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Abstract: One major challenge in preventing infectious diseases comes from human control
behaviors. In the context of vector-borne diseases (VBDs), I explored how the waxing and
waning of a human psychological emotion—fear—can generate diverse control actions,
which, in turn, influence disease dynamics. Fear may diminish over time after being
triggered but can also be reinforced when new triggers emerge. By integrating fear dy-
namics into a generic Ross–MacDonald model tailored for the Zika virus, I found that an
increase in initial fear can enhance control efforts, thereby reducing the number of infected
individuals and deaths. Once initial fear becomes strong enough to deplete the mosquito
population, any further increase in fear no longer impacts disease dynamics. When initial
fear is at an intermediate level, the increase in disease caused by greater decay in fear can
be counterbalanced by increasing the frequency of fear triggers. Interestingly, when the
control period is short and initial fear is at an intermediate level, increasing the frequency
of fear reinforcement can lead to a “hydra effect”, which increases disease transmission.
These findings help explain variations in human control efforts and provide insights for
developing more effective disease control strategies that account for the fear dynamics of
local communities. This work also contributes to advancing the theory at the intersection
of human behavior, disease ecology, and epidemiology.

Keywords: Ross–MacDonald model; decay of fear; disease prevention; repetitive controls;
hydra effect
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1. Introduction
The feedback between human behaviors and infectious diseases can significantly

influence the implementation of disease surveillance and community-based management
policies [1,2]. For example, as disease prevalence increases, the public often enhances
self-protection measures, such as increasing social distance and wearing masks [3,4]. These
behaviors, in turn, shape disease prevalence in communities [5]. Since COVID-19, an in-
creasing number of studies have begun exploring human behavioral responses to infectious
diseases (e.g., awareness of infection leading to voluntary quarantine and vaccination
decisions [6–8]). Theoretical work in this area has also increased dramatically. For example,
the behavior–disease feedback was initially modeled implicitly (e.g., by introducing a
saturation term in the transmission rate, or by assuming a positive correlation between
disease level and control efforts; see [9,10]). Recently, more disease epidemiological models
have started to explicitly incorporate human behaviors (e.g., behaviors as functions of
current and past disease information [5,11]).
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As a primary motivation for behaviors, certain studies have begun exploring how
human emotions (e.g., fear of infection and death) can shape human behaviors and further
affect disease epidemiology (see [12–14]). These studies typically focus on airborne diseases
(e.g., how human behaviors shape infection by affecting contact rates among people [15,16]).
With the increasing prevalence of vector-borne diseases (VBDs) in the past decade (e.g., the
dramatic rise in cases of Zika virus, West Nile virus, and Lyme disease; see [17,18]), it has
become urgent to develop theories that explore the interactions between human behaviors,
disease levels, and human psychology specifically tailored to VBDs. Integrating psychology
into behavioral epidemiology would significantly enhance our ability to explain diverse
human behaviors toward infectious diseases. However, given the complexity of human
psychology [19,20], there remains a substantial gap in understanding the mechanisms
driving diverse human behaviors despite access to the same disease information.

One complexity of human psychology is that human emotions often go through wax-
ing and waning stages. For example, human moods can fluctuate with temperature or
light [21–23]. Fear can fade over time but can be rekindled when triggered [24,25]. This
dynamic nature of human psychology is often overlooked in many behavioral epidemio-
logical studies. Additionally, without accounting for psychological changes during control
periods, the disease management strategies enacted (e.g., the public’s involuntary control
efforts such as the use of insecticides or pesticides [26]) may fail to achieve their desired
outcomes. For instance, control efforts may decrease if people gradually become less fearful
of an infectious disease [27]. Meanwhile, many factors can trigger fear and potentially
increase control efforts. For example, with the increasing popularity of social media, the
public can easily access disease information from various platforms [16,28,29]. Exposure to
disease information can trigger fear (e.g., news of death tolls from infectious diseases [30]).
The time interval and frequency with which people perceive disease information contribute
to the waxing and waning of fear. In general, control efforts are positively correlated with
fear levels [12,31] but are also limited by other factors (e.g., the cost of enacting control
actions; see [32,33]). Consequently, control actions typically begin once the number of
infections reaches a certain level and only lasts for a limited period [34].

