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Abstract: The paper solves the problem of constructing step adjustment algorithms for a
gradient method based on the principle of the steepest descent. The expansion of the step
adjustment principle, its formalization and parameterization led the researchers to gradient-
type methods with incomplete relaxation or over-relaxation. Such methods require only the
gradient of the function to be calculated at the iteration. Optimization of the parameters of
the step adaptation algorithms enables us to obtain methods that significantly exceed the
steepest descent method in terms of convergence rate. In this paper, we present a universal
step adjustment algorithm that does not require selecting optimal parameters. The algo-
rithm is based on orthogonality of successive gradients and replacing complete relaxation
with some degree of incomplete relaxation or over-relaxation. Its convergence rate corre-
sponds to algorithms with optimization of the step adaptation algorithm parameters. In our
experiments, on average, the proposed algorithm outperforms the steepest descent method
by 2.7 times in the number of iterations. The advantage of the proposed methods is their
operability under interference conditions. Our paper presents examples of solving test prob-
lems in which the interference values are uniformly distributed vectors in a ball with a ra-
dius 8 times greater than the gradient norm.

Keywords: minimization method; relaxation; gradient method; step adaptation;
convergence rate

MSC: 90C30

1. Introduction

Gradient minimization methods are easy to implement, have low iteration costs, and
use a small amount of memory, which determines their applicability in solving high-dimen-
sional problems. The advantage of gradient methods is the absence of restrictions on the
objective function convexity and their high degree of noise immunity. The noted properties
explain their widespread use in solving various applied optimization problems like optimal
control, signal processing, robotics [1-4] and, in particular, applications in the field of data
analysis, machine learning and deep learning [5-9].

For the problem of minimizing a smooth function, if it is strongly convex, the gradient
descent method is known to have a global linear convergence rate [10-12]. However, many
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fundamental problems of machine learning, such as least squares regression or logistic regres-
sion, are reduced to problems of minimizing functions that are non-convex. This has led the
researchers to the study of properties of convexity and strong convexity for the objective func-
tion of an optimization problem that are suitable for applications of this type. One of the best-
known properties is the Polyak-Lojasiewicz gradient dominance condition [10,13].

The Polyak-Lojasiewicz condition is true for a sufficiently large class of non-convex
problems. This condition is known to be sufficient to show the global linear convergence
rate of gradient descent for sufficiently smooth problems without convexity assumptions.
In recent years, the gradient dominance condition has been extensively studied in various
areas of optimization and related sciences.

There are a number of ways to adjust the step of gradient methods. From the conver-
gence point of view on a wide set of function classes, the most universal way to adjust the
step is by the steepest descent method [11]. However, a possible problem here is the applica-
bility of such settings in the case of noise.

Without denying the merits of the gradient descent method, it must be said that it turns
out to be very slow when moving along a ravine, and as the number of variables of the
objective function increases, such behavior of the method becomes typical.

A number of step-adjusting methods are based on the use of constants of the function
class [10-15]. In many applications, it is not possible to obtain precise information about the
gradient and/or the objective function at each iteration of the method. This has led research-
ers to study the behavior of first-order methods that can operate under noise. In the case of
absolute or relative gradient errors, there are a number of ways to adjust the step of gradient
methods. Methods for adjusting the step of a gradient method under noise conditions have
been studied in a number of works [11,16-21]. The settings of the step of a gradient method
here are based on the use and tuning of the corresponding constants of the function class.
The influence of relative gradient noise on the convergence rate of the gradient method is
studied in [20,21]. Here, as well, the settings of the gradient method step are based on the
use and tuning of the corresponding constants of the function class.

In machine learning applications, it is well known that carefully designed learning rate
(step size) schedules can significantly improve the convergence of commonly used first-or-
der optimization algorithms. Therefore, the method of choosing the step size adaptively be-
comes an important research question [22].

Taking into account the convergence of the steepest descent method on a wide variety
of function classes, it seems relevant to construct algorithms for adjusting the step of the
gradient method based on the principle of the steepest descent method, which is not inferior
in efficiency to the steepest descent method and is suitable for solving problems under con-
ditions of significant relative interference on the gradient.

In this paper, we propose algorithms for step adaptation of the gradient method based
on the imitation of the principle of the steepest descent method. The main goal of the step
adjustment algorithm is to obtain a new point such that the gradient forms an angle of 90
degrees with the previous gradient at this point. We propose several step adaptation algo-
rithms. The proposed methods are studied numerically on a wide range of test problems.
The analysis of the proposed algorithms is carried out on a number of multidimensional test
functions. We compared the efficiency of the proposed methods with the steepest descent
method. To analyze the noise immunity of the methods to relative noise imposed on the
function gradient, we carried out a significant number of experimental studies. In some ex-
periments, the noise significantly exceeds the true function gradient.

The main contributions of the work are as follows:

1. The principle of step adaptation of the gradient method is developed.
Several step adaptation algorithms are proposed.
3. The proposed methods use only one gradient value per iteration.
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4. A step adaptation method is proposed such that in the case without interference, its
iteration costs are either equivalent to the number of iterations or significantly less than
the steepest descent method costs.

5. The proposed methods were studied under conditions of relative interference on the
gradient and their efficiency was established.

6.  The obtained algorithms converge at a high rate in the case where the radius of the ball
of uniformly distributed interference significantly exceeds the norm of the gradient
value.

The rest of the paper is organized as follows: In Section 2, the problem under study is
stated. In Section 3, algorithms for step adaptation in the gradient method are presented. In
Section 4, methods with incomplete relaxation, super relaxation and mixed relaxation are
considered. Section 5 presents the theoretical convergence analysis. In Section 6, the numer-
ical experiment results are given. In Section 7, a brief discussion is provided. Section 8 con-
cludes the work.

2. Problem Statement and Related Work

Let us consider the problem of minimizing a convex function f(x) on R*. We study gra-
dient methods, in which successive approximations are constructed according to the equa-
tions:

S =3 s =g el M

Here, g, =Vf(x;) is the descent direction and h is the step of one-dimensional

search. In the steepest descent method,
hy = argrzlellglf(xk —hs;). @)

One of the features of minimization methods is the choice of the step value (learning
rate). When choosing a constant step, the method may not converge or have the oscillations
near the minimum point. One of the methods for preventing the oscillation of gradient de-
scent is to slow down the parameter updates by decreasing the learning rate. This can be
performed by changing the learning rate based on how many epochs through the data have
been performed. These approaches typically add additional hyperparameters to control
how quickly the learning rate decays [23].

Adaptive methods for selecting a step at each point allow the dynamics of the objective
function values to be taken into account and do not contain parameters such as the Lipschitz
constant or an estimate of the distance from the starting point to the set of exact solutions to
the problem [24]. Adaptive methods that adjust the step size “on the fly” have become wide-
spread in large-scale optimization for their ability to converge robustly and are particularly
beneficial when training deep neural networks [25]. Adaptive choices of step sizes allow
optimization algorithms to accelerate quickly according to the local curvature and smooth-
ness of the optimization landscape. However, in theory, there are few parameter-free algo-
rithms, and, in practice, there are many search heuristics [26].

The adaptive step was first proposed by Polyak [11]. In his method (which does not
need to estimate the smoothness parameter of the objective function), the step was calcu-
lated as

P CAEYA
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where f* is the optimal function value.
In [25], the authors proposed a stochastic version of the classical Polyak step size:
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where the parameter 0 < ¢ < R is usually chosen as ¢ = 1/2 for optimal convergence. This
version was further improved in [27].

Paper [22] presents a general framework based on the Polyak step size to set the learn-
ing rate adaptively for first-order optimization methods with momentum.

Also, Jiang et al. [28] described two stochastic variants of the Polyak step size, AdaSPS
and AdaSLS. Berrada et al. [29] designed an extension of the Polyak step size where each
update only uses the loss function and its derivative rather than the full objective function
and its derivative, the learning rate is clipped to the maximal learning-rate hyperparameter
n and the minimum f* is replaced by the lower-bound of 0. The idea of gradient approxima-
tion in step size calculation was used in [30,31]. Loss values were also used to adjust the step
size in the method with a moving target [32].

In [33], the authors proposed a method with the adaptation via adjustment of the prox-
imal function itself. Since each dimension has its own dynamic rate, this dynamic rate grows
with the inverse of the gradient magnitudes, large gradients have smaller learning rates and
small gradients have large learning rates. This method laid the foundation for the AdaGrad
family [23,34-39], which has shown good results on large-scale learning problems. Many of
them are based on using gradient updates scaled by the square roots of the exponential
moving averages of the squared past gradients. For instance, in [23], instead of accumulating
the sum of squared gradients over all time, the author restricted the window of past gradi-
ents that are accumulated to be some fixed size. AdaGrad-Norm [40,41] was developed with
a single step size adaptation based on the gradient norm. Vaswani et al. [35] improved
AdaGrad performance using the following step-sizes:

hk = min M’hmw , (5)
AV,
and
h, =min f;’k(xk)_f;'k ’hmax , (6)

Vi (i )||i;1

where himax is the upper bound on the step size and A is a preconditioner matrix.
In [38], the step was chosen as follows:

el
By =2 @)
Sk Yk
where sk = Xk = Xk, Yk = Vf{xe1) = Vflxw).

Generally, adaptive step sizes from the AdaGrad family of methods are particularly
successful when training deep neural networks [28]. Theoretical results for the advantage of
AdaGrad-like step sizes over the plain stochastic gradient descent in the non-convex setting
were presented in [42].

The ADAM method [43] combines classical momentum [44] (using a decaying mean in-
stead of a decaying sum) with RMSProp [45] to improve performance. In [46], the RMSProp
was combined with Nesterov’s accelerated gradient. Reddi [37] proposed new variants of the
ADAM algorithm with “long-term memory” of past gradients. The authors in [47] apply the
variance reduction technique to construct the adaptive step size in ADAM.
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An ESGD scheme based on the equilibration preconditioner was proposed in [48]. The
authors take the absolute value of the Hessian eigenvalues to improve the method’s behavior,
in particular, in the presence of saddle points. The authors in [49] present two adaptive step
length schemes for strongly convex differentiable stochastic optimization problems: a recur-
sive scheme and a cascading scheme. A general nonlinear update rule for the learning rate in
batch and stochastic gradient descent was proposed in [50]. This method is shown to achieve
robustness in the relationship between the learning rate and the Lipschitz constant, and near
optimal convergence rates in both the batch and stochastic settings. An adaptive learning rate
rule that employs importance weights was presented in [51].

