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Abstract: Count data often exhibit discrepancies in the frequencies of zeros, which com-
monly occur across various application domains. These data may include excess zeros
(zero inflation) or, less frequently, a scarcity of zeros (zero deflation). In regression models,
both situations can arise at different levels of covariates. The zero-modified power series
regression model provides an effective framework for modeling such count data, as it does
not require prior knowledge of the type of zero modification, whether zero inflation or
zero deflation, and can accommodate overdispersion, equidispersion, or underdispersion
present in the data. This paper proposes a Bayesian estimation procedure based on the
stochastic gradient Hamiltonian Monte Carlo algorithm, effectively addressing many chal-
lenges associated with estimating the model parameters. Additionally, we introduce a
measure of Bayesian efficiency to evaluate the impact of prior information on parameter
estimation. The practical utility of the proposed method is demonstrated through both
simulated and real data across different types of zero modification.

Keywords: zero-modified power series models; SGHMC algorithm; Bayesian efficiency;
Brazilian feminicide notification data

MSC: 63P25; 62C20; 62-08; 60-08

1. Introduction
Applied statistical data analysis of count (enumeration) responses generally requires

assumptions about discrete probability distributions generating the response [1–4]. In
many situations, count datasets are analyzed using the Poisson distribution (see [5–8])
when we can assume that the mean and variance of the counts are the same. When the
variance is assumed to be greater than or smaller than the mean, several flexible probability
distributions have been proposed as alternatives to the Poisson distribution for modeling
overdispersion and underdispersion [9]. They include discrete probability distributions
belonging to the class of power series (PS) distributions or their generalizations [1–4,9–12].

Another often encountered situation with count data involves discrepancies in the
frequency of zeros from that corresponding to the Poisson distribution. While zero inflation
is most commonly observed, zero deflation can also occur in some situations. Pioneering
work on these topics includes M’Kendrick [13], who studied the number of cancer cases
between 1875 and 1898 in two suburbs of Luckau in Hanover, the data corresponding to
a cholera epidemic in a village in India. David and Johnson [14] analyzed the number of
defective teeth in 11-year-old boys and the number of ticks found on sheep. Statistical
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modeling of zero-inflated count data was proposed by [15,16] via the zero-inflated Poisson
(ZIP) distribution, which is a mixture of a degenerate zero distribution and the Poisson
distribution. For a review of ZIP models for count data, see [17]. In Dietz and Böhning [18],
a zero-modified Poisson (ZMP) regression model was considered for analyzing zero-inflated
or zero-deflated data. An application of the zero-inflated Poisson (ZIP) distribution for
modeling data from natural calamities was presented by [19].

More recently, ref. [20] discussed zero-modified power series (ZMPS) distributions,
which can adequately accommodate the discrepancy in the frequency of zeros without
requiring any previous knowledge about the type of modification (zero-inflation or zero-
deflation). As a special case, they illustrated the zero-modified negative binomial (ZMNB)
distribution on simulated and real data, obtaining maximum likelihood estimates of model
parameters. To our knowledge, the flexible and useful class of ZMPS distributions has not
been employed in the literature for modeling dispersed count responses as a function of
covariates, particularly in the Bayesian framework.

This paper presents a regression model for count data with the flexibility to handle
different types of zero frequencies (inflation or deflation), as well as different dispersion
characteristics (overdispersion or underdispersion) within a single dataset. Our framework
includes, as special cases, standard regression models and zero-inflated models for count
data. This paper addresses this issue in the Bayesian framework.

The sampling-based Bayesian framework using Markov Chain Monte Carlo (MCMC)
methods [21] is attractive because the ZMPS likelihood function is complex, making exact
Bayesian estimation and inference cumbersome. Most MCMC algorithms include an
acceptance–rejection step of the generated candidate (the Metropolis–Hastings (MH) step)
and may result in a high rejection rate in complex models, leading to slow convergence.
To remedy this, several computationally efficient algorithms have been proposed in the
literature, such as the Hamiltonian Monte Carlo (HMC) algorithm [22], the Metropolis
Adjusted Langevin algorithm (MALA) [23–25], and an improvement of the HMC algorithm
known as the No-U-Turn Sampler (NUTS) [26].

Further, the general class of algorithms using stochastic gradient MCMC (SGM-
CMC) [27–31] has gained recent popularity in the machine learning area but is still little
used in the Bayesian context. An R package sgmcmc for stochastic gradient MCMC [30]
calculates the gradients using a numerical computation library called tensorflow [32],
which is a machine learning system with an R interface, operating on large, heterogeneous
environments. In comparing algorithms in the SGMCMC class with the SGHMC algorithm,
the latter is one of the most computationally efficient algorithms [31].

The objective of this paper is to develop a fully Bayesian approach for estimating the
parameters of the ZMPS regression models via the computationally efficient stochastic
gradient with friction HMC (SGHMC) algorithm proposed by [28]. A comprehensive
study of various MCMC simulation methods is given by [33], along with a clear explanation
of stochastic gradient methods. Since the required gradient equations can be obtained from
the ZMPS models, we implement the SGHMC algorithm with the leapfrog integration
method. We also derive and illustrate a relative Bayesian efficiency measure to compare
the more general ZMPS distribution with the standard Power Series (PS) distribution.

The rest of the paper is organized as follows. Section 2.1 describes the ZMPS regression
model framework for count responses. Section 2.3 presents the Bayesian approach for
model parameter estimation, while Section 2.7 describes the SGHMC algorithm. Section 2.9
discusses the Bayesian information used to assess the efficiency loss incurred by fitting
a ZMPS model when a PS distribution could have been applied. Section 3.1 presents
simulation studies to evaluate the impact of the prior distribution on the quality of the
Bayesian estimator. Section 3.2 reports the analysis of real datasets that consider different
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characteristics of the ZMPS distribution to analyze the number of femicides in 642 São
Paulo municipalities in 2019 and 2020; in this application, we want to assess whether
there was an increase in the number of femicides during the COVID-19 pandemic period.
Section 4 draws some final comments on the relevant results achieved.

2. Materials and Methods
A regression model for count data is developed here, incorporating the flexibility of

the ZMPS distribution, along with a Bayesian framework for parameter estimation.

2.1. ZMPS Regression Model

In ZMPS regression, suppose that the observations to be analyzed are represented
by the vector y = (y1, . . . , yn)′. Let Yi, i = 1 . . . n be n independent random variables
assuming values in the support set A = {0, 1, . . .} and having probability mass function
(p.m.f.) defined by [20]

πZMPS(yi; µi, ϕ, pi) = (1− pi)I(yi) + piπPS(yi; µi, ϕ), (1)

where µi > 0, ϕ > 0, and the indicator function I(yi) = 1 if yi = 0 and I(yi) = 0 if yi > 0.
The p.m.f. of the standard PS distribution is given by

πPS(yi; µi, ϕ) =
a(yi, ϕ)(g(µi, ϕ))yi

f (µi, ϕ)
,

where a(yi, ϕ), f (µi, ϕ) and g(µi, ϕ) are positive, finite, and twice-differentiable functions,
with f (µi, ϕ) = ∑

yi∈A0

a(yi, ϕ)g(µi, ϕ)yi , while the parameter pi is responsible for modifying

the probability of zero of the standard PS distribution, such that

0 ≤ pi ≤
1

1− πPS(0; µi, ϕ)
,

where πPS(0; µi, ϕ) is the probability of zero in the PS distribution.
The Poisson, generalized Poisson, COM-Poisson, and negative binomial distributions

are well-known members of the PS family. Table 1 presents the functions f (µi, ϕ), g(µi, ϕ),
and a(yi, ϕ) for several distributions within the PS family.

Table 1. Distributions within the PS family.

PS Distribution f (µi, ϕ) g(µi, ϕ) a(yi, ϕ)

P Poisson eµi µi
1

yi !

