
Academic Editor: Antanas Cenys

Received: 31 January 2025

Revised: 28 February 2025

Accepted: 3 March 2025

Published: 6 March 2025

Citation: Karathanasis, A.; Violos, J.;

Kompatsiaris, I. A Comparative

Analysis of Compression and Transfer

Learning Techniques in DeepFake

Detection Models. Mathematics 2025,

13, 887. https://doi.org/10.3390/

math13050887

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Comparative Analysis of Compression and Transfer Learning
Techniques in DeepFake Detection Models
Andreas Karathanasis † , John Violos *,† and Ioannis Kompatsiaris

Information Technologies Institute, Centre for Research & Technology, Hellas, 57001 Thessaloniki, Greece;
andrew.karathanasis@iti.gr (A.K.); ikom@iti.gr (I.K.)
* Correspondence: violos@iti.gr
† These authors contributed equally to this work.

Abstract: DeepFake detection models play a crucial role in ambient intelligence and smart
environments, where systems rely on authentic information for accurate decisions. These
environments, integrating interconnected IoT devices and AI-driven systems, face signifi-
cant threats from DeepFakes, potentially leading to compromised trust, erroneous decisions,
and security breaches. To mitigate these risks, neural-network-based DeepFake detection
models have been developed. However, their substantial computational requirements
and long training times hinder deployment on resource-constrained edge devices. This
paper investigates compression and transfer learning techniques to reduce the computa-
tional demands of training and deploying DeepFake detection models, while preserving
performance. Pruning, knowledge distillation, quantization, and adapter modules are
explored to enable efficient real-time DeepFake detection. An evaluation was conducted
on four benchmark datasets: “SynthBuster”, “140k Real and Fake Faces”, “DeepFake and
Real Images”, and “ForenSynths”. It compared compressed models with uncompressed
baselines using widely recognized metrics such as accuracy, precision, recall, F1-score,
model size, and training time. The results showed that a compressed model at 10% of the
original size retained only 56% of the baseline accuracy, but fine-tuning in similar scenarios
increased this to nearly 98%. In some cases, the accuracy even surpassed the original’s
performance by up to 12%. These findings highlight the feasibility of deploying DeepFake
detection models in edge computing scenarios.

Keywords: ambient intelligence; smart environments; deepfake models; compression;
transfer learning; edge computing

MSC: 68T45

1. Introduction
Ambient intelligence and smart environments are composed of interconnected IoT

devices and AI systems that exchange information to deliver seamless user experiences [1].
However, DeepFakes—synthetic media created using advanced AI—pose a significant
threat to these environments by introducing falsified data that can deceive both systems
and users [2]. For instance, in smart surveillance systems, DeepFakes could be used to
manipulate video feeds, leading to unauthorized access or false alarms [3]. Similarly,
voice-controlled smart home devices could be deceived by DeepFake audio commands,
resulting in unauthorized operations or breaches of privacy [4]. The integration of DeepFake
detection models into these systems is essential to maintain security, ensure accurate
human–computer interactions, and uphold user trust. Recent research has explored the
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application of DeepFake detection in IoT-based applications, emphasizing the need for
robust safeguards against such vulnerabilities [5]. Additionally, studies have proposed
frameworks that combine AI and IoT technologies to enhance surveillance security by
effectively identifying individuals and detecting DeepFake-generated content [6]. By
implementing DeepFake detection models, ambient intelligent systems can better protect
against malicious activities, ensuring that automated decisions are based on authentic and
reliable data.

Running and training DeepFake detection models on a smart environment comprising
IoT and edge devices is essential for enabling real-time detection directly at the data
source. This approach reduces the need for constant data transfers to centralized servers,
minimizing latency and bandwidth usage [7]. It also enhances privacy and security by
processing sensitive data locally, addressing the privacy concerns inherent in ambient
intelligence systems, which are often criticized for their pervasive data collection and
potential misuse [8].

Deep fake detection models leverage advanced neural networks like convolutional
neural networks (CNNs), and as a consequence they demand substantial computational
resources and memory, rendering them impractical for deployment on resource-constrained
devices [9]. Neural network compression techniques such as pruning [10], quantization [11],
knowledge distillation [12], and low-rank factorization [13] enable these models to have re-
duced computational demands while maintaining accuracy. These optimizations are crucial
for deploying efficient, real-time detection systems in ambient intelligence environments,
where devices must operate autonomously with limited hardware capabilities. Achieving
this balance between efficiency and performance is crucial for lightweight inference and
effective DeepFake threat detection.

While compressing neural networks reduces the resources needed to efficiently run
DeepFake detection models, the challenge of training these models with reduced data, time,
and computational demands persists. Rather than training a DeepFake detection model
from scratch, it is more effective to utilize pre-trained neural networks that have already
acquired rich, generalized patterns from extensive datasets. Transfer learning [14] enables
these models to harness knowledge from related tasks, such as binary image classification,
by reusing learned representations and fine-tuning pre-trained models. Additionally, the
adaptation of transformer adapters [15] to deep fake detection CNNs has been explored
to further improve transfer learning’s effectiveness in addressing dynamic and evolving
threats within ambient intelligence ecosystems.

In this article, compression and transfer learning techniques for DeepFake detection
models are analyzed and evaluated. Specifically, the methods of pruning, quantization,
knowledge distillation, and low-rank factorization were explored, assessing their effec-
tiveness using four benchmark datasets: “Synthbuster”, “140k Real and Fake Faces”,
“DeepFake and Real Images”, and “ForenSynths”. The evaluation was conducted using
metrics such as accuracy, precision, recall, F1 score, and compression time. This research
provides four key contributions:

• It demonstrates that compressed models can achieve performance levels comparable
to uncompressed models, even when compressed to 40%, 30%, 20%, or 10% of the
original model size.

• It proposes various approaches for applying transfer learning to DeepFake detection
models, instead of training them from scratch, tackling the challenge of efficiently
training models with limited resources and data.

• It conducted extensive evaluations across multiple benchmark datasets to establish
the generalizability and robustness of compressed models for real-world DeepFake
detection applications.
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• It presents experimental results and provides an empirical analysis of how different
types of synthetic image generators and image types impact the effectiveness of
transfer learning.

The structure of this paper is as follows: Section 2 reviews related work in the fields of
DeepFake detection, compression, and transfer learning in CNN models; Sections 3 and 4
describe the methodologies followed for compression and transfer learning for DeepFake
detection, respectively. Section 5 reports the experimental results. Section 6 discusses
the research implications, while Section 7 outlines future work, and Section 8 provides
the conclusions.

2. A Critical Literature Review of Deep Fake Detection, Compression and
Transfer Learning Techniques

Ambient intelligence refers to digital environments that are sensitive and responsive
to the presence of people, integrating technologies seamlessly into daily life to enhance user
experience [1]. Smart environments, including smart cities and smart homes, are a practical
manifestation of ambient intelligence that utilize interconnected devices and systems to
provide automated and adaptive services [16]. However, related research has shown that
smart environments are vulnerable to the threats posed by DeepFake technology [6]. To
address these critical risks, various DeepFake detection models have been developed.
In the following subsection, the current state of the art in DeepFake models is explored.
Additionally, to enhance the development and execution of these models, making them
more efficient and suitable for deployment in resource-constrained smart environments,
related work on compression techniques and transfer learning approaches is reviewed.

2.1. DeepFake Detection

The utilization of Visual Transformers (ViT) and CNNs are two of the most sophis-
ticated techniques employed for the detection of DeepFake images. In [17], the authors
conducted a comprehensive study evaluating the performance of CNNs and ViTs in Deep-
Fake detection under various conditions. Their experiments included scenarios where
models were trained and tested on a single type of DeepFake generation method, as well
as multiple methods simultaneously. The robustness and generalization capabilities of
these models were assessed through a cross-forgery analysis, which benchmarked how
well a model trained on one type of forgery performed on different, unseen forgeries.
The study concluded that ViTs demonstrated superior generalization, making them more
robust against new and emerging DeepFake generation techniques. Similar conclusions
for robustness can be made from other papers like [18–20]. Conversely, CNNs showed
better performance in specialized tasks where the nature of the forgery was consistent
and known.

In the paper [21], the authors introduced an innovative approach leveraging capsule
networks for forgery detection. Capsule networks, which are adept at capturing spatial
hierarchies, offer a significant advantage over traditional CNNs by preserving hierarchical
relationships within data. Capsule networks consist of groups of neurons, called capsules,
that encode various properties of objects and the spatial relationships and orientations
of objects or features within an image. This capability is critical for identifying subtle
inconsistencies in forged media. The authors extended the application of capsule networks
from other computer vision tasks like [22,23] to include DeepFake detection use cases, such
as replay attack detection. The experimental results demonstrated that capsule networks
outperformed CNNs, showcasing higher accuracy and superior generalization abilities,
especially in detecting novel and varied forgery techniques.
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Although ViTs and CapsNets represent a commendable option for the task of DeepFake
detection, they also come with significant drawbacks. ViTs typically have more parameters
and require more computational resources than CNNs, as pointed out in [24]. This is
due to the self-attention mechanism in ViTs, which scales quadratically with input size,
compared to the localized receptive fields in CNNs. As for Capsule Networks, the work
of [25] suggested that they are computationally intensive due to the absence of pooling
operations. As a result, they must account for every aspect of the input image, including
background noise. Additionally, their performance is inconsistent across different datasets
and they struggle with distinguishing multiple instances of the same entity. This variability
and the current lack of optimal implementations make CapsNets less reliable for time-
critical and high-accuracy applications like DeepFake detection. These drawbacks of ViTs
and CapsNets conflict with the overarching goal of efficient training and deployment
in ambient intelligence environments, whereas CNNs, combined with compression and
transfer learning, are considered a more suitable approach.