In this study, I explore how the waxing and waning dynamics of fear shape control
efforts and, in turn, influence disease levels in VBD systems. Specifically, I incorporated the
fear dynamics into a generic vector-borne disease model (i.e., a modified Ross–MacDonald
model with control efforts) to investigate whether and how the decay and reinforcement
of fear affect disease levels. This model is specifically tailored and parameterized for the
Zika virus, transmitted by Aedes aegypti mosquitoes, and allows for the periodic release
of disease information. Given that people’s control actions often occur on a discrete time
scale (e.g., days or months, with effort depending on the threshold of their fear levels),
I have developed a discrete version of the VBD model with discrete control efforts. I first
explored the separate and joint effects of initial fear and its decay over one waxing and
waning period. I then extended this study to multiple periods. I analytically solved the
phases of disease dynamics under different levels of initial fear and a single fear decay, and
I numerically simulated the dynamic changes in the susceptible, infected, and deceased
populations, as well as the mosquito population, over a one-year timeframe.

2. Methods
Here, I assume that both the human and mosquito populations are well mixed in

the system. Initially, the system consists of S0
H susceptible humans and S0

M susceptible
mosquitoes. The Zika virus is then introduced into this system by infecting ten humans
initially (I0

H = 10). At any given time, humans can be in one of three states: susceptible to
infection (SH), infected (IH), or recovered (RH). A certain proportion of infected humans
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may develop severe symptoms and eventually die from the infection (DH). The total
human population is described as follows:

NH = SH + IH + RH

I also consider the natural birth rate (bH) and death rate (µH) for the human population.
The mosquito population consists of two states: susceptible to infection but uninfected (SM)
and infected (IM), which can transmit the virus to susceptible humans (SH). The infection
rates from infected humans on susceptible mosquitoes and from infected mosquitoes on
susceptible humans are denoted as βM and βH , respectively. The natural death rate of
mosquitoes is µM. The mosquito birth rate is limited by its carrying capacity, given by the
following function:

f (M, K) = M
(

1 − M/
K

)
(1)

where K is the maximum carrying capacity of mosquitoes, and η is the laying egg rate, and
M = SM + IM is the total mosquito population producing offspring.

During a disease outbreak, both human and mosquito dynamics influence human
control actions on susceptible and infected mosquitoes through insecticide usage (control
effort, C, as described in Equations (7) and (8)). For simplicity, without losing generality,
I assume that fear is triggered by death toll information (which is proportional to infected
humans), and the control effort (C(t)) is positively related to both the fear level and the
number of deaths (DH). The fear dynamics following a trigger (at time t_start) follow an
exponential decay curve:

f (θ, τ, t) = θe−τt (2)

where θ is the initial fear, τ is the decay rate of fear, and t is the time after disease information
triggers fear (modified from the trend of memory kernels; 5). Here, I assume that people’s
control actions begin immediately once fear is triggered [11], and that control actions are
initiated when the death toll at that time exceeds a threshold ϵ. Given limited resources or
other constraints on control actions (e.g., economic limitations, environmental concerns
such as preventing pollution from insecticide use; see [10,35]), I assume that a single control
action following a fear trigger can last a maximum of CD days. Multiple control actions
may occur with multiple fear triggers. If new fear triggers occur within CD days, the
control period will be shortened to the time interval between two consecutive fear triggers.