GP Generalized
eµi(1+µiϕ)

−1 µie−µiϕ(1+µiϕ)
−1

1 + µiϕ

(1 + ϕyi)
yi−1

yi!Poisson

COMP COM-Poisson
∞

∑
s=0

(
µs

i
s!

)ϕ
µ

ϕ
i

(
1

yi!

)ϕ

NB Negative (
ϕ

µi + ϕ

)−ϕ µi
µi + ϕ

Γ(ϕ + yi)

yi!Γ(ϕ)Binomial

For the COM-Poisson distribution, we consider the parameterization proposed in [34]
to provide a clearly centering parameter. The conditional mean and variance of Yi,
E(Yi) = µPS

i and V(Yi) = υPS
i , are given by

µPS
i =

fµ(µi, ϕ)g(µi, ϕ)

f (µi, ϕ)gµ(µi, ϕ)
and υPS

i =
g(µi, ϕ)

gµ(µi, ϕ)
,
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where fµ and gµ denote derivatives with respect to µ. For the distributions shown in Table 1,
the mean µPS

i = µi, except for the COM-Poisson distribution, for which we can write the
asymptotic approximations [34]:

µPS
i ≈ µi +

1− ϕ

2ϕ
and υPS

i ≈
µi
ϕ

.

This parametrization also allows ϕ to keep its role as a shape parameter. That is,
if ϕ < 1, the variance is greater than the mean (overdispersion), while ϕ > 1 leads to
underdispersion. The mean and variance of random variable Yi are, respectively,

µ
(ZMPS)
i = piµ

PS
i and σ

2(ZMPS)
i = pi{υPS

i + (1− pi)(µ
PS
i )2},

Different values of pi lead to different ZMPS distributions, as can be seen in the
evaluation of the proportion of additional or missing zeros, given by

πZMPS(0; µi, ϕ, pi)− πPS(0; µi, ϕ) = 1− pi + piπPS(0; µi, ϕ)− πPS(0; µi, ϕ)

= (1− pi)(1− πPS(0; µi, ϕ)). (2)

According to (2), parameter pi also controls the frequency of zeros, such as the
following:

(i) When pi = 0 in (2), πZMPS(0; µi, ϕ, pi) = 1, and (1) is the degenerate distribution with
the entire mass at zero.

(ii) For all 0 < pi < 1 in (2), (1− pi)(1− πPS(0; µi, ϕ)) > 0. Then, πZMPS(0; µi, ϕ, pi) >

πPS(0; µi, ϕ), and (1) is the zero-inflated PS (ZIPS) distribution, which has a proportion
of additional zeros.

(iii) When pi = 1 in (2), πZMPS(0; µi, ϕ, pi) − πPS(0; µi, ϕ) = 0. Therefore,
πZMPS(0; µi, ϕ, pi) = πPS(0; µi, ϕ), and (1) is the standard PS distribution.

(iv) For all 1 < pi < 1
1−πPS (0;µi ,ϕ)

in (2), (1 − pi)(1 − πPS(0; µi, ϕ)) < 0. Then,

πZMPS(0; µi, ϕ, pi)< πPS(0; µi, ϕ), and (1) is the zero-deflated negative binomial (ZDPS)
distribution.

(v) When pi =
1

1−πPS (0;µi ,ϕ)
in (2), πZMPS(0; µi, ϕ, pi) = 0. Then, (1) is the zero-truncated

PS (ZTPS) distribution, whose p.m.f. is given by

πZTPS(yi; µi, ϕ) =
πPS(yi; µi, ϕ)

1− πPS(0; µi, ϕ)
(1− I(yi)), yi ∈ A. (3)

Note that the parameter pi controls the frequency of zeros and can assume different
values at specific levels of covariates. Conditions (i)–(v) indicate that in zero inflation count
data, deflation or standard zero frequency may occur in the same dataset at specific levels
of covariates. Therefore, it is plausible that the ZMPS model can model these situations by
considering different values of pi. More details about the ZMPS distributions are provided
in Conceição et al. [20].
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2.2. Hurdle Model Versus ZMPS Model

Note that (1) can be rewritten as

πZMPS(yi; µi, ϕ, pi) = πZMPS(0; µi, ϕ, pi)I(yi) + πZMPS(yi; µi, ϕ, pi)(1− I(yi))

= {1− pi + piπPS(0; µi, ϕ))}I(yi) + {piπPS(yi; µi, ϕ)}(1− I(yi))

= {1− pi(1− πPS(0; µi, ϕ))}I(yi) +

pi(1− πPS(0; µi, ϕ))

{
πPS(yi; µi, ϕ)

1− πPS(0; µi, ϕ)
(1− I(yi))

}
. (4)

Since 0 ≤ pi ≤ 1
1−πPS (0;µi ,ϕ)

, then 0 ≤ pi(1 − πPS(0; µi, ϕ)) ≤ 1. Thus, setting

ωi = pi(1− πPS(0; µi, ϕ)), the p.m.f. given in (4) can be written as a mixture distribu-
tion, i.e.,

πZMPS(yi; µi, ϕ, ωi) = (1−ωi)I(yi) + ωiπZTPS(yi; µi, ϕ), yi ∈ A, (5)

where 0 ≤ ωi ≤ 1
The ZMPS distribution in (5) is parameterized by ωi and can be interpreted as a hurdle

distribution [35], where the probability of the event Yi = 0 is 1−ωi, while the probability
of an observation Yi = yi, yi > 0 is ωiπZTPS(yi; µi, ϕ).

Properties (i)–(v) can also be written in terms of ωi. Therefore, the ZMPS model (1)
and the hurdle model (5) are equivalent, and either can be used to model data with zero-
frequency modifications (inflation or deflation). Ref. [36] compared the hurdle model to
zero-inflated models, highlighting the advantages of hurdle models (or ZMPS) due to
the viability of these models to consider zero-inflation (0 < pi < 1) and zero-deflation
(1 < pi ≤ 1/(1− πPS(0; µi, ϕ))) with different levels of covariates. Henceforth, we will
consider the hurdle version of ZMPS given by (5).

However, it is essential to note that ZMPS models may have a drawback when pi = 1
for all i = 1, . . . , n. A standard PS model could have been used without fitting the param-
eters pi. We can only say that fitting a ZMPS model instead of a simple PS model in this
scenario may result in efficiency losses for the parameter estimators. This paper offers a
method to assess this efficiency loss from a Bayesian perspective (see Section 2.9).

Let xi = (xi,1, . . . , xi,r)
′ with xi,1 = 1, and vi = (vi,1, . . . , vi,s)

′, with vi,1 = 1, be fixed
predictors. Let X = (x′1, . . . , x′n)′ and V = (v′1, . . . , v′n)′, respectively, denote the n × r
and n× s predictor matrices employed for modeling the µi and ωi, respectively, via the
dual-link function given by logarithmic and logit link functions, i.e.,

log(µi) = η1(βµ, xi) = βµ,1 +
r

∑
j=2

βµ,jxi,j,

logit(ωi) = η2(βω, vi) = βω,1 +
s

∑
j=2

βω,jvi,j.

where βµ = (βµ,1 . . . βµ,r)′, βω = (βω,1 . . . , βω,s)′. It is also possible to employ alternate
link functions for ωi; see [37].

The parameter ϕ accounts for under- or overdispersion in the data, in addition to
any dispersion caused by zero inflation or zero deflation. In the case of the zero-modified
Poisson distribution, ϕ = 1, and all the overdispersion is attributed to zero inflation. In
other models, some of the under- or overdispersion is explained by the parameters ωi

and µi. Therefore, we interpret ϕ as capturing any under- or overdispersion beyond that
induced by zero-modification, without the need for additional covariates.
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2.3. Bayesian Framework for the ZMPS Regression Model

Let D = {y, X, V} denote the observed data, based on which we estimate the parame-
ters β′µ, β′ω, ϕ under the model in (5) using the fully Bayesian framework.