He et al. [52] proposed a mini-batch semi-stochastic gradient descent (mS2GD) algo-
rithm based on the competitive Barzilai-Borwein step size. An adaptive optimization algo-
rithm with gradient bias correction (AdaGC) was demonstrated in [22]. In this algorithm,
the iterative direction is improved using the gradient deviation and momentum, and the
step size is adaptively revised using the second-order moment of gradient deviation.

In [53], AdaBelief is proposed to adapt the step size according to the “belief” in the
current gradient direction. Using the exponential moving average of the noisy gradient as
the prediction of the gradient at the next time step, if the observed gradient greatly deviates
from the prediction, this method take a small step; if the observed gradient is close to the
prediction, the method take a large step. AdaDerivative [54], in contrast to AdaBelief, can
adaptively adjust step sizes by applying the exponential moving average of the derivative
term using past gradient information without the smoothing parameter, thereby avoiding
the overshoot problem.

Successive piecewise-affine approximations are used for minimization in the works
[55-57].

In [5], two adaptive step size estimation methods are proposed for the complex-valued
Nesterov accelerated gradient algorithm.

For a class of problems with a sufficiently smooth objective function satisfying the Pol-
yak-Loyasiewicz condition, in paper [16], an adaptive gradient method is proposed that
uses the concept of an inexact gradient. However, in this work, it is still necessary to know
the exact estimate of the magnitude of the absolute gradient error. In [58], an algorithm is
proposed that involves adjusting not only the smoothness constant of the function, but also
the magnitude of the absolute error of the gradient. In paper [21], two adaptive algorithms
are proposed for problems with objective functions satisfying the Polyak-Loyasevich con-
dition, in the presence of relative inaccuracy in specifying the gradient.

Let us formulate the basic principle of step adjusting in the gradient minimization
method with step adaptation. The step adjustment is carried out only on the basis of infor-
mation about the function gradients. In the steepest descent method (1), (2), an exact one-
dimensional search is performed (2). Successive gradients are orthogonal to each other:

(8> &ks1)=0. 8)

Given the fact that in the steepest descent method, pairs of adjacent gradients are mu-
tually orthogonal, we can construct a step adaptation method using the value of the scalar
product (gy.gx1) :

1. The step is too large if there is an obtuse angle between adjacent gradients, that is,
(8%>8141)< 0. Therefore, the step should be reduced.
2. If there is an acute angle between adjacent gradients, that is, (g;,g;.;)> 0, then the
step is too small, and it should be increased.
Another adaptation idea is to replace complete relaxation with some degree of incom-
plete relaxation or over-relaxation. Another possibility for organizing the step adaptation
algorithm is to randomize the strategies of incomplete relaxation and over-relaxation.
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Each of the listed strategies determines only the moment of decreasing or increasing
the step. Another important question is how and how much to increase or decrease the step
at the iteration. Each of the noted strategies should be provided with quantitative values of
step updating. In this paper, we use some constant coefficients of step decrease and increase,
as well as estimates for the current optimal step in order to use them to calculate the step-
adjusting coefficients. The article describes the noted step adaptation strategies and formu-
lates adaptation algorithms. In the next section, these ideas will be formulated in the form
of algorithms.

3. Algorithms for Step Adaptation in the Gradient Method

The simplest algorithm for adapting the step of the gradient method is based on the
idea of adjusting the orthogonality of successive gradients. If an angle between adjacent
gradients is obtuse, (g;,g;,,)<0, then the step should be reduced. In the case of an acute

angle between adjacent gradients, (g;,g;.;)> 0, the step should be increased. The follow-
ing Algorithm 1 works on this basis.

Algorithm 1 (A1(q))
1. Set g > 1, the search step ho >0, the initial point xo.
2.Fork=0,1,2,... do
2.1 Search for new approximation x;.; = x; —hys;, S, =gy /||gk ||
221f (54,8441)>0
then z, =g

else z; =1/q.

2.3 Compute the new search step hk a= Zkhk

Condition (8) (s;,g441)=0 ensures complete relaxation. Here and below,
Sy =g/ ||gk || . We will consider algorithms with incomplete relaxation and over-relaxation.
Denote by y(h)=(Vf(x; —hs;),s;) aderivative of the function @(h) = f(x; — hs;) with re-

spect to h. If the function is quadratic, then y(h) is a linear function of h. Figure 1 shows this
situation.

y(h1)

y(0)

Figure 1. Function ¢(h) and its derivative.

Assuming the function ¢(h) is quadratic, based on two observations y(0) and y(h1), we
compose a linear representation:
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-y(0
1
Denote the step providing (8) by i*. Condition (8) for (9) has the form:
-0
Y(I*) = (0) + h *% =0- (10)
Solving (10), we find
h*=h _ 0 (11)
1
y(0)—y(h)

In (11), the discrepancy (error) between the current step 11 and the optimal step h* is
explicitly given. The error coefficient at the current step can reach large values. Taking into
account that the function being minimized is not quadratic, the error coefficient
v(0)/(¥(0) — y(hy)) in (11) can be used to change the step. This enables us to determine the
shift of the current step /i towards the predicted /1* using some degree of their convergence,

for example,
nt=h _ 0 ) 12
W50~ vy 12

In the future, we will use Equation (12) in the adaptation algorithms. To avoid errors
associated with noise when calculating y(h), we impose a restriction on the radical expres-
sion in (12):

yo oo
WO —yhy P17 (13)

Considering that the numerator and denominator of the last expression are negative,
we may rewrite (13), making them positive: |y(0)|/|(y(0) - y(hl))| <q,q > 1. To avoid
division errors, the inequality can be written in the following form:

ly(0)] < qly(0) —y(hy)l, q>1. (14)
Using (14), we obtain the setting for the step
h =~zxh, (15)
where

q if [p(0)] > g|y(0) - y(h)),
z= |y(0)
[y(0)— y(h))|

otherwise. (16)

We use the step tuning (15), (16) in the adaptation Algorithm 2.
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Algorithm 2 (A2(q))
1. Set g > 1, the search step ho > 0, the initial point xo.
2.Fork=0,12,... do

2.1 Search for new approximation x;.; = x; — IS, S, = g /"gk".

221f |(Sk’gk)|>q|(sk7gk)_(sk7gk+l)|
then z, =¢

|(S k> 8k )|
|(Skagk) - (Skagk+1)|
2.3 Compute the new search step

else z, =

IRENENS (17)

4. Algorithms for the Step Adaptation of the Gradient Method with
Incomplete Relaxation, Super Relaxation and Mixed Relaxation
In the previous section, the step was adjusted based on a model /*. In this section, we
will choose a model
h=(1+a)h*, a>-1- (18)
To organize an algorithm of Algorithm 1 type, we need a bound on the scalar product
(S»gr+1) to decide whether to increase or decrease the current step.
Assuming the function is quadratic, we use model (15) to calculate the boundary
« Y(h)=y(0)
hy
y(0)  y(h)-x(0) (19)
=y(0)+(1+a)h
0 =y(h)
=3(0)=(1+a)y(0)=-ay(0).

Exceeding the boundary y(4)>—-ay(0) means that the step & is too small. The case

Y(1+a)h’ )=y(0)+(1+a)h

y(h) < —ay(0) means that the step is too large (in Figure 1, this boundary is shown by a dot-
ted line for a negative value of ).

Based on (19) and the last remark, we formulate Algorithm 3 with a fixed adaptation
step.

Algorithm 3 (A3(q, o))
1. Set g > 1, the search step ho >0, the initial point xo, parameter o > —1.
2.Fork=0,1,2,... do

2.1 Search for new approximation x;.; =x; —hys;, S =gy /||gk ||

22 1If (Sk,g/(+1)>_a(sksgk)
then z, =¢q

else z; =1/q.

2.3 Compute the new search step /1 =z /. .

In Step 2.2, the value —a(sy,g,) acts as a boundary for the step adaptation parameter
(s5-&1) -

Next, we will consider adaptation based on the predicted step value using a quadratic
model of the function. From (12), we obtain



Mathematics 2025, 13, 61 9 of 38

Wa=(+ay =i LrONO
y(0) = y(y)

As an adjusted step, we will take the following:

TSR0
h™=h |———— .
N0~y @

Instead of expression (21), we can use dependencies reflecting the tendency 4" — ha

(20)

Further, in the adaptation algorithms, we will use Equation (21). To avoid errors asso-
ciated with noise when calculating y(h), we impose a restriction on the radical expression in
(12):

(1+@)(0) _ 1
YOyl 1T (22)

Considering that the numerator and denominator of the last expression are negative,
we may rewrite (22), making them both positive: ((1 + a)|y(0)])/|(y(0) — y(h))| < q.q >
1. To avoid division errors, the inequality can be written in the following form:

(1+ @) (0)] < g|¥(0) = y()}, g > 1. (23)
Using (23), we obtain step adjusting;:
ht =~zhy, (24)
where

q if 1+a)|y(0)> g|y(0)— y(h)),
z= (1+a)|y(0)
[y(0)— y(hy)|

otherwise. (25)

Let us formulate the algorithm of the gradient method with step adaptation taking into
account the predicted value and type of relaxation (21). We use the step tuning (24), (25) in
the adaptation algorithm (Algorithm 4).