Given that control actions occur in discrete time, I propose a modified Ross–MacDonald
equation [36,37] in discrete form to capture the dynamics among humans (SH , IH , RH and
DH), mosquitoes (SM and IM), and control actions (C). The detailed model is as follows:

SH(t + 1) = SH(t) + bH NH(t)− βH IM(t)SH(t)− µHSH(t) (3)

IH(t + 1) = IH(t) + βH IM(t)SH(t)− rIH(t)− µH IH(t)− δIH(t) (4)

RH(t + 1) = RH(t) + rIH(t)− µH RH(t) (5)

DH(t + 1) = DH(t) + δIH(t) (6)

SM(t + 1) = SM(t) + f
(

ηM

(
SM(t) + IM(t)

)
, K

)
− βM IH(t)SM(t)− µMSM(t)− C(t)SM(t) (7)

IM(t + 1) = IM(t) + βM IH(t)SM(t)− µM IM(t)− C(t)IM(t) (8)

C(t) =

{
f (θ, τ, t)DH(t_start) if DH(t_start) > ϵ or 0 < Count(t) < CD

0 otherwise
(9)
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in which we also define the details of Count(t) as follows:
0 i f count(t − 1) = 0; and DH(t) ≤ ϵ

1 i f count(t − 1) = 0; DH(t) > ϵ; DH(t − 1) ≤ ϵ

count(t − 1) + 1 i f count(t − 1) > 0
(10)

where Equations (3)–(6) describe the dynamics of the human population, Equations (7) and (8)
describe mosquito dynamics, and Equations (9) and (10) represent the dynamics of control
efforts on mosquitoes. The details of all the variables in the model are provided in Table 1,
and the parameters and their values are listed in Table 2. The time t is measured in days.
Below, I use one-year (365 days) time steps after the initial control for disease simulations,
which are sufficient for the system to capture the dynamics of a full disease outbreak under
the assigned parameters.

Table 1. All variables and the corresponding initial values in the model.

Variables Description Initial Values

NH Total human population
size SH + IH + RH

SH Susceptible humans 5000
IH Infected humans 10
RH Recovered humans 0
DH Death cases in humans 0
SM Susceptible mosquitoes 1000
IM Infected mosquitoes 0
C Control on mosquito 0

Table 2. All parameters and the corresponding values in the model. Some parameter values were
chosen from the incidence and mortality in early Zika outbreaks in South America (based on daily
values; see Reference).

Parameters Description Value Reference

βH Transmission rate in humans 1.5 × 10−4 [10,38]
βM Transmission rate in mosquitoes 3.0 × 10−4 [10,38]
µH Natural mortality in humans 6.731886 × 10−5 [39]
µM Natural mortality in mosquitoes 1/13 [40]
bH Birth rate in humans 7.04501 × 10−5 [41]
r Recovery rate in humans 0.037 [38]
δ Composite rate 190/3,474,182 [41]

ηM Egg laying rate for mosquitoes 5
θ Initial fear 1 or very
τ Fear decay 0.1 or vary
ϵ Critical deaths that trigger the control 3

CD Days for one control period 30 or vary
K Carrying capacity of mosquito 3500

Here, I track the dynamics of control effort (C(t)) and the corresponding susceptible
(SH(t)), infected (IH(t)) and death human (DH(t)). I also calculate the following indexes:
total infected humans (∑t IH

t ), maximum infected humans (max
t

IH
t ), total death cases

(∑t DH
t ) and control efficacy ( ∑ DH

C−−∑ DH
C+

∑ Ct
), where DH

C− and DH
C+ represent the human

death cases in the absence and presence of control actions (C) over the entire simulation.
Using this model, I first analytically solve for the equilibrium of human infection IH(t)

when the mosquito population goes extinct and discuss the phase changes with respect
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to initial fear and the decay of fear. I then perform numerical analyses to simulate the
disease transient dynamics (susceptible, infected, and death cases in humans) under the
separate and combined effects of initial fear and the decay of fear when disease information
is released only once during the disease outbreak. Armed with the analyses under a single
control period, I then simulate and compare disease dynamics under three frequencies of
fear seasonality, both with and without decay of fear.