The paper in [26] presented a novel approach to DeepFake detection, which is named
DeepFakeUCL and leverages unsupervised contrastive learning. This paper stands out by
describing a method that does not rely on labeled DeepFake data for training. Contrastive
learning is most commonly used as an unsupervised method [27–30], although it can also
be used in a supervised setting, as showcased in [31]. The proposed approach comprises
three main steps: data preprocessing, unsupervised training, and follow-up classification.
Data preprocessing involves transforming images to focus on the face area, optimizing
the utilization of facial data. Unsupervised contrastive learning is then employed, where
images are augmented to generate paired versions, and a backbone network is trained to
learn features by maximizing the similarity between these versions. Notably, the Xcep-
tion network [32] is utilized as the encoder, and a projection head network enhances the
efficiency of the contrastive loss function. Finally, for evaluation, the features extracted
through unsupervised learning are utilized in a linear classification network. Moreover,
ablation studies conducted in the paper shed light on the effectiveness of unsupervised
contrastive learning compared to supervised methods; the impact of different data augmen-
tation schemes, something very important for effective learning [33]; and the superiority of
features learned by the encoder over those from the projection head.

Consistency learning has been applied to various image forensics tasks with varying
levels of supervision, as demonstrated by [34–36]. In their study, the authors of [37] pro-
posed a model that detects image manipulations, specifically splicing, by leveraging the
consistency between different patches within an image. Their method involves calculating
the consistency between patch pairs, generating response maps, and then producing a
global consistency map for the entire image using mean shifting. This global consistency
map allows for the computation of a global consistency score, which facilitates the identifi-
cation and localization of spliced regions within the image. The paper in [38] proposed a
novel approach called pair-wise self-consistency learning (PCL) for detecting face forgeries
generated by stitching-based techniques and localizing the manipulated regions within im-
ages. PCL leverages the inconsistency of source features within modified images, offering a
lightweight solution that can be easily integrated into existing backbone networks. To sup-
port PCL training, the authors introduced an innovative method called the inconsistency
image generator (I2G), which dynamically generates forged images along with annotations
of their manipulated regions. Experimental results across seven popular datasets demon-
strated the competitiveness of PCL and I2G against state-of-the-art methods, establishing a
strong baseline for future research.

The methods described in papers [26,38], while demonstrating promising results,
encounter specific challenges. Notably, their success is highly dependent on the DeepFake
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data utilized. DeepFakeUCL relies heavily on the quality and diversity of data augmen-
tations, while PCL depends on identifying inconsistencies within images. This presents
a problem, because sophisticated DeepFake techniques may produce highly consistent
and low-variation forgeries, thus hindering models from learning robust features. Con-
sequently, generalization issues arise. With the use of GANs for generation of DeepFake
materials, which constantly evolve and improve, as noted in [39], the introduction of images
with new inconsistencies into PCL can degrade its performance. Similarly, if the training
data for DeepFakeUCL do not represent a broad distribution of DeepFakes, an arduous
task given the numerous DeepFake generation methods, as illustrated in [40], the model
may fail to generalize effectively. Finally, the computational resources required for both
methods are substantial. PCL necessitates the use of an I2G, which is computationally
intensive, especially for larger images or higher resolutions. DeepFakeUCL also uses an
extra unsupervised learning stage, which requires significant computational resources.

The rapid advancements in generative AI make synthetic media increasingly difficult
to distinguish from real content. To address this challenge, detection methods generally fall
into the three categories analyzed in [41]: CNNs, Transformers, and GANs. CNNs remain
widely used, due to their efficiency in detecting subtle inconsistencies, while Transformers
offer strong generalization, at a higher computational cost. GAN-based approaches enhance
robustness through adversarial training but continue to evolve to counter increasingly
sophisticated forgeries. The survey highlighted that CNNs offer adaptability for evolving
DeepFake techniques, while Transformers excel in generalization but demand significant
resources. GAN-based methods show promise in enhancing detection resilience. The
challenge of DeepFake detection has also been addressed with hierarchical detection
frameworks that can distinguish real, GAN-generated, and diffusion model images. The
work used a generative approach and framed the problem as Visual Question Answering
(VQA) instead of the regular binary classification [42]. A vision-language transformer
approach was proposed that improves DeepFake detection by leveraging common sense
reasoning, enhancing interpretability and generalization [43].

2.2. Compression of CNNs

Pruning and quantization aim to reduce the computational complexity and memory
demands of deep neural networks (DNNs) and are considered the two most widely rec-
ognized compression techniques, according to a survey article [10]. Pruning techniques
are categorized into various types, such as element-wise, channel-wise, and layer-wise
pruning, each offering distinct advantages, depending on the specific architecture and
application. Similarly, quantization techniques, including weight quantization and acti-
vation quantization, are characterized by their ability to decrease memory requirements
and computational complexity by reducing parameter precision [44]. The potential for
combining these techniques to achieve enhanced compression and efficiency has also been
underscored, as demonstrated by [45]. Their work introduced a three-stage process for
high compression rates. This process includes pruning to reduce parameters, quantization
to compress the remaining weights, followed by fine-tuning to recover performance, and
finally, the application of Huffman coding for further lossless compression.

Knowledge distillation [46] involves transferring knowledge from a complex “teacher”
model to a simpler “student” model, aiding in model compression and task-specific per-
formance. This student–teacher (S-T) learning paradigm is often employed alongside
knowledge distillation and utilizes this framework to train the student model to emulate
the teacher’s output [12]. Furthermore, in the paper in [12], the authors explored applica-
tions of knowledge distillation and S-T in visual intelligence tasks like image classification
and object detection, emphasizing benefits such as enhanced efficiency and performance
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on edge devices. While the strengths of knowledge distillation and S-T were noted, such as
improved efficiency, careful consideration of model selection and the risk of over-fitting
were also highlighted.

A method for parameter reduction in DNNs through a low-rank matrix factoriza-
tion applied to the final weight layer was proposed in [13]. By decomposing the weight
matrix into two lower-dimensional matrices, the authors claimed that this can achieve
a substantial reduction in the number of parameters, ranging from 30 to 50%, without
compromising classification accuracy. The approach was validated in both acoustic mod-
eling and language modeling tasks, where the low-rank models not only matched but
often exceeded the performance of their full-rank counterparts. Additionally, the low-rank
models demonstrated more efficient training processes. A similar work [47] focused on
compression of the convolutional layers of a network by constructing a low-rank basis of
filters using two distinct methods. The first method reduces computation by approximating
the original convolutional filters using a linear combination of fewer, separable basis filters.
The second method restructures the convolution process into two stages with rectangular
filters, optimizing efficiency by leveraging redundancies across input and output channels.

CNN compression remains a critical challenge, due to high computational costs and
memory demands. Even though new methods have emerged, such as StarSPA [48], which
leverages stride-aware sparsity compression to enhance inference speed and energy ef-
ficiency, and multi-objective evolutionary algorithms [49], which optimize pruning by
balancing multiple performance indicators, recent surveys like [50] have reaffirmed that tra-
ditional techniques remain the most effective. The survey in [50] provided a comprehensive
review of CNN compression, highlighting pruning, quantization, knowledge distillation,
and low-rank matrix factorization as the primary techniques. Pruning remains the most
widely used approach for removing redundant parameters, while quantization enables
efficient deployment by reducing numerical precision. Knowledge distillation continues to
be a key strategy for training smaller models, without significant performance loss, and
low-rank matrix factorization offers an alternative for reducing model complexity. The
survey also emphasized the increasing adoption of hybrid methods that combine multiple
techniques to optimize efficiency and accuracy, reinforcing the continued relevance of these
traditional approaches.

2.3. Transfer Learning in CNNs

Fine-tuning is the process of further training a pre-trained model on a specific task by
adjusting its parameters with a smaller learning rate, allowing it to adapt, while retaining
previously learned features [14]. In transfer learning, fine-tuning helps repurpose a model
trained on a large dataset for a new but related task, improving the performance with
limited data, computational resources, and training time. The paper in [51] investigated
the effectiveness of fine-tuning pre-trained CNNs versus training from scratch across four
medical-imaging applications, covering classification, detection, and segmentation tasks.
The authors concluded that fine-tuning pre-trained CNNs generally matches the perfor-
mance of CNNs trained from scratch and even outperforms them with limited training data.
Additionally, they emphasized the robustness of fine-tuned models to smaller training set
sizes and the efficacy of layer-wise fine-tuning, which focuses on adjusting the top layers of
the network first. The study also found that the optimal fine-tuning strategy, shallow versus
deep, varies depending on the specific application and data characteristics. Expanding on
the concept of fine-tuning, ref. [52] proposed a method for adaptive fine-tuning in transfer
learning. Their approach enhances transfer learning efficiency by dynamically selecting spe-
cific layers of a network to fine-tune based on every given data example, thereby optimizing
the results.
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Transfer learning and domain adaptation in computer vision applications were ex-
amined in the comprehensive survey in [53]. The paper distinguished transfer learning,
which applies knowledge from one domain to another, from domain adaptation, which
specifically addresses shifts in data distributions between source and target domains. It cat-
egorized approaches into homogeneous (same feature space) and heterogeneous (different
feature spaces) methods, and reviewed both traditional shallow techniques and modern
deep learning methods. The authors of [54] addressed the challenge of domain adaptation
by defining bounds on the generalization error of classifiers when transferring knowledge
from a source domain to a target domain and finding a common representation between the
source and target domains. The work in [55] focused on cases where labeled data are scarce.
The proposed method of structural correspondence learning adapts a classifier trained on a
source domain with labeled data to a target domain with no labeled data, by learning a
shared feature space from both domains using pivot features. This transformation allows
the classifier to use both the original and transformed features for better performance on
the target domain.