Algorithm 4 (A4(q, o))
1. Set g > 1, the search step ho >0, the initial point xo, parameter o > —1.
2.Fork=0,1,2,... do
2.1 Search for new approximation x;,; =x; — s, S, =gy /||gk||.
221f (1+a)|(s6, 80| > a5k €)= (55> 84|
then z, =¢

1+ 05)|(5k 8k )|
|(Skagk) - (Skagk+1)|
2.3 Compute the new search step

else z, =

B =z by (26)

We organize mixed step adaptation by randomizing the parameter «
acla,bl,a>-1,b>a. (27)

In our numerical experiments, we used uniform distribution on the segment when
choosing the parameter « in accordance with (27). The algorithm of the gradient method
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with step adaptation with randomized predicted value and type of relaxation (21) is pre-
sented below. We use the step tuning (24), (25) in the adaptation algorithm (Algorithm 5).

Algorithm 5 (A5(q, afa, b]))
1. Set g > 1, the search step ho > 0, the initial point xo, parameters of the segment [a,b] a> -1,
b>a.
2.Fork=0,12,... do
2.1 Search for new approximation x;.; = x; — IS, S, = g /"gk".

2.2 Set ae(a, b].
231f (1+a)|(skagk)|>q|(sk7gk)_(skagk+l)|
then z, =¢
1
else z, — ( +a)|(skagk)|

|(Skagk) - (Skagk+1)| .
2.4 Compute the new search step

gy = \/ghk' (28)

In the next section, the efficiency of the proposed step-adaptive gradient method algo-
rithms will be investigated on test functions.

5. Convergence Analysis

Let us study the change in the convergence rate when applying to a gradient a relative
interference uniformly distributed on a ball of radius

R(x) = AV ()| (29)

Approximate estimates of costs for a given A are based on a comparison of estimates for
A =0. In methods for solving systems of equations, any estimates are based on the use of the
boundaries of the matrix eigenvalues. In this case, if a gradient method with a constant step is
used, then its step is determined based on the boundaries of the eigenvalues spectrum.

We do not have the boundaries of the matrices of second derivatives for the functions
being minimized; however, these matrices also vary significantly depending on the current
point. For an approximate estimate of the dependence of costs on A, we obtain a relation for
the simplest quadratic function and calculate the increase in these costs compared to A =0.
Considering that the estimates of the convergence rate on quadratic functions of the gradi-
ent method with an optimal step coincide with the estimates of the convergence rate for the
steepest descent method, we will use the results for the steepest descent method when cor-
relating the results with noise.

Let us estimate the convergence rate of the gradient method with a constant step in the
presence of noise. Consider a one-dimensional function whose gradient is calculated with
noise

f()=x"/2, Vf(x)=gx)=x+A|x|n, n€[0,1], (30)
where 7 is a random number. To minimize it, we use a gradient method with a constant step
x'=x—hg=x—-h(x+A|x|n)=x(1-h)—hA|x|7. (31)

Find the expectation

M"Y =Mx(1-h)—hA|x|7) =x*(1-h)’ + *A*x°U =
=xX*((1-h)* + *A*U) = x*(1-2h + B> (1+ A*V)),
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where U =M(r).
For a uniform distribution 7 on a unit ball with n =2, it can be calculated as follows:

1 5 1
U=Ior 2ﬂrdr/j02ﬂrdr=1/2- (33)

For a uniform distribution 1 on a unit ball with large n values, U = 1.
Expression (32), according to (30), determines the change in the function at the iteration.
Let us find the optimal step based on (32)

(1-2h+ K (1+AU)) =-2+2h(1+AU) =0. (34)

Therefore, h* = 1/(1 + A2U).

When minimizing multidimensional functions, the optimal step would be significantly
smaller due to the spectrum boundaries of the second derivatives matrix. Therefore, we use
the step

h=gh*=q/(1+AU), g<I. (35)
for the evaluation of the indicator 1 — 2k + h2(1 + A2U) from (32). Then,

O(A) =1-2h+ P (1+AU)=1-2¢/ 1+ AU)+ ¢ A+ AU)/ (1+ AU =,

2 2 2 2 ) (36)
=1-2¢/(1+AV)+¢* | 1+ AU)<1-q/ (1+A°U) <exp(—q/ (1+ AU)).

Therefore,
0(0) = O(A)*. (37)

Denote by N(A) the number of iterations of the method to achieve a given accuracy for
the function. Then, according to (37), the cost ratio will be as follows:

N(A)=(1+A’U)N(0)- (38)

We use the dependence on the magnitude of the noise (38) to estimate the number of
iterations in our problems. Since the estimates for the steepest descent method and the gra-
dient method with the choice of the optimal step for minimizing quadratic functions coin-
cide, we will use the number of iterations of the steepest descent method as N(0).

6. Numerical Experiment

Our experiments were performed on smooth test functions, where the usual steepest
descent method converges with the geometric progression rate. The minimum of test func-
tions is uniquely defined. Test functions include functions with curvilinear ravines and
functions that differ significantly in properties from quadratic ones. The tests take into ac-
count nonlinearities, non-quadraticity and the curvature of ravines with different degrees
of problem determination. The calculations are carried out for a number of dimensions.

The local behavior of algorithms in a local region of some nonlinear function where
there is a bounded matrix of second derivatives is reflected in tests on a quadratic function
at different degrees of conditionality. These data can be extrapolated to non-quadratic func-
tions with an existing matrix of second derivatives, where the number of iterations required
is several times greater.

The objectives of the numerical experiment are as follows:

1. Evaluate the efficiency of the proposed algorithms and compare their efficiency with
the efficiency of the steepest descent method under conditions without interference.

2. Determine the effects of convergence acceleration in the proposed methods and iden-

tify modifications that have accelerated convergence.

Study the effect on the convergence rate when applying a gradient of relative inter-

ference uniformly distributed on a ball of radius R(x) = A”Vf (x)".
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4.  Make estimates of the iteration costs given (29).

Denote the steepest descent method by GR. Among the methods presented above, the
following algorithms were used: Algorithm 1 (Al(g)), Algorithm 2 (A2(g)), Algorithm 4
(A4(q, o)), Algorithm 5 (A5(g, afa, b])).

In all methods, the function and gradient were calculated simultaneously. In step-
adaptive algorithms, function calculations are not required. The stopping criterion was
feH-f<e.

Tables A1-A23 show the number of iterations (the number of gradient calculations) for
the methods with step adaptation. For the gradient method (GR), the number of iterations
and the number of calculations of the function and gradient used to form the descent direc-
tion and one-dimensional minimization are given. We will compare the efficiency of the
methods only by the number of iterations. The values of xo and ¢ are given in the description
of the corresponding function.

6.1. Rosenbrock Function

The Rosenbrock function has the form:

Fr(x) =1000x, = x7)* + (3 — 1), (39)

Its minimum point is x* = (1, 1)T. Two points were selected as starting points: x1™ = (0,
0), x2' = (-1.2, 1). The stopping criterion was f(xk) - f* <e=107"7,

In Tables A1 and A2, the number of iterations of the algorithms A4(g, o)), A5(g, a[a, b])
and GR method required to achieve a given accuracy for different a values is presented.
One-dimensional search in the steepest descent method was performed based on cubic in-
terpolation using function and gradient information.

Tables Al and A2 and Figure 2 show calculations for large values of g, where the con-
vergence rate turned out to be higher. But, as we will see below, for functions with a lower
degree of conditionality, the costs will be just as high with such parameters, and for small g,
these costs will be significantly lower. This problem of equal efficiency for different degrees
of conditionality is solved by randomization of the A5 algorithm. The application of this
algorithm is equally effective at different levels of conditionality. Also, this algorithm allows
obtaining more effective results at a low interference level.

14,000

12,000
10,000
8000
6000
4000 mx0=x1
2000 I W x0=x2
0

(’% Q;\\ \\ '.‘/ V\ b\ Q’\ o,"J\ qq\
P S H // P~

q"" & L8 S’ 9 & LY LY ¢
N YA AD
X & 3 (K E G
& v“\o S P v“\o v?'\Q

Number of iterations

V4
(.)\Q

L R O

Figure 2. Number of iterations of the algorithms GR, A4(q, a), A5(g, a[a, b]) required to achieve a given
accuracy for different a values from initial points x1 and x2. Function £, (x) = 100(x, — x2)% + (x, —1)*-

In Table A3 and Figure 3, the results of minimization with interference are presented.
The first column of the table indicates the interference parameter A imposed in accordance
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with (29). It is assumed that the interference is uniformly distributed in the sphere. For some
functions, the interference is distributed on the surface of the sphere, which will be specifi-
cally discussed. Empty cells here and below mean that the algorithm does not converge as
the noise level increases.

900000

800000

@ 700000
2

£ 600000

3

£ 500000 = A1(q-1.01)

A

S 100000 " A2(q-3)

[

E 300000  A5(q=3, a[-095,1.8))
5

Z. 200000 A5(q=>, [-0.95,1.8))

100000

0 -
0206 1 14182226 3 34384246 5 54586266 7 7478

Interference A

Figure 3. Number of iterations of the algorithms A1(g), A2(q), A4(g, ), A5(q, a[a, b]) required to achieve
a given accuracy from initial point x1 with interference. Function £, (x) =100(x, — x2)? + (x; —1)*-

On this function, the algorithms A1(g), A2(g) are approximately the same and can with-
stand significant interference. Here is an example where the radius of the interference ball
is 8 times greater than the gradient norm. In the case of interference, the algorithm A5(g, a[a,
b]) turned out to be effective, but only for small interference values.

6.2. Quadratic Function

The following quadratic function is tested:

—_

i—

Jfo(x,[amax]) = %z a; x?, a; = amax"!. (40)
i=1

—_

The eigenvalues ai of this function have the boundaries Amin =1 and Amaw = amar. The start-
ing point was x¢ = (100, 100, ..., 100). The stopping criterion was f(x*)— /" <&=107"7.

Tables A4-A6 and Figure 4 show the results of function minimization for different de-
grees of conditionality.
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Figure 4. Number of iterations of the algorithms GR, A4(g, a), A5(q, a[a, b]) required to achieve a
given accuracy for different a values (a) Function f,(x) =% ( 1O%xi2; (b) Function f,(x) =

1 i1 1 =1
22021 100m-1xf; (€) fo(x) = 5 XiL; 1000m-1x7.