3. Results
3.1. Analytical Solutions

When exploring the equilibrium without the mosquito population, I set up
SM = IM = 0 and solve the IH from Equation (4) as follows:

IH(t) = IH(0)(1 − r − µH − δ)t (11)

Which shows that infection dynamics when mosquitoes go to extinction do not depend
on control effort and human fear: i.e., the equilibrium points can be achieved when there
is no disease in the system (IH(0) = 0; not stable), or the sum of the recovery rate r,
human natural morality µH , and composite rate δ equals 1 (r + µH + δ = 1; stable state).
Because βH IM(t)SH(t) ≥ 0, the infection would be larger when the mosquito population
is >0 compared to the case when the mosquito population = 0 (Equation (11)). Therefore,
the lowest infection occurs when the mosquito population is near 0. If we assume that
mosquito abundance > 0 in the absence of control, factors that can quickly drive mosquitoes
to extinction would lead to the lowest overall infection in humans.

By summing Equations (7) and (8), I obtain the dynamics of the mosquito population:

SM(t) + IM(t) = (SM(0) + IM(0))(1 − µM − C(t))t (12)

It shows that control effort is the only factor that can potentially lead mosquitoes to ex-
tinction and generate the lowest disease level in the system. Since the term

(
1 − µM − C(t)

)t

could be any sign, depending on the dynamics of the control effort C(t), the mosquito
population could fluctuate over time (see the purple and red lines in Figure 1F).

 

Figure 1. The dynamics of control effort (A), susceptible (B), infected (C), death (D), total population
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in humans (E), and total mosquitoes (F) under the three levels of initial fear: θ = 0 (red dashed line),
θ = 1 (purple line), and θ = 1.5 (blue line) in the absence of fear decay (τ = 0). The control lasts for
30 days (CD = 30). All other parameters are listed in Table 2.

Under the one control period, the lowest disease would be achieved when control
effort C(t) is high enough to drive SM(t) + IM(t) = 0, which could either come from large
f (θ, τ, t), or high-death cases (DH(t)). Therefore, if fear of death is very high, the control
effort would be high as well, which can potentially lead to the phase when mosquitoes go to
extinction; if the disease causes very high deaths that boost the control effort, the mosquito
population can also shrink to 0 and disease suddenly drops to the phase in Equation (11).
The latter scenario with high death cases DH(t) does not occur based on the parameters
of the Zika virus (see Table 2); so, only manipulating fear levels can drive mosquitoes to
extinction.

3.2. Numerical Simulations
3.2.1. Fear Under One Trigger
In the Absence of Decay of Fear

Under one fear trigger without the decay of fear, the control effort starts on day 57
and remains constant for 30 days (CD = 30 in Table 2). The mosquito population shows a
general decreasing trend due to control after day 57. When initial fear is high (θ = 1.5), the
control effort is also high (see the highest blue line in Figure 1A), which drives the mosquito
population to extinction (see the sharp drop to 0 of the blue line in Figure 1F) and boosts
the susceptible human population (see the sudden increase in the blue curve near day 57
in Figure 1B). Based on the analytical calculation in the previous section (Equation (11)),
infected humans reach the lowest phase when mosquitoes go extinct (the blue line in
Figure 1C), as do death cases (the lowest blue line in Figure 1D). Further increases in initial
fear (θ > 1.5), which would drive mosquitoes to extinction, would converge to the case
when θ = 1.5.

When the initial fear is 0, the system would not have any control action (see the
horizontal line in Figure 1A), and, thus, disease levels would reach the highest point (see
the red dashed curve in Figure 1C). When initial fear is at an intermediate level (θ = 1), the
mosquito population experiences a sharp decrease just before day 100 (see the drop in the
purple line near day 100 in Figure 1F), creating a significant trap in infected humans (see
the concave shape of the purple curve in Figure 1C). However, intermediate initial fear is
not enough to drive the mosquito population to 0; so, after the control period, the mosquito
population quickly increases again (see the purple curves almost overlapping the red ones
in Figure 1F after day 100), leading to another disease outbreak (see the second hump trend
of the purple curve after day 100 in Figure 1C).

When the control period (CD) is small, control takes very little time. Thus, the effects
of initial fear (θ) on disease dynamics, as well as the differences among different levels
of initial fear, become weak (compare the three lines in Figure S1 in the Supplementary
Materials when CD = 3). Only the disease dynamics under high initial fear (θ) do not
change at all (see the same blue line under CD = 7, 14, and 30).