2.4. Likelihood Function

The likelihood function is

L(βµ, βω, ϕ|D) =
n

∏
i=1

(
1−ωi

)I(yi)(ωi πZTPS(yi; µi, ϕ)
)(1−I(yi)), (6)

where µi > 0 and 0 < ωi < 1. It follows that the log-likelihood function is

ℓ(βµ, βω, ϕ | D) =
n

∑
i=1

I(yi) log(1−ωi) +
(
1− I(yi)

)
log(ωi πZTPS(yi | µi, ϕ)),

=
n

∑
i=i

{
I(yi) log

(
1−ωi

ωi

)
+ log(ωi)

}
+

n

∑
i=1

(
1− I(yi)

)
log(πZTPS(yi | µi, ϕ))

= ℓ1(βµ, ϕ | D) + ℓ2(βω | D),

where

ℓ1(βµ, ϕ | D) =
n

∑
i=1

(
1− I(yi)

)
log(πZTPS(yi | µi, ϕ,D)) (7)

and

ℓ2(βω | D) =
n

∑
i=1

I(yi) log
(

1−ωi
ωi

)
+ log(ωi). (8)

Here, ℓ1(βµ, ϕ | D) is the portion of the log-likelihood function from the associated
ZTPS distribution, considering only the positive observations of y, and ℓ2(βω | D) is the
part associated with the hurdle parameter βω. Therefore, we can estimate the parameters
βµ and ϕ of the ZMPS distribution from its associated ZTPS distribution using only the
positive observations of the sample y. The following result states a relevant link between
the estimation of the parameters of ZMPS and ZTPS distributions.

Result 1. If Yi follows the ZMPS distribution, we can estimate the βµ and ϕ parameters by only
considering the positive observations of y and the associated ZTPS distribution.

To verify this result, let y+ = (y+1 , . . . , y+m)′ denote the positive observations in y,
where m = n − n0, and n0 is the number of zero observations in the vector y. Let X+

denote the m × r predictor matrix associated with y+. Assuming that y+ follows the
associated ZTPS distribution and D+ = (y+, X+), the log-likelihood function associated
with y+ is given by

ℓZTPS(βµ, ϕ | D+) =
m

∑
i=1

log
(
πZTPS(y

+
i | µi, ϕ,D+)

)
. (9)

We can easily show that (9) is obtained directly from (7). We see from (7) and (8)
that estimation of (βµ, ϕ) independently of the parameter is independent of estimating βω .
Substituting

πZTPS(y
+
i | µi, ϕ) =

a(y+i , ϕ)g(µi, ϕ)y+i

f (µi, ϕ)− 1
, y+i ∈ {1, 2, . . .}



Mathematics 2025, 13, 60 7 of 30

in (9) and differentiating ℓZTPS(βµ, ϕ | D+) with respect to each parameter, βµ,j, j = 1, . . . r,
and ϕ, we obtain the score vectors U βµ

and Uϕ with elements:

Uβµ,j =
∂ℓZTPS(βµ, ϕ | D+)

∂βµ,j
=

m

∑
i=1

[
y+i

gµ(µi, ϕ)

g(µi, ϕ)
−

fµ(µi, ϕ)

f (µi, ϕ)− 1

]
∂µi

∂βµ,j

and

Uϕ =
∂ℓZTPS(βµ, ϕ | D+)

∂ϕ
=

m

∑
i=1

[
aϕ(y+i , ϕ)

a(yi, ϕ)
+ y+i

gϕ(µi, ϕ)

g(µi, ϕ)
−

fϕ(µi, ϕ)

f (µi, ϕ)− 1

]
,

where
gµ(µi, ϕ) = ∂g(µi, ϕ)/∂µi, fµ = ∂ f (µi, ϕ)/∂µi, aϕ = ∂a(yi, ϕ)/∂ϕ, gϕ = ∂g(µi, ϕ)/∂ϕ,

and fϕ = ∂ f (µi, ϕ)/∂ϕ. Considering the logit link function logit(ωi) = log
(
ωi/(1 −

ωi)
)
= v′iβω and differentiating ℓ2(βω | D) with respect to each parameter, βω,j, j = 1, . . . s,

we obtain the score vector U βω
, whose elements are

Uβω,j =
∂ℓ2(βω | D)

∂βω,j
=

n

∑
i=1

(
1− I(yi)

)
vi,j −

(
ev′i βω

1 + ev′i βω

)
vi,j.

The score vector, denoted by U (βµ, ϕ, βω) = (U βµ
(βµ, ϕ),Uϕ(βµ, ϕ),U βω

(βω))
′, will

play a role in the MCMC simulation algorithm in the Bayesian approach.
Let the parameter vector be denoted by θ = (β′µ, β′ω, ϕ)′, where θ = (θ1, . . . , θm)′ and

m = r + s + 1. The observed information matrix J (θ) is an (r + s + 1)× (r + s + 1) matrix,
with entries given by

J j,k = −
∂2 logL(θ | D)

∂θj∂θk
, j, k = 1, . . . , (r + s + 1).

Due to the orthogonality between the parameters (βµ, ϕ) and βω, the information
matrix J (θ) is a block diagonal matrix given by

J (θ) =


J βµ ,βµ

J βµ ,ϕ 0

J ′βµ ,ϕ Jϕ,ϕ 0

0 0 J βω ,βω

. (10)

The elements of each block are defined by

J βµj ,βµk
= −

∂2ℓZTPS(βµ, ϕ|D+)

∂βµ∂β′µ

=
m

∑
i=1

[
− y+i hg(βµ, ϕ) + h f (βµ, ϕ)

]( ∂µi
∂βµ,j

)(
∂µi

∂βµ,k

)
−

m

∑
i=1

[
y+i

gµ(µi, ϕ)

g(µi, ϕ)
−

fµ(µi, ϕ)

f (µi, ϕ)− 1

](
∂2µi

∂βµ,j∂βµ,k

)
,

J βµ ,ϕ = J ϕ,βµ
= −

∂2ℓZTPS(βµ, ϕ|D+)

∂ϕ∂βµ

=
m

∑
i=1

[
− y+i tg(βµ, ϕ) + t f (βµ, ϕ)

]( ∂µi
∂βµ,j

)
,
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Jϕ,ϕ = −
∂2ℓZTPS(βµ, ϕ|D+)

∂ϕ2

=
m

∑
i=1

[
− ka(y+i , ϕ)− y+i kg(βµ, ϕ) + k f (βµ, ϕ)

]
,

J βωj ,βωk = −∂2ℓ2(βω |D)
∂βω∂β′ω

=
n

∑
i=1

x′ixkωi

1− ex′i βω
,

where

hg(βµ, ϕ) =
gµµ(µi, ϕ)g(µi, ϕ)− g2

µ(µi, ϕ)

g(µi, ϕ)2 ,

h f (βµ, ϕ) =
fµµ(µi, ϕ)( f (µi, ϕ)− 1)− f 2

µi
(µi, ϕ)

( f (µi, ϕ)− 1)2 ,

ka(y+i , ϕ) =
aϕϕ(y+i , ϕ)a(y+i , ϕ)− a2

ϕ(y
+
i , ϕ)

a(y+i , ϕ)2
,

kg(βµ, ϕ) =
gϕϕ(µi, ϕ)g(µi, ϕ)− g2

ϕ(µi, ϕ)

g(µi, ϕ)2 ,

k f (βµ, ϕ) =
fϕϕ(µi, ϕ)( f (µi, ϕ)− 1)− f 2

ϕ(µi, ϕ)

( f (µi, ϕ)− 1)2 ,

tg(βµ, ϕ) =
gµϕ(µi, ϕ)g(µi, ϕ)− gµ(µi, ϕ)gϕ(µi, ϕ)

g(µi, ϕ)2 ,

t f (βµ, ϕ) =
fµϕ(µi, ϕ)( f (µi, ϕ)− 1)− fµ(µi, ϕ) fϕ(µi, ϕ)

( f (µi, ϕ)− 1)2 ,

and, gµµ(µi, ϕ) = ∂2g(µi, ϕ)/∂µ2
i , fµµ = ∂2 f (µi, ϕ)/∂µ2

i , aϕϕ = ∂2a(yi, ϕ)/∂ϕ2,
gϕϕ = ∂2g(µi, ϕ)/∂ϕ2, and fϕϕ = ∂2 f (µi, ϕ)/∂ϕ2, gµϕ(µi, ϕ) = ∂2g(µi, ϕ)/∂µi∂ϕ,
fµϕ = ∂2 f (µi, ϕ)/∂µi∂ϕ.