Transfer learning addresses the challenge of domain discrepancies in machine learning,
where training and testing data often come from different distributions, limiting model gen-
eralization. The recent survey in [56] provided a comprehensive review of transfer learning
approaches, categorizing them based on the number of source domains, the degree of supervi-
sion, and techniques for handling incomplete data. It highlighted key methodologies such as
instance-based, feature-based, and parameter-based transfer learning, emphasizing their effec-
tiveness in adapting models across domains. Beyond general transfer learning, [57] explored a
hybrid CNN–LSTM architecture that leverages transfer learning for deepfake detection. By
combining the spatial feature extraction of CNNs with the sequential modeling capabilities
of LSTMs, the approach enhances detection accuracy on deepfake datasets. Similarly, a three-
stage artificial rabbits optimization with transfer learning technique, employing a modified
DarkNet-53 model for feature extraction and optimizing hyperparameters, was proposed to
improve deepfake detection in biometric applications [58].

Recent research on transformer compression has yielded promising techniques, such as
DistilBERT [59] and MobileBERT [60]. However, within the context of ambient intelligence
and edge computing, CNN-based architectures continue to hold a practical advantage,
due to their inherently smaller model sizes and computational efficiency [61–63]. As smart
environments depend on resource-constrained edge devices, selecting models that balance
accuracy and efficiency is critical.

Although vision transformers have demonstrated competitive performance in var-
ious computer vision tasks [64,65], their dominance over CNNs in DeepFake detection
remains uncertain. In particular, research by [66] highlighted that compressed transformer
models still require higher computational resources compared to CNNs, making them
less practical for real-time deployment in intelligent systems. Furthermore, CNNs bene-
fit from well-established compression techniques, including pruning, quantization, and
knowledge distillation [45,67], which have been extensively refined for edge computing
scenarios. In contrast, transformer architectures are still undergoing optimization for these
constraints, limiting their immediate applicability to real-world ambient intelligence ap-
plications. Given these considerations, our approach prioritizes CNN-based models for
DeepFake detection, ensuring efficient operation in smart environments. As noted by [5],
the integration of effective detection technology into ambient intelligence systems is crucial
for maintaining secure and trustworthy automated processes. By leveraging CNNs, we can
enhance the reliability of smart surveillance, IoT security, and real-time anomaly detection,
while maintaining computational efficiency in edge-based environments.
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3. Compression of DeepFake Models
Model compression in machine learning encompasses a suite of techniques aimed

at reducing the size and computational complexity of models, thereby enhancing their
efficiency in terms of storage, memory usage, and computational resources. In the following
subsections, the four major approaches to model compression will be examined in detail.

Before delving into the details, a summary of the models used in this study is presented.
This study primarily focuses on a single baseline model for comparison, but also employs
several student models with similar, smaller architectures for knowledge distillation. The
uncompressed baseline DeepFake detection model, serving as the teacher or unpruned
model, is a VGG-based architecture with approximately 4.5 million parameters, drawing
inspiration from [68]. The student models follow a similar architecture. Table 1 provides
a concise overview of the models. A detailed analysis of their performance, including
ablation studies and comparisons across various metrics and datasets, is presented in
Sections 5 and 8.

Table 1. Baseline and student models.

Model Architecture Layers Parameter Count

Baseline/Teacher Model VGG-based 8 Conv layers
3 FC layers ∼4.5 Million

Student Model 40% VGG-based 7 Conv layers
3 FC layers ∼1.8 Million

Student Model 30% VGG-based 6 Conv layers
2 FC layers ∼1.34 Million

Student Model 20% VGG-based 7 Conv layers
2 FC layers ∼0.9 Million

Student Model 10% VGG-based 5 Depthwise Separable Conv layers
2 FC layers ∼0.44 Million

3.1. Pruning

Pruning starts with a fully trained CNN, which is first trained to establish baseline
performance on a DeepFake detection task. Then, L1-norm unstructured local pruning is
applied, where parameters are selectively removed at predefined percentages based on
their L1-norm values, as given in Equation (1).

||W||1 = ∑
i,j,...

|Wi,j,...| (1)

where W is the tensor to be pruned, ||W||1 is defined as the sum of the absolute values of
the weights, and Wi,j,... are the individual elements (weights) in the tensor. As shown in
Figure 1, an equal number of parameters are removed from each layer and each filter of the
given network following the L1-norm, which characterizes the method as local.

The method is also termed unstructured, because it involves the removal of individual
weights within layers rather than entire filters, as depicted in Figure 1, and thus the L-1
norm is calculated separately for each weight. This selective pruning method reduces the
model complexity, while retaining critical features. The most widely used approach is
post-fine-tuning which uses a pruning mask, which is a binary tensor to indicate which
parameters in a neural network should be pruned and which should remain active. The
fine-tuning process is conducted after the network pruning to assess the performance
recovery potential following parameter reduction.
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pruned weight
original weight

filter feature map kernel

Figure 1. Pruning of convolutional neural networks.

3.2. Knowledge Distillation

Knowledge distillation is a model compression technique that involves transferring
knowledge from a larger, pre-trained model (teacher) to a smaller model (student) to
achieve similar performance with reduced computational complexity.

Response-based offline distillation is a method where the teacher model’s outputs are
used to train the student model, without updating the teacher’s parameters. As illustrated
in Figure 2, the distillation process begins by feeding the same data into both the teacher and
student models, which then produce the logits of their predictions. These logits are used to
calculate the loss, which is a weighted combination of two components: the cross-entropy
loss and the Kullback–Leibler (KL) divergence loss.

The cross-entropy loss is calculated using the raw logits from the student model and
the actual hard labels, as given in Equation (2)

H(p, q) = − ∑
x∈C

p(x) log q(x) (2)

where C is the number of classes, p(x) the true probability distribution, and q(x) the student
model’s predicted probability distribution. The KL divergence loss, on the other hand,
as shown in Figure 2, is computed using soft probabilities and soft targets, as given in
Equation (3).

DKL(z||q) = ∑
x∈C

z(x)(log z(x)− log q(x)) (3)

where C is the number of classes, z(x) the teacher model’s probability distribution, and q(x)
the student model’s predicted probability distribution. The soft probabilities are obtained
by applying the softmax function to the student model’s logits, followed by a log function
to soften the probabilities. The soft targets are generated similarly, using the logits from the
teacher model. This process facilitates knowledge transfer from the teacher to the student
model via the loss function.

Before calculating the soft labels and probabilities, the logits are scaled using a temper-
ature parameter T, set to 2, which controls the sharpness or smoothness of the resulting
probability distributions. The KL divergence loss is also scaled by the square of the tem-
perature (T2) before it is incorporated into the weighted loss. This temperature scaling
approach was recommended by the authors of the paper [69].

Lastly, the weights assigned to the cross-entropy loss and the KL divergence loss for
the weighted combination of the total loss are given in Equation (4).



Mathematics 2025, 13, 887 10 of 30

Ltotal =
1

T2 (w DKL(z||q) + (1 − w) H(p, q)) (4)

where T is the temperature for scaling, w the weight for the KL divergence loss, and (1− w)

the weight for the cross-entropy loss, dictating the importance attributed to each individual
loss component.

teacher

student

logits

logits

soft targets

soft probs KL loss

DATA
CrEn lossground truth

total loss

back
propagationweight update

Figure 2. Knowledge distillation in the teacher–student framework.

3.3. Quantization

Quantization is a model compression technique aimed at reducing the size and com-
putational requirements of neural networks, particularly focusing on CNNs in DeepFake
detection. In this method, an original model can be utilized, trained for DeepFake detection
as described in the previous sections and specifically applying quantization to its linear
layers. This process entails reducing the parameter precision of these layers, from high-
precision to low-precision. Figure 3 illustrates the quantization function, which converts
the weights of fully connected (FC) layers from float32 to int8. Given a floating-point value
x of a weight, the quantized value xq is calculated based on Equation (5).

xq = round(
x − xmin

∆
)∆ + xmin (5)

where xmin is the minimum possible value of x, xmax is the maximum possible value of x,
the round function rounds the scaled value to the nearest integer, and ∆ is the quantization
step size, calculated based on Equation (6).

∆ =
Xmax − xmin

2b − 1
(6)

where b is the number of bits used for quantization.
The main constraint on quantization is the notable limitation of GPU operability. This

constraint not only impedes potential performance enhancements in contexts where GPU
acceleration is pivotal but also carries implications for the utilization of specialized hard-
ware [9]. Furthermore, an additional obstacle can be highlighted as the unquantizability of
the model’s convolutional layers, which obstructs the overarching objective of reducing
the model size. This happens due to the lack of support for dynamic quantization in the
convolutional layers in the available programming frameworks like Pytorch 2.6 quanti-
zation (https://pytorch.org/docs/stable/quantization.html (accessed on 2 March 2025)).
Consequently, the compression of DeepFake models that can be achieved is limited, as only
the linear layers benefit from reduced precision. Despite these challenges, the quantization
method is still worth investigation.

https://pytorch.org/docs/stable/quantization.html
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Figure 3. Quantization of deep neural network parameters.

3.4. Low-Rank Factorization

Low-rank factorization is a compression technique that approximates large weight
matrices by decomposing them into the product of smaller matrices, significantly reducing
the number of parameters. This process involves representing an original weight matrix
W of size m × n as the product of two smaller matrices F and Z, where F is m × k and Z is
k × n, with k much smaller than m and n.

Low-rank factorization can be applied in a DeepFake detection model by using the
Singular Value Decomposition (SVD) method to decompose the first linear layer, which is
the largest in terms of parameter count. As shown in [70], this process involves representing
an original weight matrix W of size m × n as given in Equation (7).

W = USVT , U ∈ Rm×m, S ∈ Rm×n, V ∈ Rn×n (7)

In order to reduce size the original weight matrix, W is approximated by keeping the
k most significant singular vectors, as given in Equation (8).