Depending on the conditionality of the problem, the algorithm A4(q = ,ar) has good
results for different values of . The algorithm A5(q = «,a[a, b]) has equally good results,
surpassing the results of the steepest descent method.

Conclusions can be drawn regarding the convergence rate of algorithms:

1. Algorithm A4(g = =, a) achieves good results with different parameters « for different
degrees of conditionality. This parameter can only be determined experimentally.

2. Algorithm A5(q = =, afa, b]) achieves good results with fixed parameters of the algo-
rithm for different degrees of conditionality. From this point of view, it can be consid-
ered universal.

3. The best versions of algorithm A4(g = e, a) and algorithm A5(g = =, a[a, b]) are less
expensive in terms of the number of iterations compared to the gradient method.

Table A7 and Figure 5 shows the results of minimizing a quadratic function under gra-
dient interference for dimension N = 1000.

30000

25000

20000

Al(q=1.1)
15000

mA2(q=3)

10000 W A5(q=3, a[-0.95,1.8])

Number of iterations

5000  A5(q=e, af-0.95,18])

0 4
0206 1 14182226 3 34384246 5 54586266 7 7478

Interference A

Figure 5. Number of iterations of the algorithms A1(g), A2(g), A4(g, @), A5(q, a[a, b]) required to achieve

. s . 1 Lt
a given accuracy with interference. Function f,(x) = > " 100m-1x?.

On this function, the algorithms A1(g), A2(q) are approximately the same and can with-
stand significant interference. Here is an example where the radius of the interference uni-
formly distributed in the ball is 8 times greater than the gradient norm. In the case of inter-
ference, the algorithm A5(g, a[a, b]) turned out to be not so effective even for small values of
the error level.
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6.3. Functions with Ellipsoidal Ravine

The following function has a multidimensional ellipsoidal ravine. Minimization occurs
when moving along a curvilinear ravine to the minimum point.

n 2 i1
S (x,Jamax,bmax]) = (1-x, )* + amax[l =>x /b, j , b =bmax"s (41)
i=1
The starting points were x1=(-1, 0.1, ..., 0.1), x2=(-1, 2, 3, ..., nn). The stopping criterion
was f(x*)-fT<e=107".

Tables A8-A10 and Figures 6 and 7 demonstrate the results of function feer minimiza-

tion.
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2
& 7000
£ 5000
2
< 5000
5 mN=10
& 4000
E 3000 mN=100
4 =
2000 N=1000
1000 t ®N=10,000
o 1 Il II
& D '\,\ 0\ '_\, v\ ‘o\ ‘b\ q‘o\
S
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Figure 6. Number of iterations of the algorithms GR, A4(g, @), A5(g, a[a, b]) required to achieve a given

accuracy for different a values from the initial point x2. Function fgg, (x) = (1 —x;)? +10(1 —

2
n Xi )2
i=1" i-1

10n-1

Algorithm A4(q = =, a) has good results for different values of a for different initial
points and dimensions of the problem. That is, a preliminary experiment is required to select
the optimal parameters. Algorithm A5(q = =, a[a, b]) has good results regardless of changes
in the dimension and degree of conditionality of the problem. Its results in terms of the
number of iterations exceed the results of the steepest descent method.
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50000

Al(g=1.1)

40000
m A2(q=3)
30000

m A5(q=3, a[-0.95,1.8])
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Number of iterations

B A5(q==°, a[-0.95,1.8])
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0
0206 1 14182226 3 34384246 5 54586266 7 7478

Interference A

Figure 7. Number of iterations of the algorithms A1(g), A2(q), A4(g, ), A5(q, a[a, b]) required to achieve

2
a given accuracy with interference. N = 1000, function fgg; (x) = (1 —x1)? +10(1 - Y%, X2,
10n-1

On this function, the algorithms Al(g), A2(g) are approximately the same and with-
stand significant interference. Here, the interference is uniformly distributed in the ball, the
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radius of which is 8 times greater than the gradient norm. In the case of interference, the
algorithm A5(g, afa, b]) shows good results only at a low level of interference.

The convergence rate of the algorithms Al(g), A2(q) depends little on the interference.
This is explained by the presence of a ravine, where interference creates the possibility of
moving not to the bottom of the ravine, but along it.

In order to make the dependence of the iterations number on the magnitude of inter-
ference noticeable, in the next test, we reduced the dimension, and the interference on the
gradient was made uniformly distributed on the surface of the ball for different values of
the gradient interference parameter (29). Tables A11-A13 and Figures 8 and 9 demonstrate
the results.

14000

@ 12000
g

5

= 10000

<

3

2 8000 " Al(g=1.1)

s

= 6000 = A2(q=3)

v

'E 4000 m A5(q=3, a-0.95,1.8])
El

Z. 2000 B A5(q=>°, «[-0.95,1.8])

0
0206 1 14182226 3 34384246 5 54586266 7 7478

Interference A

Figure 8. Number of iterations of the algorithms A1(g), A2(q), A4(g, ), A5(q, a[a, b]) required to achieve

a given accuracy with interference from initial point x2. N = 100, function fgp; (x) = (1 —x,)? +
2
10(1 - ¥, )%
1071

On this function, the algorithms Al(g), A2(g) are approximately equal in efficiency and
can withstand significant interference. Here, the interference is uniformly distributed over
the surface of the sphere. In the case of interference, the algorithm A5(g, a[a, b]) shows good
results at a low level of interference. Here, the dependence of the convergence rate of the
algorithms A1(g), A2(g) on the magnitude of interference appears more clearly.
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Figure 9. Number of iterations of the algorithms GR, A4(q, a), A5(q, a[a, b]) required to achieve a given

accuracy for different a values from the initial point x2. Function fgg, (x) = (1 —x;)? +30(1 —
n x 2
i=1" i-1 )
1071

In Figure 9, the degree of degeneracy of the ravine has increased compared to the pre-
vious example. Algorithm A4(g = e, @) has good results for a = 0.95. Algorithm A5(g = o,
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afa, b]) has good results, significantly exceeding the results of the steepest descent method,
which confirms its universality.

In Figure 10, algorithms A1(g), A2(g) are approximately equal in efficiency at the inter-
ference level A <5. At higher values, algorithm A2(g) shows better results. Both algorithms
withstand significant interference. Here, the interference is uniformly distributed on the sur-
face of the sphere. In the case of interference, algorithm A5(g, a[a, b]) shows good results at
a low interference level.
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mAl(g=1.1)
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mA2(q=3)
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m A5(q=3, a[-0.95,1.8])
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Figure 10. Number of iterations of the algorithms A1(q), A2(q), A4(q, ), A5(q, a[a, b]) required to
achieve a given accuracy with interference from the initial point x2. N = 100, function fggy(x) =

2
(1-x)?+30(1-3L, 252
10n-1

The next function also has a multi-dimensional ellipsoidal ravine.

n 2 2 n 2 i—1
. 1 X —
x,Jamax])=(1-x 2 4 gmax|1- L +=» L b, =bmax"!, bmax =10. 42
S tamad) - - vama 13 32 @
The starting points were x1=(-1, 0.1, ..., 0.1), x2=(-1, 2, 3, ..., nn). The stopping criterion

was f (xk )—f "<£=10""". Due to the additional term in feerx, the minimum point ceases

to be singular. This allows the gradient method to find the minimum of the function at
higher ravine coefficients amx with higher accuracy compared to the function feer. Tables
A14-A16 and Figures 11 and 12 show the results of function fezix minimizing.
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Figure 11. Number of iterations of the algorithms GR, A4(g, @), A5(g, a[a, b]) required to achieve a

given accuracy for different a values from initial point x2. Function fggx(x) = (1—x1)%+
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On this function, the degree of the ravine degeneracy has increased compared to the
previous function feer. Algorithm A4(g = <, @) has good results for a = 0.95. Algorithm A5(g
= oo, afa, b]) has good results, significantly exceeding the results of the steepest descent
method, which, together with the results of minimization of the previous functions, con-
firms its universality.
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Figure 12. Number of iterations of the algorithms A1(g), A2(q), A4(q, @), A5(q, a[a, b]) required to

achieve a given accuracy with interference from initial point x2. N = 100, function fgg;x(x) =

2

2 2

n _X Ign _Xi

=1 i—1) +EZi:1 i-1
i-1 Lo

10n-1 on-1

(1 - x;)? + 100 (1 -

On this function, the Al(g) algorithm slightly outperforms the A2(q) algorithm. This is
due to the decrease in the step tuning value in Al(g = 1.01) from the previous g = 1.1. Both
algorithms withstand significant interference. Unlike the previous results, here, the interfer-
ence is uniformly distributed over the sphere. In the case of interference, the A5(q, a[a, ])
algorithm shows good results at a low interference level. As the interference level increases,
the A5(g, afa, b]) algorithm ceases to converge.

The following function was used to analyze the effect of noise on the gradient compo-
nents.

i1
=amax"!, x,=(1,1,..,1)"

, 2 (43)
fora (x,[amax]) = [Z a; x; J _—
i=1

The matrix of second derivatives of this function tends to zero as it approaches the
minimum. The stopping criterion was f(x*) - f* <&=10""". Tables A17-A20 and Figures

13 and 14 show the results of function fo» minimization for different degrees of elongation
of the level surfaces.
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Figure 13. Number of iterations of the algorithms GR, A4(g, @), A5(q, a[a, b]) required to achieve a
2

given accuracy for different a values (a) Function fy»,(x) = ( 1 100:1;—11xi2) ; (b) Function fy, (x) =

i-1 2 i—1 2
( . 1000"_1xi2) ; () fQI\z(x) = ( ( 10000"_1xi2) .

Depending on the elongation of the function level surfaces, the algorithm A4(g =, a)
has good results for the same values of a = 0.95. The algorithm A5(g = <, a[g, b]) has equally
good results, surpassing the results of the steepest descent method.