In the Presence of Decay of Fear

The disease dynamics in response to the decay of fear largely depend on the levels
of initial fear. When initial fear is at an intermediate level (e.g., θ = 1), the disease is more
sensitive to the decay of fear. Introducing the decay of fear into the system would reduce
the total control effort (compare the areas shaped by the purple and blue lines in Figure 2A;
see the transition area in Figure 3A). As a result, the mosquito population can increase more
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quickly after the control period (see the quicker increase in the blue line compared to the
purple once the control period ends in Figure 2F), generating a shallower trap in infected
humans and more deaths than in the case without fear decay (compare the blue and purple
curves in Figure 2C,D). In general, the decay of fear (e.g., τ = 0.1) tends to increase the
disease levels and balance out the effects of initial fear on the system without control (see
the blue lines between the purple and red lines in Figure 2B–D). These effects of fear decay
become weaker when the control period is shorter (compare the colored lines in Figure S2
when CD = 3), but they are stronger when the control period is longer and fear does not
decay to 0 before the control ends.

Figure 2. The dynamics of control effort (A), susceptible (B), infected (C), death (D), total population
in humans (E), and total mosquitoes (F) with and without fear decay: τ = 0 (purple line; no fear
decay), 0.1 (blue line; with fear decay at rate 0.1) when initial fear is at intermediate level (θ = 1) and
control duration time is 30 days (CD = 30). The red dashed line shows the scenario without control
(θ = 0). All other parameters are listed in Table 2.

However, the decay of fear has little influence on system dynamics if initial fear is
either extremely large or small (see the overlapping lines of the three colors when initial
fear θ is <0.1 or >1.5 in Figure 3). For example, when initial fear is large enough to drive the
mosquito population to extinction (e.g., θ = 1.5; the purple and blue curves in Figure S3),
whether there is decay of fear or not does not affect the mosquito population anymore;
thus, disease dynamics would remain unchanged (see the fully overlapped purple and
blue curves in Figure S3C). In this case, further increases in initial fear (θ ≥ 1.5) would
only increase the total control effort without changing the disease, leading to a decrease
in control efficacy (see the relative positions of the three colored lines when θ ≥ 1.5 in
Figure 3D).

When initial fear is very small, introducing the decay of fear would increase deaths
more than the reduced control effort, leading to a decrease in control efficacy (compare
the positions of the three colored lines when θ < 1 in Figure 3D, or θ = 0.1 in Figure S4).
However, because the entire fear of death term f (θ,τ,t) is small at a lower initial fear, the
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influence of fear decay is minimal (see the almost overlapped curves of the three colored
lines in total infected humans, and the slight differences among these lines in maximum
infected humans and total deaths when θ < 1 in Figures 3A–C and S4C).

Figure 3. The relationships between initial fear (θ) and total infected human (A), maximum infected
human (B), total deaths (C), and control efficacy (D) under the three levels of fear decay (τ = 0, 0.25,
0.5, plotted in red, purple and blue, respectively). The time window is one year and control lasts for
30 days (CD = 30). All y-axis values are log-transferred. Other parameters are listed in Table 2.