Ŵ = ÛŜV̂T , Û ∈ Rm×k, Ŝ ∈ Rk×k, V̂ ∈ Rn×k (8)

The low-rank factorization method replaces the original large linear layer with two
smaller layers, resulting from Û, Ŝ, V̂, with fewer parameters in total. These two layers,
when multiplied together in a specific manner, approximate the function of the original
layer. The new layers replace the original, as illustrated in Figure 4, where the bias of the
original layer is assigned to the second new layer, and the first new layer is left without
a bias.

To integrate these changes, a new model architecture is designed that accommodates
the two new layers in place of the original large linear layer, and then a revised model is
instantiated. Then, all parameter weights from the original model are transferred to the
new one, and the two new linear layers are also populated with weights derived from
the factorization results. Although this approach results in a reduced parameter count,
the majority of the layers of a CNN model are convolutional and, as a consequence, not
amenable to factorization, resulting in less prospective compression overall. Nevertheless,
there may be specific instances where low-rank factorization could be beneficial, partic-
ularly in models where linear layers dominate and where the impact on performance is
more manageable.
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Figure 4. Low-rank factorization.

4. Transfer Learning in DeepFake Models
Transfer learning leverages pre-trained models on large-scale datasets for new, often

smaller and more specific, tasks. The primary advantage of transfer learning lies in the
ability to utilize the knowledge acquired by a model during its initial training phase on
a broad and extensive dataset. This pre-existing knowledge can then be transferred to
improve performance and accelerate learning on a new task that typically has less data
available for training. By using pre-trained models as a starting point, transfer learning
can significantly reduce the computational resources and time required to build effective
neural networks for specialized applications.

In practice, transfer learning often involves fine-tuning a pre-trained model on a new
dataset, allowing the model to adapt its learned features to the specifics of the new task.
By leveraging models pre-trained on extensive visual datasets, developers can fine-tune
these models to detect DeepFakes with relatively less data and computational effort. This
transfer of knowledge not only enhances the efficiency of model training but also ensures
that the detection algorithms achieve a high level of accuracy, which is essential for the
intended applications. The following subsections discuss various approaches for applying
fine-tuning to the compression techniques presented in the previous section. Additionally,
the role of adapters in the context of pruning and knowledge distillation is explored.

4.1. Pruning with Fine-Tuning

Pruning with fine-tuning leverages a pre-trained deep learning model by first applying
pruning to reduce its parameter count, followed by fine-tuning, as shown in Figure 5. Ini-
tially, the model is trained on a dataset from task A, learning general feature representations
relevant to the source domain. After this pre-training phase, pruning removes redundant
or less significant parameters, improving the model’s efficiency. However, since the pruned
model will work on a different task B, fine-tuning is performed using a dataset generated
by task B to adapt the pruned model. During fine-tuning, most of the network’s layers
remain frozen, to transfer knowledge from the task A, while selected layers—typically
higher-level ones—are re-trained to specialize on the task B.

This approach ensures that the model benefits from transfer learning, without excessive
weight modifications that could cause catastrophic forgetting. Catastrophic forgetting is a
phenomenon in deep learning where a neural network loses previously learned knowledge
when trained on new data, as the weight updates for the new task overwrite important
information from earlier tasks. Furthermore, a lower learning rate is used to stabilize
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updates, allowing gradual adaptation, while maintaining the efficiency gains from pruning.
Additionally, the pruning mask is retained throughout fine-tuning, to enforce sparsity
constraints, preventing pruned connections from being restored. Pruning masks are binary
tensors used to indicate which parameters in a neural network should be pruned and which
should remain active. By combining pruning with fine-tuning, deep learning models can be
efficiently transferred to new datasets, while maintaining high performance and reduced
computational complexity, making them well-suited for resource-constrained applications
such as DeepFake detection.

Figure 5. Transfer learning across different tasks.

4.2. Pruning with Fine-Tuning and Adapters

In this section, the pruning with fine-tuning approach for transfer learning is presented,
which leverages adapters to enhance the performance of pruned CNN models. This method
is inspired by the growing use of adapters in transformers, as highlighted in [15,71,72],
a trend that has shown considerable promise for improving model performance, with
minimal additional complexity.

Adapters serve as an additional layer within the DeepFake model architecture, as
shown in Figure 6, and are specifically designed to introduce minimal complexity, while
providing some performance gains. These adapters are strategically placed between hidden
layers. This optimal placement likely relates to the complexity of the features detected
at this stage in the network. The adapter layer, by intervening at certain points, can
effectively balance between detecting very simple and highly complex features, thus
providing significant performance improvements.

The adapters, as demonstrated in Figure 6, consist of four components: two convo-
lution operations (a depthwise convolution and a pointwise convolution, which together
form a depthwise separable convolution), a batch normalization, and a ReLU activation
function. This composition is designed to ensure the adapter layer remains lightweight yet
effective from a feature extraction perspective.

The pruning with fine-tuning and adapters approach begins by creating a new model
instance capable of accommodating the adapter layer. For a pruned DeepFake model, a new
instance is instantiated and the weights of the original layers are transferred to this new
model. The original layers are frozen, meaning their parameters are not updated during the
training of the adapters. Notably, as the pruned layers are not subjected to further training,
modification and use of the pruning masks of the original pruned model instances is not
needed, significantly reducing the method’s complexity. This represents a subtle but crucial
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difference compared to other techniques previously discussed that require the training of
pruned models.

The training is focused exclusively on the adapter layer. This selective training strategy
ensures that the overall model remains compact and does not demand extensive additional
training resources. The resulting model, when enhanced with adapters, can achieve
improved performance, while preserving its compact size.

Figure 6. CNN with adapter module for transfer learning.

4.3. Knowledge Distillation Using Data from a New Task

In this approach, a pre-trained DeepFake model trained in task A serves as the teacher,
gradually distilling knowledge into a smaller student model.This distillation process differs
from the one described in Section 3.2, as it leverages a dataset from task B, which is
separate from the dataset used to originally train the teacher model, as illustrated in
Figure 7. Recognizing that the teacher model may exhibit lower performance on the dataset
from task B, the weighting of the loss components in the distillation process are adjusted
accordingly. This adjustment ensures greater emphasis on the loss derived from the
actual labels.

teacher
trained on
Dataset A

student

logits

logits

soft targets

soft probs KL loss

Dataset B
CrEn lossground truth

total loss

back
propagationweight update

Figure 7. Knowledge distillation for transfer learning.

4.4. Knowledge Distillation with Adapter Using Data from a New Task

In Section 4.3, the use of knowledge distillation for transfer learning was discussed.
Here, the distilled DeepFake models are enhanced by incorporating adapters, similarly to
those used in pruned models, to improve the performance of the compressed model in
the new task. These adapters consist of depthwise separable convolution (a combination
of depthwise and pointwise convolutions), followed by batch normalization and ReLU
activation, as shown in Figure 6. The adapter placement differs between pruned models
and distilled models, since shallower models benefit more from the detection of features
with different complexity. New model instances are created to accommodate the adapter
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layer, transferring and freezing the original weights to ensure only the adapter layer is
trained, enhancing the DeepFake detection without altering existing knowledge. The result
is slightly larger, yet still compact models with improved performance.

4.5. Quantization with Fine-Tuning

Quantization with fine-tuning enables effective transfer learning by first applying
a selective knowledge transfer and then compressing the model for improved efficiency.
The process begins with a pre-trained model, where a knowledge transfer is performed by
fine-tuning only specific layers, while keeping the rest frozen. As illustrated in Figure 5,
this approach focuses on updating the last convolutional and first linear layers using data
from the task B, allowing the model to adapt to a different domain, while preserving
previously learned features from the task A. Once the fine-tuning phase has enhanced
the model’s performance on the new data, quantization is applied to further optimize its
efficiency. As described in Section 3.3 and shown in Figure 3, the quantization process
reduces the precision of linear layers from float32 to int8, significantly decreasing the
model size and computational requirements. However, this compression technique also
introduces challenges in terms of hardware compatibility and inference speed, similarly to
those discussed in Section 3.3. Despite these limitations, quantization with fine-tuning can
be an effective strategy for transfer learning.

4.6. Low-Rank Factorization with Fine-Tuning

Transfer learning with low-rank factorization and fine-tuning integrates knowledge
transfer and model compression to improve efficiency while adapting to a new task. The
process starts with a pre-trained DeepFake model, where adaptation is achieved by fine-
tuning selected layers using data from the task B, while keeping the rest of the network
frozen. This targeted fine-tuning enables the model to learn environment-specific features,
while retaining crucial knowledge acquired from the task A, ensuring a balance between
adaptation and efficiency. Following the fine-tuning phase, low-rank factorization is applied
to compress the model by decomposing weight matrices into lower-rank approximations,
effectively reducing the number of parameters, while maintaining an approximation of the
original functionality. This compression step enhances computational efficiency, reducing
both memory usage and inference time. However, as highlighted in Section 3.4, this
approach often leads to a notable performance drop, indicating potential limitations in its
ability to generalize across different tasks.

5. Experimental Evaluation
This section presents the experimental evaluation of the compression and transfer

learning approaches discussed in Sections 3 and 4. It outlines the datasets used, the
evaluation metrics applied, and the experimental results, along with the key conclusions
drawn from the analysis.

5.1. Datasets

For the experiments, five different datasets were used.
The first dataset comprised two distinct sub-datasets. The synthetic images were

sourced from the test set of the “Synthbuster” dataset (https://zenodo.org/records/10
066460 (accessed on 2 March 2025)) provided from the paper [73]. This set includes
9000 AI-generated images from nine different models, with 1000 images generated by each
model. The models utilized are DALL·E 2, DALL·E 3, Adobe Firefly, Midjourney v5, Stable
Diffusion 1.3, Stable Diffusion 1.4, Stable Diffusion 2, Stable Diffusion XL, and Glide. The
categories of the images are indoor, outdoor, landscapes, people, objects, and buildings.
These synthetic images were paired with authentic images from the “RAISE” dataset (http:

https://zenodo.org/records/10066460
https://zenodo.org/records/10066460
http://loki.disi.unitn.it/RAISE/download.html
http://loki.disi.unitn.it/RAISE/download.html
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//loki.disi.unitn.it/RAISE/download.html (accessed on 2 March 2025)), which consists
of 8153 high-resolution images. Both the DeepFake and real images were resized to
224 × 224 pixels to meet the desired dimensions. Subsequently, the dataset was split into a
training set containing 60% of the images and a test set comprising the remaining 40%.