2.5. Prior Distributions

Assuming prior independence, we have π0(βµ, ϕ, βω) = π0(βµ)π0(ϕ)π0(βω). We
propose a multivariate normal prior distribution for βµ and βω , i.e., βµ ∼ N(β0, σ2

0 Ir) and
βω ∼ N(β1, σ2

1 Is), where β0 and β1 are hyperparameter vectors of suitable dimensions,
and σ2

0 and σ2
1 are prior variances. We assume that ϕ ∼ LN(ϕ0, σ2

2 ), where LN denotes the
lognormal prior distribution.

We specify the prior distribution π0(βµ, ϕ, βω) so that, even with moderate sample
sizes, the information from the data outweighs the non-informative prior due to the “vague”
nature of the prior knowledge.

2.6. Posterior Distribution

The likelihood function associated with the observations D can be written in terms of
ℓZTPS(βµ, ϕ | D+) and ℓ2(βω | D) as

L(βµ, ϕ, βω | D) = exp
{
ℓZTPS(βµ, ϕ | D+) + ℓ2(βω | D)

}
.
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The joint posterior distribution is

π(βµ, ϕ, βω | D) ∝ exp
{
ℓZTPS(βµ, ϕ | D+) + ℓ2(βω | D)

}
π0(βµ)π0(ϕ)π0(βω). (11)

The Inference for each parameter is derived from its marginal posterior distribu-
tion, which can be obtained by integrating π(βµ, ϕ, βω | D) for each parameter. For the
parameters (βµ, ϕ), the joint posterior distribution is given by

πZTPS(βµ, ϕ|D+) ∝ exp
{
ℓZTPS(βµ, ϕ | D+)

}
π0(βµ)π0(ϕ). (12)

For the parameter βω, the posterior distribution is

πω(βω |D) ∝ exp{ℓ2(βω | D)}π0(βω).

Under quadratic loss, we calculate the expected value and variance of the posterior
densities of these parameters. Since the posterior densities π(βµ, ϕ|D) and π(βω |D) do not
have a standard analytic form, MCMC methods are useful. We employ the highly efficient
stochastic gradient HMC (SGHMC) algorithm [31]. While Bayesian estimation based on
SGHMC is similar in many aspects to a traditional MCMC approach, the SGHMC algorithm
enhances sampling efficiency by eliminating the acceptance–rejection step typically found
in other algorithms, such as MH and HMC. This streamlining allows for faster convergence
and more effective sampling.

2.7. Stochastic Gradient HMC with Friction (SGHMC) Algorithm

This section reviews the SGHMC algorithm. Let L(θ | D) and π0(θ) respectively
denote the likelihood function and prior distribution. To develop the HMC algorithm, the
posterior distribution of θ = (θ1, . . . , θm)′ given a set of independent observations D can be
written as

π(θ | D) = exp{−E(θ)},

where E(θ) is a potential energy function given by

E(θ) = − logL(θ | D)− log π0(θ).

The HMC method generates samples from the joint distribution of (θ, z) defined by

π(θ, z | D) ∝ exp{−E(θ) + K(z)}.

where z is an auxiliary latent random variable of the same dimension as θ, with a Gaussian
distribution whose kernel K(z) represents a kinetic energy function given by

K(z) =
z′M−1z

2
,

and the mass matrix M is often set to the identity matrix I.
Making an analogy with a physical system, the parameter vector θ denotes the

generalized coordinate, and z is the generalized moment. The Hamiltonian function
H(θ, z) = E(θ) + K(z) represents the energy of the system, which is the sum of the poten-
tial energy E(θ) and kinetic energy K(z).
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Suppose τ refers to the iteration of the algorithm. The partial derivatives of the
Hamiltonian determine how θ and z change over τ, according to Hamilton’s equations, i.e.,

dθ

dτ
=

∂H(θ, z)
∂z

, (13)

dz
dτ

= −∂H(θ, z)
∂θ

. (14)

For any time interval of duration ∆τ, these equations define a transition from the
state at time τ to the state at time τ + ∆τ. The HMC algorithm simulates the Hamiltonian
dynamics according to (13) and (14) for obtaining a sequence of random samples.

Ref. [28] modified Hamilton’s equations by adding a friction term to the momentum
update, leading to the equations

dθ = M−1zdτ,

dz = −∇E(θ)dτ − BM−1zdτ +N (0, 2Bdτ),

where B is a diffusion matrix, and with a slight abuse of notation, the last term in the second
equation denotes the introduction of a multivariate Gaussian random variable N (0, 2Bdτ).
In practice, we need an estimate B̂. Ref. [28] introduced a specified friction term C ≻ B and
considered the following dynamics:

dθ = M−1zdτ (15)

dz = −∇E(θ)dτ − CM−1zdτ +N (0, 2(C− B̂)dτ) +N (0, 2B̂dτ). (16)

Under a realistic, simple choice B̂ = 0, the momentum update simplifies to

dz = −∇E(θ)dτ − CM−1zdτ +N (0, 2Cdτ).

Therefore, the dynamics are governed by the controllable injected noise N(0, 2Cdτ)

and the friction term CM−1. In practical applications, the differential Equations (15) and (16)
cannot be solved analytically, and numerical methods are required. Considering the inte-
gration step size ϵ, we rewrite (15) and (16) in discretized form as

∆θ = ϵM−1z (17)

∆z = −ϵ∇E(θ)− αz +N (0, 2αM), (18)

where α = ϵCM−1. The constant α and the discretization step ϵ are tuning constants; α

tends to be fixed at a small value in practice. In our implementation, we fixed α = 0.10 and
ϵ = 0.01. To solve (17) and (18), we consider the leapfrog integrator method summarized in
the following steps (Algorithm 1):

It should be noted that the SGHMC does not need a Metropolis–Hastings (MH)
step to reach the target distribution, which avoids wasting computational processing [28].
However, SGHMC’s performance is highly sensitive to two user-specified parameters: a
step size ϵ and a desired number of steps L. In particular, if L is too small, the algorithm
exhibits undesirable random walk behavior, while if L is too large, the algorithm wastes
computation time. We chose ϵ = 0.01 and L = 10 to guarantee the good performance of the
algorithm for the problems addressed in this paper.
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Algorithm 1 Simulation of the discretized SGHMC dynamics with friction.

Starting position: θ(t), step size ϵ, number of steps L, constant α, and sample momentum
z(t) ∼ N(0, M).

Initialize::
θ(0) = θ(t),

z(0) = (1− α)z(t) − ϵ

2
∇E
(
θ(t)
)
+N (0, 2αM).

for τ ← 1 to L do

θ(τ) = θ(τ−1) + ϵM−1z(τ−1)

if τ ̸= L z(τ) = (1− α)z(τ−1) − ϵ∇E
(
θ(τ)

)
+N (0, 2αM)

end for
z(L) = (1− α)z(L−1) − ϵ

2
∇E
(
θ(L))+N (0, 2αM)

return (θ(t+1), z(t+1))← (θ(L), z(L)).

