

Future research can focus on integrating noise reduction techniques or robust optimiza-
tion methods to further enhance the performance of the H-ESN in high-noise environments.
Additionally, exploring more efficient and direct approaches for selecting the homotopy
parameter θ is crucial for improving the model’s adaptability and reducing computational
costs. At the same time, developing adaptive design methods and establishing a theoretical
framework can provide systematic guidance for the selection of reservoir structures and
parameters in the H-ESN, thereby further enhancing its performance and generalizability
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across different application scenarios. These research directions not only hold significant
theoretical value but also provide new insights for solving practical engineering problems.
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