The second dataset was the “140k Real and Fake Faces” dataset (https://www.kaggle.
com/datasets/xhlulu/140k-real-and-fake-faces (accessed on 2 March 2025)). This dataset
comprises a total of 140,000 images. Of these, 100,000 images are allocated for training
purposes, 20,000 images for validation, and the remaining 20,000 images for testing. Each
image in the dataset has a resolution of 256 by 256 pixels.

The third dataset was “DeepFake and real images”, which also pertains to real and
DeepFake human photos (https://www.kaggle.com/datasets/manjilkarki/DeepFake-and-
real-images (accessed on 2 March 2025)). The dataset consists of 190,335 images in total,
with 140,002 images designated for training, 39,428 for validation, and 10,905 for testing.
Each image has a resolution of 256 × 256 pixels.

The fourth dataset was named “ForenSynths” and provided by the authors of [74].
This dataset (https://github.com/PeterWang512/CNNDetection (accessed on 2 March
2025)) includes both DeepFake and real images of various types, with all DeepFake images
generated through GANs. The dataset is divided into a training set, a validation set,
and a test set. The training set contains a total of 720,119 images, with all DeepFake
images produced by a single GAN. Similarly, the validation set comprises 8000 images,
all generated by the same GAN. The test set, however, consists of 90,310 images, with
DeepFakes produced by multiple different GANs. In the experiments, the images of human
faces only were separated in order to directly compare the results to previous datasets. The
images generated by each GAN have varying resolutions; therefore, for the purposes of
this work, all images were resized to 224 × 224 pixels.

Additionally, a fifth dataset was utilized to evaluate transfer learning, which focused
on a task distinct from DeepFake detection. Specifically, this dataset is designed for
distinguishing between cats and dogs. An example pair of images can be seen below
in Figure 8. In the transfer learning framework illustrated in Figure 5, this served as
task A, while DeepFake detection corresponded to task B. This dataset is called dogs vs.
cats, obtained from Kaggle and consists of images of cats and dogs for the task of binary
classification (https://www.kaggle.com/datasets/salader/dogs-vs-cats (accessed on 2
March 2025)). This dataset is considerably smaller than the previous two and contains a
total of 25,000 images. Specifically, 20,000 images are utilized for training and 5000 for
testing. The sizes of the images vary, so a pixel resolution cannot be specified.

Figure 8. “Dogs vs. cats” dataset example.

http://loki.disi.unitn.it/RAISE/download.html
http://loki.disi.unitn.it/RAISE/download.html
http://loki.disi.unitn.it/RAISE/download.html
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
https://www.kaggle.com/datasets/manjilkarki/DeepFake-and-real-images
https://www.kaggle.com/datasets/manjilkarki/DeepFake-and-real-images
https://github.com/PeterWang512/CNNDetection
https://www.kaggle.com/datasets/salader/dogs-vs-cats
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5.2. Experimental Setup

The experimental setup for this study utilized a combination of Python 3.13 libraries
and robust hardware to ensure optimal performance and efficiency. The main Python
libraries employed included PyTorch for building and training the neural network models,
PIL (Python Imaging Library) for image processing, the time module for tracking exper-
iment duration, psutil for monitoring system and hardware resources, and scikit-learn
for additional machine learning tasks and metrics. All experiments were conducted on
Kaggle, a platform that offers free access to notebooks and accelerators such as GPUs and
TPUs, and that is specifically designed for machine learning purposes. The experiments’
source code is available for any kind of reproduction and reexamination in the first author’s
GitHub repository [75].

The specific hardware setup comprised two NVIDIA (Santa Clara, CA, USA) T4 GPUs
provided by Kaggle. Each GPU was a TU104-895 model with the NVIDIA Turing architec-
ture, operating at a base clock speed of 585 MHz. The GPUs included 2560 CUDA cores,
delivering a peak FP32 performance of 8.1 TFLOPS and INT8 performance of 130 TOPS.
Each GPU was equipped with 16 GB of GDDR6 memory, with a maximum memory clock
speed of 5001 MHz. To fully leverage the computational power and memory capacity of
both GPUs, the DataParallel container from the PyTorch framework was employed. This
allowed the implementation of data parallelism at the module level, ensuring efficient
utilization of the hardware resources and significantly enhancing the performance and
speed of the model training processes.

The uncompressed DeepFake detection model, serving as the teacher or unpruned
model, was a VGG-based architecture with approximately 4.5 million parameters [68]. It
was trained on the datasets introduced in Section 5.1 and served as the baseline model for
applying compression and transfer learning, which will be discussed in Section 5.4.

5.3. Evaluation Metrics

The evaluation metrics used were accuracy, precision, recall, and F1 score. These
metrics quantified the models’ ability to correctly identify DeepFakes and genuine images,
as well as their robustness to false positives and false negatives. Additionally, training time
was included as a metric to assess the computational efficiency of the models.

5.4. Outcomes and Discussion

This subsection presents a comprehensive analysis of the experimental outcomes
obtained from applying various compression and transfer learning approaches to the Deep-
Fake detection models. Section 5.4.1 investigates how different types of synthetic image
generators and image variations influenced the compression effectiveness. In Section 5.4.2,
the impact of compression and transfer learning is evaluated across the models trained and
fine-tuned on distinct DeepFake datasets. Section 5.4.3 focuses on the effectiveness of com-
pression when using datasets generated by multiple DeepFake models. Finally, Section 5.4.4
explores the potential of transfer learning between models trained on different dataset types,
analyzing the benefits of knowledge distillation and pruning for improved cross-domain
DeepFake detection.

5.4.1. Experimental Evaluation of Compression Using a DeepFake Detection Model
Trained on Multiple Synthetic Image Types and Multiple DeepFake Generators

In the first set of experiments, an image synthetic detection model was trained using
the “Synthbuster” and the “RAISE” datasets. The “Synthbuster” dataset contains synthetic
images generated by multiple synthetic generator models. The experimental results, sum-
marized in Table 2, indicated that models compressed through knowledge distillation and
pruning—despite being reduced to just 10% of their original size—experienced less than
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a 1% drop in accuracy and F1 score. These results can also be verified in Figure 9, where
some sample ROC curves are presented. When applying quantization, a 0.02% reduction
in accuracy and F1 score was observed, while achieving only 28% compression of the
original model size. The primary advantage of quantization is its instantaneous nature, as it
directly converts model weights from float32 to int8. In contrast, knowledge distillation and
post-pruning fine-tuning involve iterative processes that require significantly more time,
depending on the extent of compression. Overall, the detection performance remained
high, reaching approximately 92%, even with a diverse dataset that included various image
types from multiple DeepFake generators. Notably, when the model was tested exclusively
on human face images generated by a single DeepFake model, its performance improved
significantly, as discussed in the next subsection.

Table 2. Compression using multiple synthetic image types and DeepFake generator models on
“Synthbuster” and “RAISE” datasets.

Method Full Model 40% Parameters 30% Parameters 20% Parameters 10% Parameters

Pruning

Precision: 0.9420
Recall: 0.9169

F-1 score: 0.9293
Accuracy: 0.9265
Train Time: 859 s

Precision: 0.9070
Recall: 0.9402

F-1 score: 0.9233
Accuracy: 0.9177
Train Time: 491 s

Precision: 0.8964
Recall: 0.9358

F-1 score: 0.9157
Accuracy: 0.9092
Train Time: 491 s

Precision: 0.9147
Recall: 0.9325

F-1 score: 0.9235
Accuracy: 0.9186
Train Time: 490 s

Precision: 0.9272
Recall: 0.9138

F-1 score: 0.9205
Accuracy: 0.9168
Train Time: 488 s

Knowledge
Distillation

Precision: 0.9420
Recall: 0.9169

F-1 score: 0.9293
Accuracy: 0.9265
Train Time: 859 s

Precision: 0.9298
Recall: 0.9311

F-1 score: 0.9304
Accuracy: 0.9266
Train Time: 599 s

Precision: 0.9366
Recall: 0.9286

F-1 score: 0.9326
Accuracy: 0.9293
Train Time: 586 s

Precision: 0.9275
Recall: 0.9347

F-1 score: 0.9311
Accuracy: 0.9271
Train Time: 586 s

Precision: 0.9216
Recall: 0.9241

F-1 score: 0.9228
Accuracy: 0.9186
Train Time: 582 s

Original Model Compressed Model

Quantization

Original size: 18.41 Mb
Precision: 0.9420

Recall: 0.9169
F-1 score: 0.9293
Accuracy: 0.9265
Train Time: 859 s

CPU inference time on 6833 images:
1979 s

Quantized size: 13.39 Mb
Precision: 0.9420

Recall: 0.9166
F-1 score: 0.9291
Accuracy: 0.9263

CPU inference time for 6833 images:
1656 s
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Figure 9. Sample ROC curves for Synthbuster dataset.

5.4.2. Experimental Evaluation of Compression and Transfer Learning Between Models
Trained and Fine-Tuned on Different DeepFake Datasets

The results of the compression on the “140k Real and Fake Faces” dataset are pre-
sented in Table 3. In this set of experiments, each method was applied separately, without
additional processing such as fine-tuning. These experiments were conducted to assess
the performance of each method when applied independently. From the results, it can
be observed that the quantization method maintained a high performance but achieved
limited compression, close to 72%. Conversely, pruning exhibited significantly higher com-
pression capabilities, although the performance deteriorated as the compression percentage
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increased. Notably, knowledge distillation demonstrated substantial superiority compared
to the other methods. It exhibited excellent performance, achieving both high compression
rates and high accuracy.