2.8. Monte Carlo Posterior Estimates

We employ the SGHMC algorithm for the posterior sampling of the parameters
θ = (β′µ, β′ω, ϕ)′ from the ZMPS regression. Suppose we denote these by θ = (θ1, . . . θm).

Let {θ(j), g = 1, . . . , G}, denote the θ samples generated from the posterior distribution
π(θ|D) via the SGHMC procedure. Since we can approximate a function E(ψ(θ)|D) by

E(ψ(θ)|D) ≈ 1
G

G

∑
g=1

ψ(θ(g)),

in particular, the Monte Carlo estimates for the posterior means and variances of θj,
j = 1, . . . m are computed as

E(θj|D) ≈ θ̂j =
1
G

G

∑
g=1

θ
(g)
j , (19)

V(θj|D) ≈ σ̂2
θj
=

1
G

G

∑
g=1

(
θ
(g)
j − θ̂j

)2. (20)

Bayesian models can be evaluated and compared using various criteria; see [38] for a
comprehensive overview. In this study, we employ three information criteria to select the
best-fitting ZMPS regression model: the Conditional Predictive Ordinate (CPO) [39], the
Expected Bayesian Information Criterion (EBIC) [40], and the Watanabe–Akaike Informa-
tion Criterion (WAIC) [41]. All of these criteria can be estimated using Monte Carlo output;
details are provided in Appendix C.

2.9. Posterior Information and Relative Efficiency

We use Bayesian information to quantify the efficiency loss from fitting a ZMPS model
when a PS distribution could have been used. Ref. [42] originally introduced the concept of
posterior information based on Fisher’s information matrix. In this work, we adapt this
approach by using the observed information matrix, as the expected information matrix is
intractable due to the model’s complexity.
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2.10. Posterior Information

The information about the parameters (βµ, βω, ϕ) contained in the joint distribution
of y and (βµ, βω, ϕ) is written as

I = Eπ0(βµ ,βω ,ϕ)

{
EπZMPS (y|βµ ,βω ,ϕ,x)

[
H(βµ, βω, ϕ,D)

]}
, (21)

where H(βµ, βω, ϕ,D) is the observed Bayesian information matrix, given by

H(βµ, βω , ϕ,D) = −



∂2 log π(βµ, βω , ϕ|D)
∂βµ∂β′µ

∂2 log π(βµ, βω , ϕ|D)
∂βµ∂ϕ

0

∂2 log π(βµ, βω , ϕ|D)
∂ϕ∂βµ

∂2 log π(βµ, βω , ϕ|D)
∂ϕ2 0

0 0
∂2 log π(βµ, βω , ϕ|D)

∂βω∂β′ω


. (22)

Calculating the expected value in (21) is not always possible, so we consider the
observed information matrix H(βµ, βω, ϕ,D) in this paper. From (11), we can write

log π(βµ, βω, ϕ|D) = ℓZTPS(βµ, ϕ|D+) + ℓ2(βω |D) + log π0(βµ, βω, ϕ) + log(C), (23)

where C > 0 is a normalizing constant. Replacing (23) in (22), we can write the block of the
observed Bayesian information matrix for βµ and ϕ as

I(βµ, ϕ) = J (βµ, ϕ) + Π(βµ, ϕ),

where J (βµ, ϕ) is the block of the observed information matrix (10), and Π(βµ, ϕ) is the
negative Hessian of the log-prior denoted by

Π(βµ, ϕ) =

 Πβµ βµ
Πβµϕ

Πϕβµ
Πϕϕ

 = −


∂2 log π0(βµ, ϕ)

∂βµ∂β′µ

∂2 log π0(βµ, ϕ)

∂βµ∂ϕ

∂2 log π0(ϕ, βµ)

∂ϕ∂β′µ

∂2 log π0(βµ, ϕ)

∂ϕ2

.

The Hessian matrix Π(βµ, ϕ) represents the amount of information about (βµ, ϕ)

contained in the proper prior distribution. Obviously Π(βµ, ϕ) = 0 only when the prior is
uniform [42]. For simplicity, let us consider the notation.

I(βµ, ϕ) =

[
Iβµ βµ

bβµϕ

b′ϕβµ
cϕϕ

]
=

 Jβµ βµ
+ Πβµ βµ

Jβµϕ + Πβµϕ(
Jβµϕ + Πβµϕ

)′
Jϕϕ + Πϕϕ

, (24)

where Iβµ βµ
is a matrix p× p, bβµϕ is a vector p× 1, and cϕϕ is a scalar.

Equation (24) defines the amount of observed information in the posterior distribu-
tion (21). We denote the inverse of the posterior observed information matrix V = I−1

given by

V =

[
Vβµ βµ

Vβµϕ

Vϕβµ
Vϕϕ

]
=


(
Iβµ βµ

− 1
cϕϕ

bβµϕb′βµϕ

)−1
− 1

kϕϕ
I−1

βµ βµ
bβµϕ

− 1
kϕϕ

b′βµϕI−1
βµ βµ

1
kϕϕ

, (25)

where kϕϕ = cϕϕ − b′βµϕI−1
βµ βµ

bβµϕ. The matrix V in (25) allows us to compute the relative

efficiency between the parameter estimators of the ZMPS regression model and those
obtained from the PS regression model when p = 1.
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Additionally, ref. [43] introduced a related inequality, demonstrating that the variance
of the posterior distribution is bounded. Specifically, E(V(θj | D)) ≥ E(Vj,j | D). This
inequality will be employed in a simulation study to assess the efficiency of Bayesian
estimators derived using the SGHMC algorithm.

2.11. Bayesian Relative Efficiency Between the ZMPS and PS Models

When fitting a ZMPS model to a dataset, we can assess whether a standard PS model
associated with the ZMPS model is more appropriate by testing the hypothesis H0 : p = 1.
Tests such as FBST [44] can be used to assess the evidence in favor of H0. However, Result
1 ensures that the parameters θ = (µ, ϕ) can be estimated considering only the positive
observations y+ present in the dataset and by fitting the ZTPS model associated with the
PS model. Using only y+ with the ZTPS distribution can result in a loss of efficiency in the
estimates θ̂ = (µ̂, ϕ̂) when the true distribution of the data is a standard PS distribution.
To evaluate this loss of efficiency, we consider the Laplace approximation for the posterior
density πk(θk|D(k)), where k = 0 refers to the posterior density πPS(θ0|D) and k = 1 is
πZTPS(θ1|D+). Now, suppose we can apply the Laplace method; ref. [45] proves that under
some conditions on πk(θk|D(k)) and for sufficiently large n, the posterior distribution can be
approximated by a multivariate normal distribution N(θ∗k ,V (k)(θ∗k )), where θ∗k denotes the
mode of the a posteriori distribution, i.e., the value of θk at which log πk(θk|D(k)) achieves
its maximum, such that

∂ log πk(θk | D(k))

∂θk

∣∣∣∣∣
θk=θ∗k

= 0

and V (k)(θ∗k ) is the inverse of the posterior observed information matrix given by (25),
evaluated at the mode θ∗k .

For ZTPS and most PS models, estimates of θ∗k can only be obtained numerically. To
calculate θ∗k , we consider the Newton–Raphson iterative method, such that

θ
∗(j+1)
k = θ

∗(j)
k +V(θ

∗(j)
k )∇ log πk(θ

∗(j)
k | D(k)), (26)

where ∇ log πk(θk | D(k)) = ∂ log πk(θk | D(k))/∂θk. As an initial condition for (26), we
consider the Monte Carlo estimate of the θ̂k’s components by finding the componentwise
sample mean generated from the posterior distribution via MCMC. This initial condition is
reasonable since θ∗k and θ̂k should be close.