3.2.2. Seasonal Fear Under Multiple Triggers
In the Absence of Decay of Fear

In general, increasing the frequency of fear seasonality would decrease the mosquito
population (see the mosquito population sizes shifting from red to purple, and then to blue
lines in Figure S5C,F in the Supplementary Materials), which further reduces the number
of infected humans and deaths (see the decreasing trend from red to purple to blue lines
in Figure 4B,E,F for infected humans, and Figure 4C,F,I for deaths). However, when the
initial fear is large enough to drive the mosquito population to extinction (see Figure S5I),
increasing the frequency of fear seasonality would not affect disease dynamics (see the
overlapping lines for infected humans and deaths at the three levels of control frequency in
Figure 4H,I). On the contrary, if the control duration after each trigger is short (e.g., 3 days
after the start of each control period), a small increase in the frequency of fear seasonality
(e.g., increasing annual frequency from 12 to 14) could cause a hydra effect. That is,
more control periods would increase the mosquito population (see the increased mosquito
numbers from the red to purple lines in Figure S6F) and disease levels (see the increased
total infected humans and deaths from the red to purple lines in Figure 5B,C). This happens
because, under overall low control (e.g., short control duration and infrequent control),
the mosquito population benefits from control-induced mortality due to the reduction in
its density-dependent mortality [42–44]. Thus, a small increase in control (e.g., through
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increased control frequency) could further reduce density-dependent mortality, boosting
both the mosquito population and total infection.

Figure 4. The dynamics of the control effort (A,D,G), infected human (B,E,H) and death cases (C,F,I)
under the three levels of initial fear, θ = 0.1 (A–C), 1 (D–F) and 1.5 (G–I), and the three levels of
control frequency (yearly in red, bimonthly in purple, and daily in blue, corresponding to three levels
of fear waxing and waning periods). The control lasts for 30 days after each fear waxing (CD = 30)
without decay (τ = 0). All y-axis values are log-transferred. Other parameters are listed in Table 2.

Figure 5. The dynamics of control effort (A), infected human (B) and death cases (C) when initial fear
is at intermediate level: θ = 1 under the three levels of control frequency (yearly in red, bimonthly in
purple, and daily in blue, corresponding to three levels of fear waxing and waning periods) in the
absence of fear decay (τ = 0). The control lasts for 30 days after each fear waxing (CD = 30) without
decay (τ = 0). All y-axis values are log-transferred. Other parameters are listed in Table 2.

Similar to an increase in initial fear, increasing the frequency of fear seasonality could
also change the phase of disease dynamics. For example, when the disease is in phase 2
under one control period (see the red concave curve in Figure 4E), increasing the control
frequency could drive the system toward phase 3 (see the blue curve, which exhibits a
similar pattern to the case described by Equation (11) in Figure 4E). This phase change
occurs only at an intermediate level of initial fear. When initial fear is low, and the system
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stays at phase 1 (see the hump-shaped curves of all three colored lines in Figure 4B), the
total control effort is limited, even with high control frequency (e.g., daily control).

When the time unit is per day, the highest frequency is daily control, where control
efforts over time become almost continuous. Because the decay of fear is assumed to
occur daily, daily control can effectively counter any effects of fear decay on the system.
In this way, disease information would be released every day, and the public would take
control actions based on the daily-released information (e.g., the death toll from Zika
infection). Daily control has the highest total control effort due to the longest overall control
duration. However, the control effort each day in daily control may be lower than that
in less frequent control (see the higher y-axis values in the purple line compared to the
blue lines in Figure 4D). This is because the control effort depends on the reported death
cases (see Equation (9)). With a high frequency of fear seasonality, daily control leads to
very low infections and deaths, which further reduce the strength of the control effort.
Although disease reduction is high in the daily control scenario, the increase in total control
is also substantial. Therefore, the control efficacy for daily control is lower than that for
yearly control, but still relatively higher than for intermediate frequencies (i.e., bimonthly
control) (see the first decrease followed by an increase in the red, purple, and blue lines in
Figures 4C,D and 5C).

In the Presence of Decay of Fear

Based on the results above for one control period, it is demonstrated that when daily
control is almost continuous over time, there is little opportunity for fear to decay before a
new triggered control action begins. Therefore, introducing the decay of fear has minimal
impact on disease dynamics when the frequency of fear seasonality is very high (see the
blue curves, which are nearly identical between Figure 6A,C). Additionally, whether or
not fear decays, a small initial fear has little effect on disease dynamics (see the almost
overlapping lines of the three colors in Figure 4B and Figure S7B in the Supplementary
Materials). As such, I only analyze the effects of fear decay when initial fear is at an
intermediate level.