Table 3. Compression using a model trained on a single type of synthetic images and one DeepFake
generator model on the “140k Real and Fake Faces” dataset.

Method Full Model 40% Parameters 30% Parameters 20% Parameters 10% Parameters

Pruning

Precision: 0.9878
Recall: 0.9914

F-1 score: 0.9896
Accuracy: 0.9896

Train Time: 4382 s

Precision: 0.9671
Recall: 0.9507

F-1 score: 0.9588
Accuracy: 0.9592

Precision: 0.9296
Recall: 0.9141

F-1 score: 0.9217
Accuracy: 0.9224

Precision: 0.8577
Recall: 0.8371

F-1 score: 0.8473
Accuracy: 0.8491

Precision: 0.9418
Recall: 0.1134

F-1 score: 0.2024
Accuracy: 0.5532

Knowledge
Distillation

Precision: 0.9878
Recall: 0.9914

F-1 score: 0.9896
Accuracy: 0.9896

Train Time: 4382 s

Precision: 0.9899
Recall: 0.9721

F-1 score: 0.9809
Accuracy: 0.9811

Train Time: 1862 s

Precision: 0.9845
Recall: 0.981

F-1 score: 0.9827
Accuracy = 0.9828
Train Time: 1825 s

Precision: 0.9928
Recall: 0.974

F-1 score: 0.9833
Accuracy: 0.9835

Train Time: 1913 s

Precision: 0.9856
Recall: 0.969

F-1 score: 0.9772
Accuracy: 0.9774

Train Time: 3195 s

Original Model Compressed Model

Quantization

Size: 17.6 Mb
Precision: 0.9878

Recall: 0.9914
F-1 score: 0.9896
Accuracy: 0.9896

CPU inference on 20,000 images:
5378 s

Size: 12.8 Mb
Precision: 0.9875

Recall: 0.9914
F-1 score: 0.9894
Accuracy: 0.9894

CPU inference on 20,000 images:
3918 s

In Table 4, the outcome of the next set of experiments is presented, related to knowl-
edge transfer across models trained and fine-tuned with two different deep fake detection
datasets. These experiments involved fine-tuning the pruned models derived from the
“140k Real and Fake Faces” dataset with the images from the “DeepFake and real im-
ages” dataset. This fine-tuning significantly enhanced the models’ performance on the
evaluation with the “DeepFake and real images” dataset, while maintaining compression
at the same levels. The knowledge distillation method once again emerged as the most
effective approach, achieving a superior performance. Quantization with fine-tuning was
implemented, as described in Section 4.5, resulting in negligible performance degradation;
however, the level of compression remained insufficient. The proposed method of em-
ploying adapters on pruned and distilled models demonstrated improved performance
in most instances, indicating its potential applicability. Various configurations of adapter
placements were tested, leading to the conclusion that optimal results vary depending
on model size and compression technique. This variability in performance depended on
the adapter placement, as can be seen in the row “Pruning + adapter after last Conv2d
layer” and the row “Pruning + adapter after fourth Conv2d layer” of Table 4. In these two
experiments, the observation can be made that the two different adapter placements in the
pruned models achieved unequal gains in performance. Ultimately, knowledge distillation,
with or without the addition of adapters, proved to be the superior method compared to
the other approaches.
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Table 4. Transfer learning from a model trained on the “140k Real and Fake Faces” dataset to a model
fine-tuned and evaluated on the “DeepFake and Real Images” dataset.

Method 40% Parameters 30% Parameters 20% Parameters 10% Parameters

Pruning +
transfer

Precision: 0.8535
Recall: 0.8860

F-1 score: 0.8694
Accuracy: 0.8660

Train Time: 1881 s

Precision: 0.8477
Recall: 0.8800

F-1 score: 0.8635
Accuracy: 0.8599

Train Time: 1789 s

Precision: 0.8303
Recall: 0.8687

F-1 score: 0.8490
Accuracy: 0.8444

Train Time: 1790 s

Precision: 0.8116
Recall: 0.8443

F-1 score: 0.8276
Accuracy: 0.8229

Train Time: 1795 s

Knowledge
Distillation

Precision: 0.9467
Recall: 0.9198

F-1 score: 0.9331
Accuracy: 0.9336

Train Time: 2715 s

Precision: 0.9537
Recall: 0.8867

F-1 score: 0.9190
Accuracy: 0.9213

Train Time: 2675 s

Precision: 0.9392
Recall: 0.9146

F-1 score: 0.9267
Accuracy: 0.9271

Train Time: 2583 s

Precision: 0.9534
Recall: 0.7605

F-1 score: 0.8461
Accuracy: 0.8607

Train Time: 2559 s

KD + adapter
after last

Conv2d layer

Precision: 0.9179
Recall: 0.9431

F-1 score: 0.9303
Accuracy: 0.9289
Train time: 1332 s

Precision: 0.9329
Recall: 0.9304

F-1 score: 0.9317
Accuracy: 0.9313
Train time: 1187 s

Precision: 0.9105
Recall: 0.9439

F-1 recall: 0.9269
Accuracy: 0.9250
Train time: 1183 s

Precision: 0.8845
Recall: 0.8872

F-1 score: 0.8859
Accuracy: 0.8849
Train time: 1188 s

Pruning +
adapter

after last
Conv2d layer

Precision: 0.8633
Recall: 0.8801

F-1 score: 0.8716
Accuracy: 0.8695
Train time: 1865 s

Precision: 0.8582
Recall: 0.8831

F-1 score: 0.8705
Accuracy: 0.8676
Train time: 1918 s

Precision: 0.8540
Recall: 0.8461

F-1 score: 0.8500
Accuracy: 0.8497
Train time: 1912 s

Precision: 0.8424
Recall: 0.8102

F-1 score: 0.8260
Accuracy: 0.8281
Train time: 1890 s

Pruning +
adapter after

fourth Conv2d
layer

Precision: 0.8748
Recall: 0.8845

F-1 score: 0.8796
Accuracy: 0.8781
Train time: 2415 s

Precision: 0.8720
Recall: 0.9011

F-1 score: 0.8863
Accuracy: 0.8836
Train time: 2462 s

Precision: 0.8861
Recall: 0.8617

F-1 score: 0.8738
Accuracy: 0.8746
Train time: 2458 s

Precision: 8745
Recall: 0.8343

F-1 score: 0.8539
Accuracy: 0.8563
Train time: 2415 s

Transfered Model Compressed Model

Quantization

Size: 17.6 Mb
Precision: 0.8526

Recall: 0.8996
F-1 score: 0.8755
Accuracy: 0.8711

Transfer time: 1959 s
CPU inference on 10905 images:

2949 s

Size: 12.8 Mb
Precision: 0.8523

Recall: 0.8998
F-1 score: 0.8754
Accuracy: 0.8710

CPU inference on 10905 images:
3036 s

5.4.3. Experimental Evaluation of Compression Using a Dataset Generated by Multiple
Types of DeepFake Models

The following experiments focused on human face images from the “ForenSynths” dataset,
which were generated using multiple DeepFake generator models. Given that these images
were produced by different AI models, each model’s output was evaluated separately. The
experimental results are summarized in Table 5. The DeepFake detection model used in this
study was trained on images generated by ProGAN, which explains its high performance
when evaluated on the ProGAN testing set. However, when tested on images produced by
DeepFake, StarGAN, and WhichFaceIsReal, the model’s performance dropped significantly.
Notably, the performance decline was less severe on the StarGAN dataset compared to DeepFake
and WhichFaceIsReal. This can be attributed to the fact that both ProGAN and StarGAN are
GAN-based generators, allowing the model trained on one to partially generalize to the other.
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Table 5. Compression using a model trained on data from a single DeepFake generator and evaluated
on data from multiple DeepFake models using the “ForenSynths” dataset.

Method GAN Type Full Model 40% Parameters 30% Parameters 20% Parameters 10% Parameters