The following conclusions can be drawn regarding the convergence rate of the algo-
rithms:

1. Algorithm A4(q = o, a) achieves good results at a = 0.95 for various degrees of elonga-
tion of the level surfaces. This parameter can only be determined experimentally.

2. Algorithm A5(q = e, a[a, b]) achieves good results with fixed algorithm parameters for
various degrees of elongation of the level surfaces. From this point of view, it confirms
its universality.

3. The best versions of algorithm A4(g = e, a) and algorithm A5(g = o, a[a, b]) are less
expensive in terms of the number of iterations compared to the steepest descent
method.
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40000 Al(g=1.1)

30000 HA2(q=3)

20000

= A5(q=3, a[-0.95,1.8])

Number of iterations
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Figure 14. Number of iterations of the algorithms Al(q), A2(g), A4(g, a), A5(q, ala, b]) required to

i-1 2
achieve a given accuracy with interference. N = 1000, function fy,(x) = ( (. 1000Exi2) .

On this function, the algorithms Al(g), A2(q) are approximately equivalent in effi-
ciency. In the case of interference, the algorithm A5(q, a[a, b]) turned out to be more efficient
only for small values of the noise level. In the case of a strongly elongated curvilinear ravine
(at amer=10,000), algorithms Al(g), A2(g) with their given parameters failed to obtain a solu-
tion at interference level A > 6. As experience in testing the algorithms A1(g), A2(g) shows,
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reducing the step boundary g allows to obtain a solution for large values of interference. At
the same time, with small interference, there is some slowdown in the convergence rate.

The next for testing was the Raydan1 function. It is biased to obtain a new function
with a zero minimum value:

i-1

fr(x,Jamax]) = Z—(exp(x) x, 1), @, =amax", x,=(2,2,..2) (44)

The stopping criterion was f (x")= " <&=10""". In this function, the banks of the
ravine differ significantly in steepness. The behavior of the gradient method with step ad-
aptation under such conditions is of interest. Tables A21-A23 and Figures 15 and 16 demon-
strate the results of function fr minimization.
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Figure 15. Number of iterations of the algorithms GR, A4(qg, «), A5(q, a[u, b]) required to achieve a
1001 .
given accuracy for different a values (a) Function fr(x) = XL, (e*i —x; —1); (b) Function
1000n T
frO) =YL —— (" —x;— 1).

Figure 15 shows the results of function minimization for different degrees of elongation
of the level surfaces. Depending on the elongation of the function level surfaces, the A4(g =
oo, o) algorithm has good results for different values of a. The A5(g = <, a[a, b]) algorithm
has equally good results, surpassing the results of the steepest descent method.
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Figure 16. Number of iterations of the algorithms Al(g), A2(q), Ad(g, ), A5(q, afa, b]) required to

achieve a given accuracy with interference. N = 1000, function fz(x) = YL, 1o0m-s (e*i—x; — 1).
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On this function, algorithms Al(g), A2(q) are approximately equivalent in efficiency. In
the case of interference, algorithm A5(g, a[a, b]) turned out to be not so efficient even for
small values of the error level.

7. Discussion

To illustrate the convergence of the abovementioned algorithms, we consider the log-
arithm of the minimization error f(x*)— f* against iterations for the quadratic function
fo (Figure 17).

20 GR
10 I~ — A4(a=0)
A5

0 % —rr rrrrrrrrrrrrrrrrrrrrr1r1rr11
1 35 7 9111315 1232527293133353739
-20 \

=30 Number of iterations/20

In(Err)
|
—_
o

Figure 17. Minimization error in logarithmic scale against number of iterations with 20-iteration step.

As can be seen, a linear convergence rate takes place. Methods GR and A4(g = <, @) are
almost equivalent, although the GR method uses a one-dimensional search. Moreover,
method A5(g, a[a, b]) has a higher linear convergence rate.

In real minimization problems, the costs of methods are proportional to the dimension
and are small compared to the time to calculate the function and gradient. Since the main
costs are incurred in calculating the function and gradient, the steepest descent method re-
quires at least calculating the function and gradient. The proposed method calculates only
one gradient, which means that compared to the steepest descent method, the time is re-
duced by more than 2 times.

The iteration runtime for the considered methods is presented in Table 1 and Figure
18. The runtime for the A4(g = e, a) and A5(q, a[a, b]) methods is equivalent.

Table 1. Runtime in seconds per iteration for the gradient method (GR) and new methods with step
adaptation (A4, A5).

Function

N=10 N=100 N=1000 N =10,000
GR A4, A5 GR A4, A5 GR A4, A5 GR A4, A5

fax, [ane = 1000])

- - 2.018 x10° 1.083x10° 9.341 x10° 3.258 x 10> 8.446 x 10* 3.236 x10*

feen(x, [amer =10, buax =10])  6.782 x 10  4.400x10°¢  1.174x10° 7.592x10° 6.195x10° 3.738x10° 5.610=10* 3.409 x 10

fEELX(x, [ﬂmax = 100])
fora(x, [ams = 100])
i, [ame = 100])

4.632x10°¢ 3.006x10° 9.637x10° 6.233x10°¢ 6.971 x10° 4.116x10° 6.050x10* 3.973 x 10
5554 x10° 4.556x10° 1.026x10° 1.011x10° 1.079x10* 5.624x10° 1.302x10° 5.873 x10*
2.345x10° 1426x10° 6.288x10° 3.306x10° 2910x10* 1.472x10* 3.099x10° 1.640 x 103
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Figure 18. Iteration runtime (s) for the function fee(x, [ame = 10, bmax = 10]). GR is gradient method; A4

and A5 are the new methods with step adaptation.

Let us test the theoretical convergence analysis in practice. For the Rosenbrock func-
tion, the cost of the number of iterations of the steepest descent method for different initial
points is 9150 and 11,865 iterations. For A = 3, taking into account (33) and (38), we obtain
N(A) = (1 + A2U)N(0) = (1 + 9/2)N(0) = 5.5N(0). For different initial points, we obtain N(A) =
50,325 and N(A) = 65,260, while the actual costs are 59,616 and 43,264.

For A =8, we obtain N(A) = 33N(0). For different initial points N(A) = 30,1950 and N(A)
= 351,543, the actual costs are 97,469 and 379,943. For the Rosenbrock function, we obtained
a good match between the calculated and real data, although the Rosenbrock function is far
from a quadratic function.

For a quadratic function, the cost of the number of iterations of the steepest descent
method for different function coefficients is 835 and 8239. For A =3 N(A) = (1 + A2U)N(0) =
(1+9)N(0) =10N(0). The theoretical values are N(A)=8350 and N(A)= 82,390, while the actual
costs are 3440 and 28,925. For A =8, we obtain N(A) =65N(0). The theoretical values are N(A)=
54,275 and N(A)= 535,535, while the actual costs are 23,166 and 153,001.

For the quadratic function, the actual results were even better than the estimates. At
the same time, the actual data are more consistent with the use of the A5(q = =, a[a, b])
algorithm as N(0) data.

The question arises as to why in many cases deviation from the step selection of the
steepest descent method yields better results. In linear algebra, there is a multi-step optimal
process for solving systems of linear equations, the parameters of which are calculated based
on the boundaries of the matrix spectrum. But it turns out that this process can be imple-
mented as a gradient method, the steps of which are calculated based on Chebyshev poly-
nomials. The steepest descent method descends into a ravine and moves toward a minimum
in small steps. In the case of variability of steps, there is a move away from the ravine, which
allows moving toward a minimum with large steps. In our case, in the A5(q = <, afa, b])
algorithm, there is a change in the step, which makes it oscillatory to a certain extent, which
facilitates movement with large steps. In the case of interference due to randomness in the
direction, the method has large oscillations relative to the ravine, which facilitates faster
movement toward the minimum. This is probably why real results for a quadratic function
give better results.

Let us summarize the features of the studied algorithms with step adaptation in the
gradient method in the cases without interference and with interference.

Without interference:

1.  Algorithm A4(g = o, ) achieves the best (minimal) results with different parameters o,
which depend on the degree of conditionality of the problem and the choice of the
starting point (Figure 19).
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Figure 19. The effect of parameter a on convergence rate in Algorithm A4(q = e, @) for the function fo.

2. The best results of algorithm A4(g = o, @) are either comparable or significantly exceed
the results of the steepest descent method in the number of iterations.

3. The results of algorithm A5(g = <, a[a, b]) with fixed parameters correspond to the re-
sults of the optimal algorithm A4(g = e, @) (Figure 20). This means that there is no need
to preliminarily choose the parameters for the A4(q=c°, a) algorithm. To obtain optimal
results one can use the A5(q = =, a[g, b]) algorithm, the parameters of which are fixed.
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Figure 20. Average number of iterations among all test functions without interference.

With interference:

1. Algorithm A5(q, a[a, b]) is applicable only for minor interference. However, its results
are not always more significant than the results of algorithms A1(g), A2(g).

2. Algorithms Al(g), A2(q) are applicable for high interference levels. We have given ex-
amples where the radius of the interference uniformly distributed in the sphere exceeds
the gradient norm by 8 times (Figure 21a).

3. The convergence of algorithms Al(g), A2(q) depends on the restrictions imposed on the
parameter g (Figure 21b). For smaller values of the parameter g, the algorithms are ef-
ficient at a higher interference level. However, the convergence rate slows down. For
smaller values of the boundary g, results can be obtained even with a 10-fold excess of
the interference radius over the gradient norm.
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Figure 21. Analysis of algorithms Al(g), A2(q), A4(g, @), A5(g, a[a, b]) under interference conditions (a)
Average interference level A that algorithm can handle; (b) Average number of iterations required to

achieve a given accuracy.

8. Conclusions

The paper solves the problem of constructing step adaptation algorithms for a gradient
method based on the principle of the steepest descent method. Expanding the step adjust-
ment principle, its formalization and parameterization led to gradient-type methods with
incomplete relaxation or over-relaxation. In such methods, only the function gradient needs
to be calculated at the iteration. Optimization of the step adaptation algorithm parameters
enables us to obtain methods that significantly exceed the steepest descent method in con-
vergence rate.