Figure 6. The comparison between the dynamics of control effort (A,C) and infected humans (B,D)
with and without fear decay (τ = 0 for (A,B); τ = 1 for (C,D)) when initial fear is at an intermediate
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level (θ =1) under three levels of control frequency (yearly in red, bimonthly in purple, and daily in
blue, corresponding to three levels of fear waxing and waning periods). The control duration is set
up as 30 days after each fear waxing (CD = 30). All other parameters are listed in Table 2.

Similar to the case with daily control, if the control period is short (i.e., CD is small),
the decay of fear has limited influence on the system because the time between two control
triggers is too brief to allow for significant fear decay, even with more control periods (see
the small difference in total infected humans in the purple lines between Figure 5B and
Figure S6E). However, when the duration of each control period is longer (e.g., CD = 30),
there is a stronger reduction in control efforts with the introduction of fear decay, especially
at intermediate frequencies (e.g., bimonthly). In this case, the decay of fear significantly
reduces total control efforts but increases disease levels (see the noticeable difference in the
purple lines between Figure 6B,D). Furthermore, introducing fear decay reduces control
efforts more than it increases disease levels; so, adding the decay of fear likely leads to
improved control efficacy (see the general increase in labeled control efficacy in Figure 6D
compared to Figure 6B).

4. Discussion
This work studied how the waxing and waning of fear emotions in vector-borne

disease (VBD) systems can lead to different control actions and, in turn, generate distinct
disease patterns. In general, we found that initial fear can significantly influence the phases
of disease dynamics: if initial fear is low, the system remains in a state without control
(see Equation (9)); if initial fear is high, the system tends to approach the case where the
vector population goes extinct (Equation (11)). In both cases, changes in the waxing and
waning of fear have little impact on disease dynamics (see Figures 4 and S4–S7G–I). Only
when initial fear is at an intermediate level does a higher frequency of fear reinforcement
compensate for the effects of fear decay on disease levels. However, if the control period is
very short, repetitive fear reinforcement may increase disease levels, leading to the hydra
effect (see the increased total infection from the red to purple lines in Figure 5 [43,44]).
This indicates that frequent but shorter control periods may facilitate the proliferation of
the vector population and increase disease spread. Therefore, periodic control actions
may actually exacerbate disease rather than reduce it, and detailed conditions must be
considered when governments or agencies implement periodic control strategies. Due
to the discrete control actions, a discrete-version model is adopted, although the disease
dynamics itself could be continuous (see [45,46] for discrete and continuous models).

The findings of this work can be broadly applied to the design of different disease con-
trol strategies tailored to local community variations. For example, if a community consists
of many individuals who are less fearful of certain VBDs due to a lack of knowledge about
the dangers of infection, education-related programs could be highly effective in reducing
disease levels by increasing the community’s fear. If individuals have an intermediate
initial fear with a large decay for certain diseases, local governments or public health
agencies could focus on increasing the frequency of releasing disease information to the
public (e.g., reporting death tolls through social media, broadcasting, etc.), which would
lead to higher frequencies of fear seasonality and more frequent control actions. If the
local community does not have a strong initial fear and frequently implements short-term
controls, increasing control frequency should be recommended to avoid the hydra effect. If
the majority of the community is suffering from chronic diseases and is easily scared of
infection, taking strong control actions, the government may need to issue warnings to
prevent overcontrol (e.g., encourage one-time control actions, avoid long-term or frequent
controls, or limit the use of insecticides on vectors).
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Additionally, with dynamic demographic data from a local community, which may
influence the overall fear level, governments can use our analyses to adjust their strategies
over time to promote more effective disease control or find the balance between different
strategies. For instance, if, at a given time, a community has a substantial number of
individuals with low or intermediate fear of death from certain diseases, this study can help
calculate how to allocate resources for releasing disease information or educating the public
about the dangers of infection. If the local government or agencies have already established
a fixed frequency for disease education, this study can also assist in determining how
effective each education program must be to achieve the desired level of disease reduction.
In this study, fear is assumed to be a driver for human control actions; so, other fear–control
relationships are not within the scope of this work (e.g., large fear may cause stigma,
reducing or delaying control efforts in some individuals [47]). Future studies could explore
what types of social media, what kinds of educational programs, and what other psycho-
social characteristics (e.g., personality [48,49], personal concerns [50], risk-prone or -averse
behavior [51], rebellious mentality [52,53], social networks [54]) may produce equal or even
opposite effects on the public’s control actions beyond fear emotion.