Pruning DeepFake

Precision: 0.4909
Recall: 0.3690

F-1 score: 0.4213
Accuracy: 0.4923

Train Time: 2236 s

Precision: 0.5038
Recall: 0.4536

F-1 score: 0.4774
Accuracy: 0.5026

Train Time: 1326 s

Precision: 0.5116
Recall: 0.6080

F-1 score: 0.5557
Accuracy: 0.5130

Train Time: 1318 s

Precision: 0.5144
Recall: 0.8574

F-1 score: 0.6430
Accuracy: 0.5232

Train Time: 1319 s

Precision: 0.4974
Recall: 0.6605

F-1 score: 0.5675
Accuracy: 0.4958

Train Time: 1308 s

progan

Precision: 0.9746
Recall: 0.96

F-1 score: 0.9672
Accuracy: 0.9675

Train Time: 2236 s

Precision: 0.9802
Recall: 0.995

F-1 score: 0.9875
Accuracy: 0.9875

Train Time: 1326 s

Precision: 0.9945
Recall: 0.915

F-1 score: 0.9531
Accuracy: 0.955

Train Time: 1318 s

Precision: 0.9747
Recall: 0.965

F-1 score: 0.9698
Accuracy: 0.97

Train Time: 1319 s

Precision: 0.9705
Recall: 0.99

F-1 score: 0.9801
Accuracy: 0.98

Train Time: 1308 s

stargan

Precision: 0.7585
Recall: 0.8909

F-1 score: 0.8194
Accuracy: 0.8036

Train Time: 2236 s

Precision: 0.7656
Recall: 0.9674

F-1 score: 0.8548
Accuracy: 0.8356

Train Time: 1326 s

Precision: 0.9461
Recall: 0.8179

F-1 score: 0.8773
Accuracy: 0.8856

Train Time: 1318 s

Precision: 0.7951
Recall: 0.9804

F-1 score: 0.8781
Accuracy: 0.8639

Train Time: 1319 s

Precision: 0.7804
Recall: 0.9764

F-1 score: 0.8675
Accuracy: 0.8509

Train Time: 1308 s

whichfaceisreal

Precision: 0.5860
Recall: 0.504

F-1 score: 0.5419
Accuracy: 0.574

Train Time: 2236 s

Precision: 0.6442
Recall: 0.393

F-1 score: 0.4881
Accuracy: 0.588

Train Time: 1326 s

Precision: 0.6998
Recall: 0.359

F-1 score: 0.4745
Accuracy: 0.6025

Train Time: 1318 s

Precision: 0.6289
Recall: 0.473

F-1 score: 0.5399
Accuracy: 0.597

Train Time: 1319 s

Precision: 0.6691
Recall: 0.441

F-1 score: 0.5316
Accuracy: 0.6115

Train Time: 1308 s

Knowledge
Distillation DeepFake

Precision: 0.4909
Recall: 0.3690

F-1 score: 0.4213
Accuracy: 0.4923

Train Time: 2236 s

Precision: 0.4909
Recall: 0.3018

F-1 score: 0.3738
Accuracy: 0.4936

Train Time: 1642 s

Precision: 0.5242
Recall: 0.2670

F-1 score: 0.3538
Accuracy: 0.5115

Train Time: 1609 s

Precision: 0.4852
Recall: 0.2803

F-1 score: 0.3554
Accuracy: 0.4906

Train Time: 1609 s

Precision: 0.5475
Recall: 0.7480

F-1 score: 0.6323
Accuracy: 0.5642

Train Time: 1599 s

progan

Precision: 0.9746
Recall: 0.96

F-1 score: 0.9672
Accuracy: 0.9675

Train Time: 2236 s

Precision: 0.9846
Recall: 0.96

F-1 score: 0.9721
Accuracy: 0.9725

Train Time: 1642 s

Precision: 0.985
Recall: 0.985

F-1 score: 0.985
Accuracy: 0.985

Train Time: 1609 s

Precision: 0.9801
Recall: 0.99

F-1 score: 0.9850
Accuracy: 0.985

Train Time: 1609 s

Precision: 0.9756
Recall: 1.0

F-1 score: 0.9876
Accuracy: 0.9875

Train Time: 1599 s

stargan

Precision: 0.7585
Recall: 0.8909

F-1 score: 0.8194
Accuracy: 0.8036

Train Time: 2236 s

Precision: 0.7259
Recall: 0.8639

F-1 score: 0.7889
Accuracy: 0.7688

Train Time: 1642 s

Precision: 0.7996
Recall: 0.8024

F-1 score: 0.8009
Accuracy: 0.8006

Train Time: 1609 s

Precision: 0.7564
Recall: 0.8344

F-1 score: 0.7935
Accuracy: 0.7828

Train Time: 1609 s

Precision: 0.8919
Recall: 0.9784

F-1 score: 0.9332
Accuracy: 0.9299

Train Time: 1599 s

whichfaceisreal

Precision: 0.5860
Recall: 0.504

F-1 score: 0.5419
Accuracy: 0.574

Train Time: 2236 s

Precision: 0.5771
Recall: 0.479

F-1 score: 0.5234
Accuracy: 0.564

Train Time: 1642 s

Precision: 0.5948
Recall: 0.458

F-1 score: 0.5175
Accuracy: 0.573

Train Time: 1609 s

Precision: 0.6058
Recall: 0.521

F-1 score: 0.5602
Accuracy: 0.591

Train Time: 1609 s

Precision: 0.6403
Recall: 0.593

F-1 score: 0.6157
Accuracy: 0.63

Train Time: 1599 s

Original Model Compressed Model

Quantization DeepFake

Original size: 18.41 Mb
Precision: 0.4909

Recall: 0.3690
F-1 score: 0.4213
Accuracy: 0.4923

Train Time: 2236 s
CPU inference time on 5405 images: 1568 s

Compressed size: 13.39 Mb
Precision: 0.4906

Recall: 0.3690
F-1 score: 0.4212
Accuracy: 0.4921

CPU inference time on 5405 images:
1470 s

progan

Original size: 18.41 Mb
Precision: 0.9746

Recall: 0.96
F-1 score: 0.9672
Accuracy: 0.9675

Train Time: 2236 s
CPU inference time on 400 images: 113 s

Compressed size: 13.39 Mb
Precision: 0.9746

Recall: 0.96
F-1 score: 0.9672
Accuracy: 0.9675

CPU inference time on 400 images:
113 s

stargan

Original size: 18.41 Mb
Precision: 0.7585

Recall: 0.8909
F-1 score: 0.8194
Accuracy: 0.8036

Train Time: 2236 s
CPU inference time on 3998 images: 1154 s

Compressed size: 13.39 Mb
Precision: 0.7577

Recall: 0.8904
F-1 score: 0.8187
Accuracy: 0.8029

CPU inference time on 3998 images:
1086 s

whichfaceisreal

Original size: 18.41 Mb
Precision: 0.5860

Recall: 0.504
F-1 score: 0.5419
Accuracy: 0.574

Train Time: 2236 s
CPU inference time on 2000 images: 606 s

Compressed size: 13.39 Mb
Precision: 0.5865

Recall: 0.505
F-1 score: 0.5427
Accuracy: 0.5745

CPU inference time on 2000 images:
600 s

These experiments highlighted that when the same type of synthetic data were used for
both training and evaluation, performance remained exceptionally high, and the compression
techniques could preserve high accuracy, even when the compressed model retained only 10% of
the parameters of the original. However, evaluating the model on synthetic images generated by
a different DeepFake method presents a new challenge. This finding underscores the necessity of
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transfer learning techniques to improve generalization across different synthetic data sources,
motivating further experiments in this direction.

5.4.4. Experimental Evaluation on Transfer Learning Between Models Trained on Different
Types of Datasets

Moving on, transfer learning was applied from the model trained on the “Cats vs. Dogs”
dataset across a model fine-tuned and evaluated on the “DeepFake and real images” dataset.
The goal of this experimental evaluation was to make the two tasks of transfer learning signifi-
cantly different. The experimental outcomes are presented in Table 6. Although pruning with
fine-tuning was highly resource-efficient and achieved a commendable performance, it proved
less effective in terms of overall performance compared to knowledge distillation. Further-
more, the introduction of adapters enhanced the performance of both the pruned and distilled
models across all experiments. Notably, while the pruned models experienced the greatest
performance improvement from the adapters, the combination of knowledge distillation and
adapters remained superior overall. As previously discussed, the quantization method retained
the improved performance from the transfer learning applied to the original model; however, its
compression was significantly lower compared to pruning and knowledge distillation.

Table 6. Transfer learning from a model trained on the “Cats vs. Dogs” dataset to a model fine-tuned
and evaluated on the “DeepFake and Real Images” dataset.

Method 40% Parameters 30% Parameters 20% Parameters 10% Parameters

Pruning +
transfer

Precision: 0.8531
Recall: 0.8486

F-1 score: 0.8509
Accuracy: 0.8502

Train Time: 1994 s

Precision: 0.8536
Recall: 0.8623

F-1 score: 0.8579
Accuracy: 0.8562

Train Time: 1850 s

Precision: 0.8477
Recall: 0.8355

F-1 score: 0.8416
Accuracy: 0.8416
Train Time: 1845

s

Precision: 0.8555
Recall: 0.8282

F-1 score: 0.8417
Accuracy: 0.8430

Train Time: 1899 s

Knowledge
Distillation

Precision: 0.8928
Recall: 0.9073

F-1 score: 0.9000
Accuracy: 0.8984

Train Time: 2694 s

Precision: 0.8599
Recall: 0.9417

F-1 score: 0.8990
Accuracy: 0.8934

Train Time: 2525 s

Precision: 0.8878
Recall: 0.9136

F-1 score: 0.9005
Accuracy: 0.8983

Train Time: 2498 s

Precision: 0.8209
Recall: 0.8841

F-1 score: 0.8514
Accuracy = 0.8445
Train Time: 2653 s

KD + adapter
after last

Conv2d layer

Precision: 0.9045
Recall: 0.9200

F-1 score: 0.9122
Accuracy: 0.9108
Train time: 1467 s

Precision: 0.8934
Recall: 0.9280

F-1 score: 0.9104
Accuracy = 0.9080
Train time: 1348 s

Precision: 0.8819
Recall: 0.9344

F-1 score: 0.9074
Accuracy: 0.9039
Train time: 1373 s

Precision: 0.8536
Recall: 0.8834

F-1 score: 0.8682
Accuracy: 0.8650
Train time: 1261 s

Pruning +
adapter after

fourth Conv2d
layer

Precision: 0.8496
Recall: 0.9078

F-1 score: 0.8778
Accuracy: 0.8727
Train time: 2409 s

Precision: 0.8739
Recall: 0.8719

F-1 score: 0.8729
Accuracy: 0.8721
Train time: 2394 s

Precision: 0.8600
Recall: 0.8827

F-1 score: 0.8712
Accuracy: 0.8685
Train time: 2396 s

Precision: 0.8749
Recall: 0.8789

F-1 score: 0.8769
Accuracy: 0.8757
Train time: 2375 s

Transfered Model Compressed Model

Quantization

Size: 17.6 Mb
Precision: 0.8486

Recall: 0.8507
F-1 score: 0.8449
Accuracy: 0.8565

Transfer time: 1958 s
CPU inference on 10,905 images:

3262 s

Size: 12.8 Mb
Precision: 0.8486

Recall: 0.8508
F-1 score: 0.8447
Accuracy: 0.8570

CPU inference on 10,905 images:
3148 s

5.4.5. Experimental Evaluation on Low-Rank Factorization

Table 7 summarizes the results of compressing some deepfake detection models
using low-rank factorization with an effective rank of 6. For the “Synthbuster + Raise”
dataset, the compressed model exhibited a modest drop in accuracy close to 10%. In
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contrast, for the compression on the “140k Real and Fake Faces” and the transfer learning
in the “DeepFake and Real Images” datasets, low-rank factorization resulted in a drastic
performance degradation. The accuracies dropped to around 53% and 50%, respectively.
These findings indicate that if we apply low-rank factorization with a low enough rank
to achieve significant compression, essential features required for robust detection are
stripped from the layers, resulting in high performance degradation in many instances.
This is the reason we did not proceed with experiments using low-rank factorization and
instead focused on the other three compression methods.