Let the parameter vector θ = (β′µ, ϕ)′, and we denote these by θ = (θ1, . . . , θd)
′, which

is the parameter vector in the ZTPS model, and two estimates of this parameter vector
denoted by θ0 = (θ0,1, · · · , θ0,d) and θ1 = (θ1,1, . . . , θ1,d) are obtained, respectively, with
the PS and ZTPS models. To evaluate the loss of efficiency caused by using Result 1, we
propose to use a Bayesian relative efficiency (BRE) measure, which is defined by

BRE(θ̂0,i, θ̂1,i) =
V (0)i,i

V (1)i,i

. (27)

Appendix A presents the computation of the loss of efficiency in estimating µ and ϕ

assessed by (27) under two scenarios in which we fit the proposed ZMPS (or ZTPS) models
when the observations come from a PS distribution.
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3. Results
3.1. Simulation Study

We present a simulation study to evaluate Bayesian estimation of the ZMPS class of
models using the SGHMC algorithm. In this study, we considered samples y = (y1, . . . , yn)

from the distributions ZMP (Poisson), ZMNB (negative binomial), and ZMGP (generalized
Poisson) models, with sample size n = 100, under the link functions

log(µi) = βµ,1 + βµ,2xi,

logit(ωi) = βω,1 + βω,2xi,

where xi ∼ U(0, 1), i = 1, . . . , n. We consider independent prior distributions, normal
N(βµ0, σ2

0 ) with βµ0 = 0 and σ2
0 = 1 for informative prior and σ2

0 = 100 for vague prior,
and a gamma distribution G(aϕ, bϕ) for ϕ. Let θ = (βµ,1, βµ,2, βω,1, βω,2, ϕ).

In this simulation study, we conducted a sensitivity analysis to evaluate the effect of
initial conditions on the convergence of the generated chains. We tested three different
chains, each initialized with conditions based on the mean of the prior, (i) 1.4 times the
mean (i.e., plus 40%), and (ii) 0.4 times the mean (i.e., minus 60%). After verifying the
burn-in period and ensuring the method’s convergence, we selected the mean of the prior
distribution as the reference point for subsequent analysis.

We employed the SGHMC algorithm to generate 50,000 samples of θ from its full
posterior distribution, discarding the first 50% as burn-in. This resulted in a chain consisting
of 25,000 samples of θ. The final sample was used to calculate the Monte Carlo estimates
of each model parameter’s posterior mean and variance, as given by (19) and (20). We
repeated this procedure M = 100 times. With M estimates of the model parameters, we
evaluated their performance using metrics such as mean bias (B), the ratio of mean squared
error (MSE) to variance (Var), and the average Bayesian efficiency (BE), calculated for each
model parameter θj:

B(θ̂j) =
1
M

M

∑
k=1

(
θ̂
(k)
j − θj

)
, (28)

MSE(θ̂j) =
1
M

M

∑
k=1

(θ̂
(k)
j − θj)

2, (29)

BE(θ̂j) =
1
M

M

∑
k=1

V (k)jj

σ̂
2(k)
θj

, (30)

where V (k)jj is given by (25) and σ̂
2(k)
θj

is given by (20) for each θ̂
(k)

, k = 1, . . . , L. Additionally,
we have also computed the coverage probability (CP) of the Bayesian credible intervals
expressed as percentages as

CP(θj) =
100
M

M

∑
k=1

δ
(k)
θ , (31)

where δ
(k)
θ assumes 1 if the kth Bayesian credible interval (BCI) contains the true value θj

and 0 otherwise.
A summary of the M = 100 simulations is shown in Table 2. In this summary, we can

see the effect of the prior information on the calculation of the standard deviation (s.d.) and
the amplitude of the highest posterior density (HPD) credibility interval for each parameter.
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Table 2. Simulation study. Estimation for the ZMPS(µ, ϕ, p) distribution using sample size N = 100.

ZMPS
Parameters N(0, 1) N(0, 100)

θ θ̂ s.d. HPD (95%) θ̂ s.d. HPD (95%)

ZMP

βµ,1 = −1.0 −1.061 0.306 (−1.573, −0.427) −1.111 0.426 (−1.863, −0.299)
βµ,2 = 3.0 3.078 0.371 (2.341, 3.678) 3.135 0.511 (2.185, 4.025)

βω,1 = −1.0 −1.025 0.312 (−1.604, −0.424) −1.076 0.465 (−1.883, −0.212)
βω,2 = 2.5 2.582 0.446 (1.915, 3.393) 2.686 0.768 (1.654, 4.262)

ZMNB

βµ,1 = −1.0 −1.024 0.298 (−1.560, −0.380) −1.102 0.559 (−2.261, −0.129)
βµ,2 = 3.0 3.035 0.403 (2.236, 3.811) 3.127 0.729 (1.668, 4.549)

βω,1 = −1.5 −1.485 0.296 (−2.095, −0.883) −1.507 0.476 (−2.443, −0.552)
βω,2 = 2.0 1.967 0.459 (1.146, 2.889) 1.993 0.788 (0.661, 3.666)

ϕ = 3.0 2.954 0.266 (2.423, 3.388) 2.939 0.265 (2.423, 3.398)

ZMGP

βµ,1 = −1.0 −1.022 0.300 (−1.571, −0.412) −1.124 0.605 (−2.377, −0.057)
βµ,2 = 3.0 3.053 0.419 (2.212, 3.829) 3.186 0.816 (1.519, 4.757)

βω,1 = −1.5 −1.485 0.296 (−2.095, −0.883) −1.507 0.476 (−2.443, −0.551)
βω,2 = 2.0 1.967 0.459 (1.146, 2.889) 1.993 0.788 (0.661, 3.666)

ϕ = 0.2 0.206 0.027 (0.153, 0.256) 0.208 0.027 (0.156, 0.256)

ZMCOMP

βµ,1 = −3.5 −3.500 0.011 (−3.523, −3.478) −3.523 0.098 (−3.716, −3.334)
βµ,2 = 2.0 1.999 0.012 (1.976, 2.022) 1.986 0.099 (1.785, 2.173)

βω,1 = −1.0 −0.999 0.011 (−1.022, −0.976) −0.998 0.090 (−1.103, −0.747)
βω,2 = 0.5 0.500 0.011 (0.478, 0.523) 0.499 0.096 (0.345, 0.726)

ϕ = 0.2 0.198 0.027 (0.125, 0.230) 0.196 0.027 (0.124, 0.231)

As previously discussed, the performance of the estimators using the metrics in
(28)–(31) is presented in Table 3. The results show improved efficiency of the estimators
when the prior distribution is more informative.

Table 3. Simulation study. Results of the Bayesian efficiency for the ZMPS(µ, ϕ, p) distribution.