We present a universal step adjustment algorithm that does not require selecting opti-
mal parameters, and its convergence rate corresponds to algorithms with optimization of
the step adaptation algorithm parameters. The advantage of the proposed method is its op-
erability under interference conditions. Our paper presents examples of solving test prob-
lems in which the interference level is in the form of a uniformly distributed vector in a ball
whose radius is 8 times greater than the gradient norm.
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Appendix A

Table Al. Number of iterations for Rosenbrock function minimization without interference from ini-

tial point x1.

N GR* A5(g = oo, ala, b]) Ad(g =00, a)
ac[-095,18] a=-01 =00 =01 «=02 a=04 a=0.6 «=0.8 a=0.95 a=0.99
2 9150 (22,788) 4077 12,152 12,149 12,122 12,105 12,144 12,134 9008 4553 4391
* The number of function and gradient calculations is given in parentheses.
Table A2. Number of iterations for Rosenbrock function minimization without interference from ini-
tial point x2.
N GR* A5(g =20, ala, b]) Ad(g=co, a)
ae€[-095,18] a=-01 =00 =01 =02 a=04 =06 =08 a=0.95 a=0.99
2 11,865 (29,610) 4761 12,159 12,133 12,149 12,294 12,150 12,196 9340 5263 4657

* The number of function and gradient calculations is given in parentheses.

Table A3. Number of iterations for Rosenbrock function minimization with gradient interference A

from initial points x1, x2.

X1 X2
Al(g)  A2(q)  A5(q,ala,b)  A5(q,ala,bl) Al A2(q)  A5(q, ala, b))  A5(q, ala, b))

4 =00 a=00 aecl[-09518 ac[-09518 a=0.0 a=00 «ael[-09518] «ael-0.95 1.8]
q=101 g=3 q=3 g=oo q=1.01 q=3 q=3 g=oo
0.2 12,184 10,722 8567 5906 12,234 10,939 8637 6147
0.4 11,465 8439 8402 6466 11,465 8541 8635 5847
0.6 11,023 7676 8284 6561 11,092 8458 8694 6696
0.8 11,120 8510 8721 5382 10,782 9086 7935 7145
1 10,491 10,111 9446 6121 11,269 9635 12,340 7319
12 13,315 14,285 12,368 8728 10,686 7985 16,987 3271
14 20,098 15,445 19,649 16,118 18,720 18,911 34,700 9366
1.6 24,043 24,570 20,621 19,482 28,600 24,022 22,241 25,043
1.8 34,352 29,378 33,314 157,679 44,400 32,019 41,962
2 37,942 38,146 30,051 31,477 37,510 29,335
2.2 50,690 45,354 29,812 51,192 42,941 28,450
24 66,219 47,895 35,579 89,059 51,962 35,754
2.6. 69,348 53,748 36,969 77,062 60,003 86,217
2.8 55,604 57,246 43,107 84,679 65,490 30,715
3 59,616 79,305 38,298 29,050 43,264 65,511
3.2 60,337 72,013 37,955 57,805 85,334 157,592
34 64,974 69,090 14,077 64,798 94,479 122,119
3.6 78,793 88,460 275,656 110,826 90,339 389,925
3.8 269,995 97,980 195,847 222,006 117,191 291,453
4 253,321 101,563 275,651 147,051 130,206
4.2 94,456 179,195 792,694 47,864 116,564
44 24,622 197,242 21,570 128,049
4.6 86,633 218,273 64,747 124,935
4.8 106,416 219,263 110,989 105,653
5 167,580 119,307 168,840 146,901
5.2 204,223 42,896 196,347 214,080
5.4 229,839 167,171 244,947 135,973
5.6 249,466 80,196 282,396 164,611

5.8 285,200 280,227 285,186 272,935
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6 308,540 144,408 429,597 461,874
6.2 333,173 179,384 334,031 440,997
6.4 442,650 231,839 450,688 346,296
6.6 506,562 150,984 562,969 335,605
6.8 558,934 491,455 624,308 371,494

7 499,818 215,790 625,358 250,578
7.2 388,358 362,532 502,964 120,357
7.4 379,735 247,071 568,432 730,441
7.6 821,177 267,345 651,425 257,868
7.8 785,639 500,870 386,720 651,424

8 594,816 497,469 379,943 388,342

Table A4. Number of iterations for function fo(x, [am = 10]) minimization without interference from

initial point xo.

N GR* A5(q= o, ala, b)) Ad(g= ©,a)
a € [-0.9,1.8] a=-01 a=00 a=01 a=02 a=04 a=06 «a=08 «a=095
100 81 (186) 71 60 71 90 102 147 230 451 1652
1000 86 (200) 82 68 74 95 105 146 247 478 1656
10,000 91 (214) 78 73 78 97 111 162 265 526 1822
100,000 97 (230) 72 84 89 103 122 154 257 556 2147
* The number of function and gradient calculations is given in parentheses.
Table A5. Number of iterations for function fo(x, [ama = 100]) minimization without interference from
initial point xo.
N GR* A5(q= o0, ala, b)) Ad(g= o0, a)
« € [-0.9,1.8] a=-01 a=00 a=01 a=02 a=04 a=06 a=08 «a=0.95
100 793 (1618) 364 795 791 792 788 746 704 461 1764
1000 835 (1708) 468 839 837 833 823 819 725 445 1836
10,000 888 (1819) 413 888 891 886 881 855 686 494 2061
100,000 944 (1936) 476 947 943 947 937 926 822 561 2170
* The number of function and gradient calculations is given in parentheses.
Table A6. Number of iterations for function fo(x, [ane = 1000]) minimization without interference from
initial point xo.
N GR * As(q = o, a[ul b]) A4(q = 00, ac)
o € [-0.9,1.8] a=-01 a=00 a=01 «a=02 a=04 a=06 a=08 a=0.95
100 7869 (15,768) 2874 7908 7914 7912 7910 7900 7858 5841 3110
1000 8239 (16,514) 3079 8287 8277 8278 8275 8264 8250 5636 3202
10,000 8770 (17,582) 3532 8820 8821 8810 8813 8806 8785 6342 3391
100,000 9324 (18,697) 2966 9376 9371 9376 9370 9362 9350 7000 3881

* The number of function and gradient calculations is given in parentheses.

Table A7. Number of iterations for fo function minimization with gradient interference A from initial
point xo, N =1000.

fQ(x, [amux = 100]) fQ(x, [amux = 1000])
Al(g) A2(q)  A5(g, ala, b)) A5(g, ala, b]) Al(g) A2(g) A5(q, ala, b])  A5(q, ala, b))

A
=00 a=00 ael-09518] ae[-09518] «a=0.0 =00 ae[-095 18] «ael-0.95 1.8]
q:l.]_ q=3 q=3 gq=0° q:]_.l q=3 q=3 q=0o°

0.2 873 843 647 604 8234 8251 6858 6618

0.4 874 843 703 678 8227 8238 7320 7204
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0.6 876 846 778 777 8252 8278 8005 8029
0.8 897 868 898 920 8499 8553 8964 9028
1 968 935 1030 1037 9085 9115 9982 10,030
1.2 1090 1043 1191 1196 9989 9929 11,219 11,241
14 1245 1181 1513 1518 11,181 11,020 20,713 20,795
1.6 1446 1358 3555 3565 12,621 12,498
1.8 1671 1580 24,613 24,677 14,340 14,253
2 1934 1822 16,243 16,155
2.2 2217 2089 18,380 18,282
24 2541 2395 20,647 20,540
2.6. 2897 2714 23,195 22,954
2.8 3287 3063 25,941 25,606
3 3695 3440 28,925 28,431
3.2 4142 3860 32,035 31,511
34 4632 4307 35,494 34,834
3.6 5164 4779 39,093 38,320
3.8 5663 5283 42,881 41,972
4 6216 5810 46,834 45,830
42 6828 6345 50,922 49,877
44 7445 6921 55,372 54,136
4.6 8095 7498 59,873 58,421
4.8 8748 8090 64,598 62,862
5 9454 8715 69,391 67,532
5.2 10,139 9365 74,271 72,317
54 10,897 10,018 79,538 77,524
5.6 11,600 10,752 85,077 82,805
5.8 12,428 11,474 90,453 88,153
6 13,268 12,264 96,130 93,746
6.2 14,206 13,060 102,006 99,503
6.4 15,051 13,850 108,469 105,460
6.6 16,051 14,769 114,860 111,749
6.8 16,927 15,580 121,053 117,931
7 17,956 16,385 119,322 124,245
72 18,906 17,191 126,186 130,862
74 19,912 18,136 132,999 137,335
7.6 20,884 19,041 139,836 137,335
7.8 21,982 19,885 147,162 143,897
8 23,166 20,781 153,001 150,746
Table A8. Number of iterations for function feer(x, [amax = 10, bmax = 10]) minimization without interfer-
ence from initial point x2.
N GR* A5(q= o, ala, b)) Ad(g= 0, a)
a € [-0.9,1.8] a=-01 a=00 a=01 a=02 «&=04 a=06 a=08 a=0.95
10 8393 (20,648) 3861 4969 8897 2442 6305 5520 2275 3919 1628
100 6505 (16,234) 724 584 2105 2712 1440 1186 1271 1256 250
1000 8661 (20,498) 822 3005 1215 2131 1292 1326 1676 2386 917
10,000 8715 (21,186) 847 8826 1712 2153 1531 1081 1161 681 207

* The number of function and gradient calculations is given in parentheses.
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Table A9. Number of iterations for function feei(x, [amax = 10, bmax = 10]) minimization without interfer-

ence from initial point x1.

N GR* A5(q= o0, ala, b)) Ad(g= o0, a)
o € [-0.9,1.8] a=-01 a=00 «a=01 «a=02 «&=04 a=06 a=08 a=0.95
10 2058 (4547) 872 2022 2056 2079 2027 2047 2041 1516 881
100 1547 (3817) 1672 3667 3634 3579 3584 3607 3666 2896 1555
1000 5592 (13,929) 1901 5838 5879 5898 5829 5937 6085 4769 2873
10,000 2339 (5807) 1898 7323 7316 6354 7463 1728 5389 3923 3556

* The number of function and gradient calculations is given in parentheses.