This study explicitly explored one common mechanism—fear—to explain variations in
people’s reactions to certain VBDs that can well describe real-world control behaviors. This
work contributes to the growing body of studies on how human psychological processes
and behaviors influence disease epidemiology (e.g., [55–60]). The findings can provide
guidance for local governments or related agencies to design more effective disease control
strategies based on the characteristics of their local communities. Moreover, the results
of this study can significantly advance the theory integrating human behavior, disease
epidemiology, and disease control [52,61–63].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math13050879/s1, Figure S1: System dynamics (i.e., A. control, B.
susceptible, C. infected and D. death cases in humans) along time under three levels of initial fear:
θ = 0 (red dashed line; no control), 1 (purple line), 1.5 (blue line) in the absence of fear decay (τ = 0)
and when the control duration time is 3 days (CD = 3). All other parameters are listed in Table 2.
Figure S2: System dynamics (i.e., A. control, B. susceptible, C. infected and D. death cases in humans)
along time in the absence and presence of fear decay: τ = 0 (purple line; no fear decay), 0.1 (blue
line; with fear decay at rate 0.1) under intermediate initial fear (θ = 1) when control duration time is
3 days (CD = 3). For reference, the scenario without control is also plotted (θ = 0; red dashed lines).
All other parameters are listed in Table 2. Figure S3: System dynamics (i.e., A. control, B. susceptible,
C. infected and D. death cases in humans, and E. total populations of human and F. mosquitoes)
along time in the absence and presence of fear decay: τ = 0 (purple line; no fear decay), 0.1 (blue
line; with fear decay at rate 0.1) under large initial fear (θ = 1.5). For reference, the scenario without
control is also plotted (θ = 0; red dashed lines). All other parameters are listed in Table 2. Figure S4:
System dynamics (i.e., A. control, B. susceptible, C. infected and D. death cases in humans, and E.
total populations of human and F. mosquitoes) along time in the absence and presence of fear decay:
τ = 0 (purple line; no fear decay), 0.1 (blue line; with fear decay at rate 0.1) under small initial fear
(θ = 0.1). For reference, the scenario without control is also plotted (θ = 0; red dashed lines). All
other parameters are listed in Table 2. Figure S5: The dynamics of the control effort; susceptible
humans and mosquito population size tracked under three levels of initial fear (θ = 0.1, 1 and 1.5,
corresponding to each row) and three levels of control periods (yearly in red, bimonthly in purple,
and daily in blue, corresponding to the different periods of fear waxing and waning) in the absence
of fear decay (τ = 0). The total population sizes of mosquitoes under each combination of initial fear
and fear frequency are calculated and labeled in the third column. Figure S6: The dynamics of the
control effort; susceptible humans and mosquito population size tracked under three levels of initial
fear (θ = 0.1, 1 and 1.5, corresponding to each row) and three levels of control frequency (yearly in
red, bimonthly in purple, and daily in blue, corresponding to the different periods of fear waxing
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and waning) in the absence of fear decay (τ = 0) when one control period lasts 3 days (CD = 3). The
total population sizes of mosquitoes under each combination of initial fear and fear frequency are
calculated and labeled in the third column. Figure S7: The dynamics of the control effort; infected
human and death cases tracked under three levels of initial fear (θ = 0.1, 1 and 1.5, corresponding
to each row) and three levels of control frequency (yearly in red, bimonthly in purple, and daily in
blue, corresponding to the different periods of fear waxing and waning) in the presence of fear decay
(τ = 0.1). The log of the total infected humans and control efficacy are calculated and labeled for each
combination of initial fear and fear frequency in the subplots of the second and third columns.
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