Table 7. Low-rank factorization results.

Dataset Original Model Compressed Model

Synthbuster + Raise Dataset

Precision: 0.9420
Recall: 0.9169

F-1 score: 0.9293
Accuracy: 0.9265
Train time: 859 s

Precision: 0.8821
Recall: 0.8802

F-1 score: 0.9474
Acc: 0.8219

Rank: 6

“140k Real and Fake Faces”

Precision: 0.9878
Recall: 0.9914

F-1 score: 0.9896
Accuracy: 0.9896

Train Time: 4382 s

Precision: 1.0
Recall: 0.0725

F-1 score: 0.1351
Accuracy: 0.5362

Rank: 6

“DeepFake and Real Images”

Precision: 0.8526
Recall: 0.8996

F-1 score: 0.8755
Accuracy: 0.8711

Transfer time: 1959 s

Precision: 1.0
Recall: 0.0103

F-1 score: 0.0205
Accuracy: 0.5016

Rank: 6

5.4.6. Discussion

These experiments indicated that knowledge distillation achieved the highest perfor-
mance, while pruning with fine-tuning offered a faster compression process. Both methods
could maintain high accuracy, even when reducing the model to just 10% of its original param-
eters. Quantization provided an efficient and immediate compression technique; however, its
compression rate was limited to 72% of the original model’s parameters. These findings align
with previous studies, such as [76], which highlighted the effectiveness of knowledge distilla-
tion in model compression, while maintaining accuracy. Similarly, ref. [77] demonstrated that
pruning, when combined with fine-tuning, provides a strong trade-off between compression
and performance, making it a practical approach for deployment on resource-constrained
devices. Furthermore, the efficacy of knowledge distillation is heavily influenced by the teacher
model’s performance. In instances where the teacher model’s performance was suboptimal, it
was more advantageous to emphasize the loss from the ground truth over the loss from the
teacher for better results during the distillation process. This observation is supported by [78],
who analyzed the impact of teacher model quality on knowledge distillation and suggested
modifications in the loss function to mitigate negative transfer effects, as well as [77].

The effectiveness of pruning and knowledge distillation can be attributed to the
prevalent overparameterization in deep learning models. Many neural networks contain
an excess of parameters that do not significantly contribute to performance. Pruning
takes advantage of this property by identifying and removing less essential parameters,
leading to a more efficient model, without severe accuracy degradation. Instead of harming
performance, pruning optimizes the model by retaining the parameters that contribute
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most to learning, while discarding redundant ones. Prior research has highlighted that
overparameterization not only facilitates initial training but also allows for effective model
compression, without substantial accuracy loss [79,80]. In contrast to pruning, knowledge
distillation relies on a different mechanism to enable compression, while retaining model
performance. Instead of reducing the parameter count directly, KD transfers knowledge
from a high-capacity teacher model to a smaller student model. Through this process, the
student model captures the essential patterns learned by the teacher during its training,
enabling it to achieve a similar performance, despite its highly reduced complexity [69,81].

The quantization method effectively maintained performance, but the overall com-
pression achieved was not on par with knowledge distillation and pruning, making direct
comparisons less meaningful. Additionally, the inability to execute quantized DeepFake
models on processing accelerators such as GPUs restricts the applicability of this method in
general scenarios. However, in this specific use case, which is DeepFake material detection
on edge devices, where accelerators are rarely encountered, most practical scenarios will
require inference in small low-end CPUs, making this method still valuable. The limita-
tions of PyTorch quantization on GPU execution have been discussed in prior works, such
as ref. [82].

Quantization maintains model performance by employing a numerical approximation
strategy. Unlike pruning or knowledge distillation, which alter the model’s structure,
quantization preserves all parameters, while reducing their precision. This approach
minimizes the impact on model accuracy, only introducing small rounding errors, instead
of complete parameter removal, though this results in less storage and inference reduction
compared to pruning or knowledge distillation.

Experiments were also conducted on low-rank factorization, which are not presented in
the tables. Low-rank factorization reduced the size of the original models to a certain extent
but frequently resulted in significant performance degradation. This substantial performance
degradation limits the utility of this method, making it highly context-dependent. This is
in line with findings from [83], who demonstrated that while low-rank approximations can
reduce the size of deep networks, they often introduce significant accuracy drops. This made
us not present the experimental outcomes in the article, but they are included in the GitHub
repository of the paper [75]. Furthermore, it was concluded that the limited compression
achieved necessitates its use in conjunction with other compression methods to attain the
substantial compression that is commonly needed in DeepFake edge computing scenarios.

The primary reason for the failure of low-rank factorization in certain cases lies in
its approach to compression. Unlike pruning or knowledge distillation, which selectively
preserve crucial components of the model, low-rank factorization applies a general approxi-
mation technique that does not account for the individual importance of specific parameters.
Instead, it attempts to reconstruct the model’s functionality using fewer basis components,
which can result in a significant loss in representational power when the approximation
fails to capture critical patterns. Prior research has shown that, while low-rank factorization
can be effective under controlled conditions, it often struggles to maintain accuracy when
applied to highly complex models [84].

In terms of transfer knowledge, the findings indicate that the position of the adapter
significantly influences the performance of the method. For deeper models with more
layers, the adapter typically needs to be placed closer to the middle layers to maximize
its effect and consequently enhance model performance. This suggests that recognizing
moderately complex features is more effective than very simple or highly complex ones.

Therefore, in deeper pruned DeepFake models, the adapter was positioned after the
fourth convolutional layer, which is approximately in the middle of the model. Conversely,
in smaller DeepFake models that lacked complexity and depth, such as most of the student
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models used in the knowledge distillation method, placing the adapter at the end of the
convolutional layers, the deepest position possible, yielded the greatest benefit. A study by
ref. [85] supported this observation, highlighting that adapter placement plays a crucial role
in transfer learning performance. Finally, the experiments revealed that adapters are only
effective for feature extraction. Adapters consisting of linear layers did not demonstrate any
noticeable performance gains in any of the experiments, and pruning emerged as the most
effective and resource efficient technique in terms of both compression and performance
for the DeepFake tasks.

The findings of this study have significant implications for the deployment of Deep-
Fake detection models in real-world ambient intelligence applications. By systematically
evaluating and optimizing compression techniques, this research provides a roadmap for
designing lightweight, efficient, and scalable detection systems suitable for edge com-
puting and IoT environments. The ability to deploy robust DeepFake detection models
on resource-constrained devices is crucial for maintaining security in smart surveillance,
digital identity verification, and multimedia authentication. Furthermore, as DeepFake
technologies continue to evolve, the integration of these detection mechanisms into real-
time decision-making systems will be essential for preventing misinformation and ensuring
the integrity of AI-driven interactions. These contributions highlight the broader impact of
model compression strategies beyond theoretical performance improvements, reinforcing
their role in practical, security-critical applications.

6. Research Implications
This study contributes to existing knowledge by providing a detailed analysis of

widely used compression techniques, specifically in the context of DeepFake detection.
By evaluating knowledge distillation, pruning, quantization, and low-rank factorization,
it highlights both their effectiveness and potential drawbacks, offering insights into how
these limitations can be mitigated when handling synthetic DeepFake material. From
a practical perspective, the findings serve as a concise set of guidelines for designing
lightweight yet high-performing models suitable for deployment on IoT and edge devices
within ambient intelligence systems. However, certain limitations in this work should be
acknowledged, including constraints related to dataset size and quality, lack of variation
in model architectures, and the extensive range of possible sub-variations within each
compression method. These factors may influence the generalizability of the results,
suggesting opportunities for future research to explore a broader range of datasets and
methodological refinements.

7. Future Work
Looking ahead, future research will explore hybrid approaches that combine multi-

ple compression techniques, such as integrating pruning with knowledge distillation or
adaptive quantization, to further enhance DeepFake detection capabilities. Additionally,
emerging technologies like neural architecture search [86] will be investigated to optimize
model performance, while maintaining efficiency. Another crucial direction involves ex-
panding the evaluation across diverse and larger datasets, including multimodal DeepFake
detection scenarios, to improve the robustness and generalizability of compressed models.
Finally, given the practical constraints of edge and IoT deployment, future work will focus
on real-world testing and hardware-aware optimizations [87] to ensure efficient inference
in resource-limited environments, further strengthening the security and trustworthiness
of ambient intelligence ecosystems.
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8. Conclusions
The research findings demonstrate that DeepFake detection models can be significantly

compressed, reducing computational demands, without a substantial loss in performance,
making them well-suited for real-time deployment in resource-constrained edge computing
environments. Instead of training models from scratch, leveraging transfer learning with
pre-trained neural networks proved to be a more efficient approach, preserving model
accuracy, while reducing training time and resource consumption. Furthermore, the study
highlights how different synthetic image generators impact transfer learning effectiveness,
underscoring the need for adaptive model optimization. These advancements are crucial for
integrating DeepFake detection into smart cities, IoT networks, and intelligent surveillance
systems, where computational efficiency, localized processing, and security are paramount.
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