Table A10. Number of iterations for feer(x, [amar = 10, bmar = 10]) function minimization with gradient

interference A from initial point x2, N = 1000.

fEEL(x, [ﬂmax = 10, bimax = 10])

A Al(g) A2(q) A5(g, ala, b]) A5(q, ala, b))
a=0.0 a=0.0 « € [-0.95, 1.8] o € [-0.95,1.8]
g=11 q=3 q=3 g=oo

0.2 6428 8070 4546 3120
04 6138 7443 4364 3870
0.6 6389 6497 4927 4468
0.8 6468 6175 5354 4822
1 6390 6298 4983 4723
1.2 6275 6507 4966 5030
14 6367 6547 4619 4746
1.6 7473 6898 5136 5063
1.8 7734 6466 5004 4809
2 7625 6496 6478 7026
22 7764 6417 71,359 73,154
24 7763 6709
2.6. 7598 6530
28 7802 6369
3 7649 6341
3.2 7625 6372
3.4 7515 6837
3.6 7541 6749
3.8 7505 6536
4 7586 6476
42 7749 6443
44 7826 6638
4.6 7661 6821
48 7777 6378
5 7393 6674
52 7655 6711
54 7599 6783
5.6 7265 6873
5.8 6927 7237
6 7256 7058
6.2 7404 7237
6.4 7605 7276
6.6 7868 7101
6.8 7947 7252
7 7876 7508
7.2 8147 7722
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74 8420 7904

7.6 8237 7924

7.8 8328 8067
8 8712 8239

Table A11. Number of iterations for feer(x, [amax = 10, bmax = 10]) function minimization with gradient

interference A, uniformly distributed on the surface of the ball, from initial points x1, x2, N = 100.

x2 x1
Al(g) A2(q)  A5(g, ala, b)) A5(g, ala, b]) Al(g) A2(g) A5(q, ala, b])  A5(q, ala, b))
=00 a=00 ac[-09518] ac[-09518] «=0.0 =00 «ael[-09518] «e[-0.95,61.8]

qg=11 q=3 q=3 g=oo g=11 q=3 q=3 g=oo
0.2 6463 6619 3324 3296 3500 3558 2566 1969
04 6811 7356 4862 3369 3469 3502 2670 2307
0.6 6945 6627 3963 4032 3452 3478 2943 2741
0.8 6338 5778 5297 4512 3450 3461 3010 2919
1 6102 6272 4268 3980 3428 3408 3191 3102
12 6009 5548 5503 5287 3550 3399 3243 3284
14 6286 5458 4914 5281 3433 3428 3529 3693
1.6 5480 6119 4593 4288 3538 3395 3396 3436
1.8 5462 5979 5262 5293 3551 3487 3363 3314
2 5508 5375 6975 6902 3769 3568 3609 4003
2.2 5780 5876 11,733 12,909 3787 3698 5778 5922
2.4 6006 5926 3966 3810
2.6. 6152 5823 3977 3844
2.8 6199 6479 4625 3959
3 6703 6696 4381 4072
3.2 6899 6739 4835 4277
3.4 6809 6813 4993 4440
3.6 6715 5691 5177 4457
3.8 5665 5962 5316 4619
4 6015 5901 5320 4742
4.2 6288 6401 5498 4669
4.4 6468 6850 5520 4886
4.6 7110 6609 5743 4802
4.8 7440 6907 5827 5374
5 7751 6903 5771 5469
52 7715 7009 6210 5242
54 7432 6108 6284 5316
5.6 7293 6097 5791 5582
5.8 6703 6248 5923 5715
6 6833 7096 6040 5433
6.2 7098 7544 6314 6100
6.4 7660 8011 6703 6387
6.6 8610 8026 6894 5967
6.8 8306 9781 6684 7017
7 8984 9033 6868 6968
7.2 9472 9227 7161 8292
74 10,039 10,303 7202 6709
7.6 10,803 9840 7743 6972
7.8 10,844 10,057 7923 9873

8 11,414 10,028 8267 9668




Mathematics 2025, 13, 61

30 of 38

Table A12. Number of iterations for function feer(x, [amax = 30, buax = 10]) minimization without interfer-

ence from initial point x2.

N GR* A5(q= o0, ala, b)) Ad(g= o0, a)
o € [-0.9,1.8] a=-01 a=00 «a=01 «a=02 «&=04 a=06 a=08 a=0.95
10 25,334 (61,902) 9128 25,586 25539 25591 25481 25492 25,820 19,615 9624
100 25,237 (61,712) 9045 25,346 25,329 25305 25376 25371 25355 19,130 9430
1000 25,742 (62,524) 8302 25,801 25,819 25,768 25824 25826 25,823 19,788 9835
10,000 26,125 (64,321) 6972 26,209 261,99 26,173 26,201 26,210 25,958 20,315 10,157

* The number of function and gradient calculations is given in parentheses.

Table A13. Number of iterations for feer(x, [amar = 30, bmar = 10]) function minimization with gradient

interference A, uniformly distributed on the surface of the ball, from initial point x2, N = 100.

fEEL(x, [ﬂmax = 30, bmux = 10])

A Al(g) A2(q) A5(g, ala, b]) A5(q, ala, b))
a=0.0 a=0.0 « € [-0.95, 1.8] o € [-0.95,1.8]
g=11 q=3 q=3 g=oo

0.2 25,099 25,341 17,787 11,910
0.4 24,972 25,119 17,560 15,195
0.6 24,759 24,693 17,692 16,312
0.8 24,413 23,964 12,537 11,609
1 23,998 23,179 15,310 14,063
1.2 23,250 22,544 16,715 16,184
14 22,614 21,935 14,574 14,142
1.6 22,135 21,448 15,230 15,481
1.8 21,966 21,038 12,699 12,213
2 21,828 21,469 18,127 17,482
22 21,723 21,538
24 21,771 21,396
2.6. 21,661 21,814
28 22,065 22,283
3 22,205 22,580
3.2 22,320 22,711
3.4 22,289 22,945
3.6 22,716 23,266
3.8 23,446 23,596
4 23,977 23,819
42 24,292 24,022
44 24,747 24,399
4.6 24,994 24,852
48 24,781 25,264
5 25,453 25,549
52 25,746 24,729
54 26,405 24,031
5.6 27,098 24,399
5.8 27,870 24,650
6 28,674 26,238
6.2 29,028 26,200
6.4 29,874 26,299
6.6 31,088 27,064
6.8 30,879 24,282
7 31,144 26,347
7.2 31,194 27,062
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74 31,607 24,769

7.6 31,432 23,974

7.8 33,436 29,079
8 35,627 28,815

Table A14. Number of iterations for function feex(x, [amex = 100]) minimization without interference

from initial point x2.

N GR* A5(g= o0, ala, bD) Ad(g= ©,a)
a € [-0.9,1.8] a=-01 a=00 a=01 a=02 «&=04 a=06 a=08 a=0.95
10 41,854 (73,933) 11,819 35579 41,396 35471 37,251 39,603 27,322 25806 11,276
100 42,888 (74,275) 5968 31,693 39,836 40,243 30,840 27,556 26,535 5382 6887
1000 43,867 (78,317) 5636 32,430 30,004 28578 39,560 31,555 33,324 23,921 5343
10,000 42,537 (75,562) 11,292 28,718 41,286 20,289 18,044 13,411 4721 3481 3134
* The number of function and gradient calculations is given in parentheses.
Table A15. Number of iterations for function feex(x, [ame = 100]) minimization without interference
from initial point x1.
N GR* A5(g= o, ala, b)) Ad(g= 0, a)
a € [-0.9,1.8] a=-01 a=00 a=01 a=02 «&=04 a=06 «a=08 a=0.95
10 19,327 (48,234) 14,202 32,401 32,412 32,409 32,402 32,402 32,387 24936 13,102
100 18,936 (47,183) 14,427 33,407 33,410 33,408 33,318 33,398 33,396 25724 13,528
1000 34,541 (86,318) 15,549 35864 35917 35944 35727 36,008 36,288 28,274 15,046
10,000 25,837 (64,455) 15,542 37922 37878 36,342 38,117 38,931 37,235 23,886 15,969
* The number of function and gradient calculations is given in parentheses.
Table A16. Number of iterations for fecx(x, [amr = 100]) function minimization with gradient interfer-
ence A from initial points x1, x2, N = 100.
x2 x1
A Al(g) A2(q)  A5(g, ala, b))  A5(g, ala, b)) Al(g) A2(q) A5(q, ala, bl)  A5(q, ala, b)
=00 a=00 aecl[-09518 ac[-09518] a=0.0 a=00 «ae[-0.9518] ael[-095 18]
q=1.01 q=3 q=3 g=o° q=1.01 q=3 q=3 g =00
0.2 37,261 39,007 28,008 18,091 33,231 33,419 23,600 16,216
0.4 38,355 38,541 26,724 21,720 33,299 33,231 24,268 19,993
0.6 36,569 36,039 28,297 25,003 33,241 32,905 24,610 22,325
0.8 94,629 38,007 28,867 27,261 32,891 32,579 24,709 23,412
1 37,825 36,312 28,740 27,674 32,374 31,916 25,320 24,206
1.2 35119 33,383 27,729 27,199 31,789 30,820 25,689 24,913
1.4 34,335 32,358 28,724 27,925 31,176 30,068 24,969 24,793
1.6 33,424 32,123 27,567 28,159 30,461 29,453 24,479 24,254
1.8 33,018 31,8064 28,051 27,285 29,711 29,106 24,255 24,720
2 32,288 32,887 27,469 26,362 29,359 28,734 28,527 28,601
22 31,293 32,121 127,756 141,449 28,950 28,555 133,978 159,208
24 29,560 30,786 28,804 28,586
2.6. 29,053 29,665 28,902 28,272
2.8 29,282 31,642 29,397 28,963
3 30,602 33,052 29,036 29,448
3.2 32,505 32,337 29,585 29,523
34 32,430 34,266 30,025 30,582
3.6 32912 34,555 30,618 30,898
3.8 32,362 33,138 30,836 31,461
4 34,169 33,837 31,586 32,495
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42 34,408 35,353 32,236 33,122
44 35,033 36,173 32,768 34,311
4.6 37,325 37,278 34,021 34,872
48 37,019 38,411 34,451 36,339
5 38,425 39,939 34,712 37,565
52 40,954 40,611 36,631 38,074
54 42,431 44,346 36,522 39,336
5.6 43,359 42,846 37,023 41,404
5.8 44,149 43,068 39,175 41,123
6 45,440 45,009 40,235 42,563
6.2 47913 47,721 41,789 43,140
6.4 48,651 45,961 42,449 42,268
6.6 50,238 47,260 44,234 45,318
6.8 51,542 56,151 45,820 45,302
7 56,361 56,762 49,367 46,206
7.2 63,478 59,872 52,129 47,642
74 65,989 57,709 55,812 50,892
7.6 63,248 64,288 59,237 60,767
7.8 70,764 12,0629 69,242 58,808
8 72,668 124,948 66,135 54,755

Table A17. Number of iterations for function fo(x, [ame = 100]) minimization without interference

from initial point xo.