ZMPS θ
N(0, 1) N(0, 100)

B MSE PC (%) MSE
Var BE B MSE CP (%) MSE

Var BE

ZMP

βµ,1 −0.061 0.097 97 1.039 1.00 −0.111 0.193 91 1.068 1.00
βµ,2 0.078 0.144 99 1.044 1.00 0.135 0.279 89 1.069 1.00
βω,1 −0.025 0.098 98 1.006 1.00 −0.076 0.221 94 1.027 1.00
βω,2 0.082 0.205 99 1.033 1.00 0.186 0.625 94 1.059 1.00

ZMNB

βµ,1 −0.024 0.089 99 1.006 1.00 −0.102 0.323 94 1.033 1.00
βµ,2 0.035 0.164 98 1.008 1.00 0.127 0.548 94 1.030 1.00
βω,1 0.014 0.088 97 1.002 1.00 −0.007 0.226 93 1.005 1.00
βω,2 −0.033 0.212 98 1.005 1.00 −0.007 0.621 94 1.007 1.00

ϕ −0.046 0.073 99 1.029 1.00 −0.061 0.074 99 1.052 1.00

ZMGP

βµ,1 −0.022 0.091 99 1.005 1.00 −0.124 0.382 93 1.042 0.97
βµ,2 0.053 0.178 98 1.016 1.00 0.186 0.700 93 1.052 0.94
βω,1 0.014 0.088 97 1.002 1.00 −0.007 0.226 93 1.000 1.00
βω,2 −0.033 0.212 98 1.005 1.00 −0.007 0.621 94 1.000 1.00

ϕ 0.006 0.001 99 1.052 0.83 0.008 0.001 99 1.083 0.82

ZMCP

βµ,1 0.002 0.001 99 1.004 1.00 0.023 0.010 99 1.056 0.76
βµ,2 0.001 0.001 99 1.001 1.00 0.014 0.010 99 1.019 0.74
βω,1 0.003 0.001 99 1.000 0.93 0.002 0.008 99 1.000 0.74
βω,2 0.002 0.001 99 1.000 0.96 0.002 0.009 99 1.000 0.75

ϕ 0.021 0.011 98 1.039 0.41 0.003 0.015 98 1.094 0.42

3.2. Application: Number of Femicide Cases

Violence against women encompasses a wide range of physical, psychological, sexual,
and property-related attacks, often occurring on a continuum that can tragically culminate
in murder, the most extreme manifestation of violence inflicted upon women.

Femicide refers to the murder of a woman specifically because she is a woman, typ-
ically driven by hatred, contempt, or a sense of lost control or ownership over women.
Brazil’s Feminicide Law (Law 13.104 of 9 March 2015) classifies homicide as femicide when
committed against a woman due to her gender. The law defines such crimes as those
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involving domestic or family violence, contempt, or discrimination against women and
also includes femicide in the category of heinous crimes.

Of the five measures to combat gender-based violence recommended by the United
Nations, Brazil has implemented only one: online services. This includes the “Red Light”
campaign launched by the National Council of Justice and the Brazilian Association of
Magistrates, which functions similarly to emergency alert systems. However, there has yet
to be an assessment of the campaign’s impact on protecting women in violent situations.
Factors contributing to the increase in gender-based violence include victims’ difficulty in
reporting, a reduction in crime reporting at police stations, and a decline in the number of
emergency protective measures granted to women.

This study aims to determine whether femicides increased during the COVID-19
pandemic. We analyze data from 642 municipalities in São Paulo for the years 2019 and
2020 [46], fitting ZMPS regression models with the Municipal Human Development Index
(MHDI) as an explanatory variable. The MHDI, a key measure of municipal development
in Brazil, evaluates three dimensions of human development: longevity, education, and
income. It ranges from 0 to 1, with higher values indicating greater development. By
interpreting the mean µZMPS

i of the model and the parameter pi (which accounts for zero
inflation or deflation) as functions of the MHDI, we gain insights into femicide patterns. A
summary of the sample is presented in Table 4.

Table 4. Frequency distribution and descriptive statistics of each sample referring to the number of
femicides in 2019 and 2020 in 642 São Paulo municipalities.

Year Frequency

yi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2019 fi 254 132 56 45 27 23 16 13 7 7 3 1 5 2 2 4
2020 fi 262 121 67 40 36 17 11 10 8 6 4 3 2 3 5 -

yi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 >30
2019 fi 2 3 2 3 3 2 3 2 - 2 3 1 2 1 1 15
2020 fi 1 2 3 4 2 1 2 3 2 1 1 1 3 1 3 17

We apply the proposed Bayesian approach to fit ZMPS models to the femicide data,
using the MHDI as a regressor. Specifically, we consider the zero-modified Poisson (ZMP),
zero-modified negative binomial (ZMNB), zero-modified generalized Poisson (ZMGP), and
zero-modified COM-Poisson (ZMCOMP) distributions. For the parameters βµ and βw, we
use normal priors N(0, 102), while for ϕ, we apply a gamma prior G(aϕ, bϕ) with aϕ/bϕ = 5
and aϕ/b2

ϕ = 102. We employ three information criteria, LogCPO (A8), EBIC (A9), and
WAIC (A10), to identify the distribution that best fits the data, with higher LogCPO values
and lower WAIC and EBIC values indicating better model performance. The values of
these criteria for each fitted model are presented in Table 5, with the selected model for
each sample highlighted in bold.

Table 5. Criteria for selecting the models that were fitted to the data on the number of femicide cases
in 2019 and 2020.

Year 2019 2020

Criteria ZMP ZMNB ZMGP ZMCOMP ZMP ZMNB ZMGP ZMCOMP

LogCPO 2296 1376 1372 1481 2392 1372 1368 1492
WAIC 4658 2758 2767 2972 4866 2750 2750 3032
EBIC 4648 2783 2791 3000 4847 2775 2783 3044

The three criteria identify the ZMNB model as the best fit for both 2019 and 2020.
Posterior summaries and credible intervals for the parameters µi, ϕ, and pi are presented in
Table 6. The results are derived using three Markov chains, each containing 100,000 samples,
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initialized with distinct starting conditions. To minimize the effect of the burn-in period, we
discard 25% of each chain and select every 75th value from the remaining 75% (thinning),
which helps reduce autocorrelation within the chains. We use the resulting final sample of
3000 observations to compute the Bayesian Monte Carlo estimates. The convergence details
of the SGHMC algorithm are provided in Appendix B. Figure 1 displays the estimated
mean µ

(ZMPS)

i and the parameter pi for the ZMNB models based on data from 2019 and 2020.

Table 6. Posterior summaries and credible intervals of the parameters of ZMNB fitted to the number
of femicide cases in 2019 and 2020.

Year 2019 2020

Parameter Mean Median s.d. CI (95%) Mean Median s.d. CI (95%)

βµ,0 −15.665 −15.594 1.579 (−18.883, −12.757) −17.597 −17.528 1.592 (−20.839, −14.647)
βµ,1 22.629 22.558 2.098 (18.497, 26.587) 25.293 25.226 2.117 (21.200, 29.377)
βω,0 −10.441 −10.443 1.808 (−14.178, −7.086) −7.602 −7.613 1.751 (−11.150, −4.259)
βω,1 14.724 14.692 2.454 (10.032, 19.653) 10.798 10.798 2.375 (6.339, 15.658)
ϕ 0.556 0.554 0.085 (0.396, 0.729) 0.574 0.572 0.086 (0.403, 0.741)

In Figure 1a, we examine the mean number of reported femicides in relation to the
MHDI. The graphs demonstrate that the mean number of notifications increases with the
MHDI and is slightly higher during the COVID-19 pandemic. This trend indicates that
municipalities with higher levels of development tend to report a greater mean number of
femicides. This pattern is anticipated as more developed municipalities are likely to offer
better protective measures for women and more effective crime reporting systems. The
increase in reported cases in 2020, compared with the averages in 2019, can be attributed to
the impacts of the pandemic.

The pi parameters are depicted as a function of the MHDI in Figure 1b. These pa-
rameters help interpret the frequency of zero observations within the sample. Typically,
municipalities with lower mean notification numbers, µi, are expected to exhibit zero
inflation, meaning pi ≤ 1. However, Figure 1b shows that for municipalities with an MHDI
below 0.7 (i.e., those with low average µi), the estimates of pi exceed 1. This indicates a
deflation of zero observations at this level of the covariate, suggesting that municipalities
with a low MHDI experience less zero inflation than expected. In fact, they report more
cases than the standard model would predict (pi = 1). Furthermore, the increase in reg-
istrations during 2020, marked by a rise in deflation from zero, can be attributed to the
impact of the COVID-19 pandemic, as seen in the comparison of pi estimates between 2019
and 2020.
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Figure 1. The mean µZMNB (a) and the parameters p (b) fitted according to the MHDI for the 642 mu-
nicipalities of São Paulo in 2019 and 2020.
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4. Conclusions
The ZMPS distribution is constructed by modifying the zero probability of standard

PS distributions. This flexible model accommodates count data with varying characteristics
related to the frequency of zeros, including zero inflation and deflation, as well as different
types of dispersion, such as overdispersion, equidispersion, and underdispersion. This
property is particularly significant for ZMPS regression models, where zero inflation or
deflation can manifest at different levels of covariates. As a result, the ZMPS class can be
applied to model count datasets without requiring prior knowledge of zero inflation or
deflation. Importantly, the ZMPS distribution includes PS distributions as a specific case.