N GR* A5(g= o0, ala, bD) Ad(g= ©,a)
a € [-0.9,1.8] a=-01 a=00 a=01 a=02 «&=04 a=06 a=08 a=0.95
10 289 (591) 174 291 279 287 288 278 241 150 151
100 311 (635) 236 312 309 306 305 305 190 162 171
1000 358 (729) 206 359 356 354 352 329 288 202 204
10,000 411 (835) 269 412 409 407 406 405 320 223 227
* The number of function and gradient calculations is given in parentheses.
Table A18. Number of iterations for function fo«(x, [amx = 1000]) minimization without interference
from initial point xo.
N GR* A5(q= o0, ala, b)) Ad(g= o0, a)
o € [-0.9,1.8] a=-01 a=00 a=01 a=02 «&=04 a=06 a=08 a=095
10 2104 (4789) 1431 2883 2882 2879 2862 2868 2845 2095 1382
100 1878 (4363) 1643 3016 3021 3017 3019 3010 2993 2142 1335
1000 2059 (4811) 1719 3466 3477 3474 3475 3472 3444 2552 1515
10,000 2267 (5331) 1877 3998 4006 4003 4004 4004 3977 2966 1727
* The number of function and gradient calculations is given in parentheses.
Table A19. Number of iterations for function for(x, [ame« = 10000]) minimization without interference
from initial point xo.
N GR* A5(g= o, ala, b)) Ad(g= ©,a)
o € [-0.9,1.8] a=-01 a=00 a=01 «a=02 a=04 a=06 a=08 a=0.95
10 14,019 (34,549) 11,329 28,788 28,782 28,783 28,763 28,781 28,769 22,130 11,040
100 14,785 (36,151) 11,293 29,777 29,776 29,769 29,775 29,766 29,759 22,891 11,554
1000 15,958 (39,107) 12,489 34,124 34,122 34,115 34,121 34,119 34,105 26,240 13,563
10,000 17,636 (43,300) 16,481 39,386 39,384 39,378 39,384 39,380 39,375 30,278 16,122

* The number of function and gradient calculations is given in parentheses.
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Table A20. Number of iterations for for function minimization with gradient interference A from ini-
tial point xo, N =1000.

fQ"Z(x, [llmax = 1000])

far2(x, [amax = 10000])

Al(g) A2(q)  A5(g, ala, b))  A5(g, ala, b)) Al(g) A2(q) A5(q, ala, bl)  A5(q, ala, b)
=00 a=00 aecl[-095 18] a<[-0.95 1.8] a=0.0 =00 ae[-095 18] «ael-0.95 1.8]
qg=11 q=3 q=3 g=oo qg=11 q=3 q=3 g=oo
0.2 3452 3465 2651 2453 33,790 34,023 26,031 22,973
04 3452 3459 2875 2782 33,756 33,927 27,882 26,563
0.6 3451 3451 3078 3036 33,701 33,801 29,704 29,109
0.8 3468 3463 3294 3276 33,693 33,719 31,545 31,256
1 3580 3567 3720 3659 34,041 33,998 33,506 33,427
1.2 3826 3812 4371 4353 35,222 35,226 38,304 38,566
1.4 4211 4192 5342 5314 37,552 37,519 47,043 46,838
1.6 4724 4691 6698 6693 40,786 40,792 56,293 56,151
1.8 5329 5289 17,758 17,770 44,952 44,909 242,613 275,452
2 6057 5974 50,041 49,760
2.2 6865 6742 55,762 55,277
24 7770 7596 62,273 61,395
2.6. 8740 8529 69,538 68,166
2.8 9839 9553 77,268 75,707
3 10,969 10,663 86,043 83,887
3.2 12,180 11,837 95,119 92,698
34 13,525 13,124 104,769 102,139
3.6 14,912 14,504 115,146 112,302
3.8 16,354 15912 125,313 122,981
4 17,914 17,370 136,547 134,183
4.2 19,566 18,980 148,435 145,973
4.4 21,214 20,566 161,241 158,268
4.6 23,088 22,306 174,628 171,257
4.8 25,059 24,091 188,113 184,685
5 27,136 26,017 202,016 198,775
5.2 29,175 27,933 217,963 213,433
54 31,189 29,910 233,419 228,438
5.6 33,379 32,004 249,645 244,233
5.8 35,822 34,176 266,880 260,484
6 38,209 36,466 284,429 277,197
6.2 40,653 38,781 294,631
6.4 43,332 41,217
6.6 45,830 43,705
6.8 48,444 46,221
7 51,438 48,728
7.2 53,950 51,308
74 56,921 54,157
7.6 60,000 56,912
7.8 62,919 59,614
8 66,154 62,535
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Table A21. Number of iterations for function fr(x, [@me = 100]) minimization without interference from

initial point xo.

N GR* A5(q =0, ala, b) Ad(g =00, a)
o € [-0.9,1.8] a=-01 a=00 «a=01 «a=02 «&=04 a=06 a=08 a=0.95
10 475 (951) 272 459 478 476 464 441 221 253 843
100 488 (979) 305 480 484 482 472 477 303 271 874
1000 533 (1073) 321 534 535 529 524 514 418 248 898
10,000 579 (1172) 363 590 583 584 572 582 489 319 996
* The number of function and gradient calculations is given in parentheses.
Table A22. Number of iterations for function fr(x, [ams=1000]) minimization without interference from
initial point xo.
N GR* A5(g= o, ala, b]) Ad(g= ©,a)
o € [-0.9,1.8] a=-01 a=00 «a=01 «a=02 «&=04 a=06 a=08 a=0.95
10 4718 (11,463) 1790 4781 4772 4776 4767 4755 4353 3490 864
100 4796 (11,348) 2101 4852 4846 4840 4849 4843 4824 3550 1798
1000 5222 (12,372) 2328 5276 5274 5271 5263 5261 5246 3941 2298
10,000 5682 (13,901) 2570 5802 5801 5763 5798 5780 5750 4258 2562

* The number of function and gradient calculations is given in parentheses.

Table A23. Number of iterations for fz function minimization with gradient interference A from initial
point xo, N =1000.

fR(x, [llmux = 100]) fR(x, [ﬂmux = 1000])
Al(g) A2(q)  A5(g, ala, b)) A5(g, ala, b]) Al(g) A2(g) A5(q, ala, b])  A5(q, ala, b))
=00 a=00 acl-09518] ac[-09518] «a=0.0 =00 ac[-095,18] «cl-0.95, 1.8]

qg=11 q=3 q=3 g=o° qg=11 q=3 q=3 g=o°
0.2 535 538 425 373 5228 5276 4012 3599
0.4 537 539 447 437 5223 5271 4340 4174
0.6 537 538 482 477 5213 5259 4588 4511
0.8 552 552 527 527 5225 5265 4873 4826
1 599 591 587 587 5387 5412 5239 5203
12 672 657 679 679 5747 5758 5712 5692
1.4 774 747 850 850 6315 6308 6383 6371
1.6 901 857 1541 1542 7069 7042 8801 8805
1.8 1047 992 7986 7934
2 1214 1140 9064 8986
2.2 1392 1300 10,306 10,175
24 1598 1478 11,627 11,488
2.6. 1827 1676 13,103 12,917
2.8 2062 1892 14,756 14,507
3 2350 2123 16,519 16,199
3.2 2630 2381 18,372 17,988
34 2948 2654 20,363 19,950
3.6 3246 2942 22,582 22,027
3.8 3557 3241 24,705 24,211
4 3931 3566 27,056 26,490
4.2 4330 3904 29,433 28,891
44 4729 4262 32,155 31,422
4.6 5105 4618 34,719 34,101
4.8 5567 4995 37,581 36,837

5 6053 5371 40,432 39,688
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52 6525 5812 43,607 42,683
54 7057 6268 46,818 45,809
5.6 7560 6729 50,183 49,014
5.8 8104 7190 53,747 52,398

6 8688 7608 57,493 55,898
6.2 9356 8090 61,392 59,515
6.4 9945 8612 65,251 63,122
6.6 10,547 9166 69,389 66,927
6.8 11,186 9769 73,205 70,865

7 11,874 10,325 77,342 74,619
7.2 12,552 10,877 81,762 78,900
74 13,176 11,458 86,101 82,977
7.6 13,946 12,045 90,935 87,288
7.8 14,670 12,640 95,621 91,805

8 15,483 13,282 100,846 96,240

Appendix B

Table A24. Frequently used designations.

Designation Meaning
Dk Step of minimization method
h* Optimal step
g Vf Gradient of a function
f Optimal function value
,) Scalar product
T Vector norm
Sk New direction for minimization
Zk Step change
o, q Step adaptation parameters
A Interference level
N Dimension
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