This paper presents a Bayesian approach using the SGHMC algorithm to fit a ZMPS
regression model. We demonstrate that estimates of µi and ϕ can be obtained by focusing
exclusively on the positive observations in a dataset and assuming a ZTPS distribution for
these data. Based on this approach, we can evaluate relative efficiency losses by considering
a measure of Bayesian information across different levels of prior information.

The estimation of the parameter pi enables the characterization of zero inflation
(0 < pi < 1) or zero deflation (1 < pi <

1
1−πPS (0;µi ,ϕ)

). This parameter plays a key role in

analyzing and interpreting the data, as discussed in Section 3.2. The ability to estimate pi is
a significant strength of the ZMPS regression models.

Finally, as a practical application of the proposed ZMPS model, we analyzed the
number of femicides in 642 municipalities in São Paulo for the years 2019 and 2020. In this
dataset, zero observations are particularly significant, as the counts represent the number
of women murdered. We fitted ZMPS regression models to these counts, utilizing the
Municipal Human Development Index (MHDI) as an explanatory variable and estimating
the pi parameter. This allowed for a more comprehensive analysis of the zero observations.

A limitation of the proposed model is the significant computational time and effort
required to assess the impact of different initial conditions for a given dataset and to
determine the appropriate chain length to ensure convergence and efficiency of the Monte
Carlo estimators for the model parameters. Furthermore, the computational cost of fitting
multiple models and applying a model selection criterion to identify the best PS distribution
must be considered. In this study, we have used three criteria, LogCPO, EBIC, and WAIC,
for Bayesian model selection.

A formulation of ZMPS regression models for longitudinal datasets that consider spa-
tial correlations represents a natural extension for future research on the models presented
in this paper.
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Appendix A. Bayesian Relative Efficiency: Two Examples
Scenario 1: Large sample size: In the case of a large sample size, where the data information
outweighs that of the prior densities, this scenario is referred to as the asymptotic case
(n→ ∞). To assess the loss of efficiency when fitting the proposed ZMPS (or ZTPS) models
to observations from a PS distribution, we consider Equation (27) under this assumption.
Scenario 2: Small sample size: In this scenario, the goal is to evaluate the impact of
prior information about the model parameters on the loss of efficiency. To achieve this,
we consider a small sample size (sufficient for fitting the ZMPS models) and two prior
densities that differ only in their level of information (prior variance).

Appendix A.1. Poisson Distribution (P) Versus ZMP (or ZTP) Distribution

In this example, we consider the Poisson distribution P(y | µ) without the regression
model for simplicity (θ = µ). Let us consider (27) to assess the effect of the information
level of the prior distribution and the effect of the sample size on the loss of efficiency
when we consider fitting a more general ZMP (or ZTP) for data coming from a Poisson
distribution (P).

Let D = y = (y1, . . . , yn) be the observed dataset coming from a Poisson distribution
P(y | µ) = e−µµy/y!. Let D+ = y+ = (y+1 , . . . y+m) be the positive observations in D
(D+ ⊂ D). Considering the Poisson distribution with parameters µ and a prior density
gamma G(α, β) for µ, we can write the posterior density as

π0(µ | D) ∝ µny+α−1e−(n+β)µ,

where y is the sample mean, and the mode of the posterior distribution is given by

µ∗0 =
ny + α− 1

n + β
.

The observed posterior information is given by

I (0)(µ) = −∂2 log π0(µ | D)
∂µ2 =

ny + α− 1
µ2 ,

and the inverse of the posterior observed information matrix V (0)(µ) = I (0) −1
(µ) evalu-

ated at µ∗0 is given by

V (0)(µ∗0) =
ny + α− 1
(n + β)2 .

Remark A1. Note that the posterior variance is σ2
0 = ny + α/(n + β)2 and V (0)(µ∗) = σ2

0 −
1/(n + β)2. So V (0)(µ∗) ≤ σ2

0 . Therefore, paralleling the classic Cramér–Rao inequality, we can
see that V (0)(µ∗) provides the posterior Cramér–Rao lower bound type for the posterior variance.

Let D+ be the positive observations in D, and the ZTP model be

P(y+ | µ) =
e−µµy+

y+!(1− e−µ)
.

Considering a gamma prior density G(α, β) for µ, the posterior density is given by

π1(µ | D+) ∝
µmy++α−1e−(m+β)µ

(1− e−µ)m ,
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where y+ is the sample mean of the positive observations, and the mode of the posterior
distribution can be found by solving numerically the following equation:

∂ log π1(µ | D+)

∂µ
=

(my+ + α− 1)
µ

− (m + β)− m
eµ − 1

= 0.

The observed posterior information for the ZTP distribution is given by

I (1)(µ) = −∂2 log π1(µ | D+)

∂µ2 =
my+ + α− 1

µ2 − meµ

(eµ − 1)2 ,

while the inverse of the posterior observed information matrix V (1)(µ) = I (1) −1
(µ) is

given by

V (1)(µ) = µ2(eµ − 1)2

(my+ + α− 1)(eµ − 1)2 −mµ2eµ
.

Considering the mode of the posterior distribution µ∗1 calculated via the New-
ton–Raphson procedure (26), we can evaluate the loss of relative efficiency BRE(µ̂0, µ̂1)

given in (27) when only the positive datasetD+ and the zero-truncated Poisson distribution
are considered:

BRE(µ̂0, µ̂1) =

(
µ∗0
µ∗1

)2
(

my+ + α− 1
ny + α− 1

− µ∗
1

2e−µ∗1

(ny + α− 1)(1− e−µ∗1 )2

)
. (A1)

Since ny = my+, we can write (A1) as

BRE(µ̂0, µ̂1) =

(
µ∗0
µ∗1

)2
(

1− µ∗
1

2e−µ∗1

(my+ + α− 1)(1− e−µ∗1 )2

)
. (A2)

Prior Information

In this example, let us consider a gamma prior distribution G(α, β) for µ, i.e.,

π0(µ) =
βα

Γ(α)
µα−1e−βµ, α > 1, β > 0.

Let µ∗ = (α− 1)/β2 represent the mode of the prior density that gives the Bayesian
information conveyed by the prior density.

I (π0)

µµ (µ∗) = − ∂2 log π0(µ)

∂µ2

∣∣∣∣
µ=µ∗

=
β2

α− 1
.

The prior Bayesian information for µ is proportional to β2, meaning that the shape
parameter β of the prior density is linked to the accuracy of the prior information about µ.

A simulation study was conducted to assess the effect of prior information and sample
size (n) on the loss of relative efficiency (BRE), as calculated by (A2).

Figure A1a illustrates the asymptotic Bayesian relative efficiency (BRE) as a function of
the parameters of the gamma prior distribution G(α, β) for β = 5 and β = 50 with α = βµ

for µ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
In Figure A1a, we consider n = 300. The figure illustrates that the information

provided by the data outweighs that from the prior densities, resulting in BRE curves
that are nearly identical for both prior densities. This figure demonstrates that the ZTP
estimator is nearly fully efficient for µ ≥ 6. Figure A1b,c illustrate the sample Bayesian
relative efficiency (BRE).
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The individual points were derived from simulated Poisson samples of size n = 30
for each true parameter µ. The BRE was calculated using (A2). For µ ≥ 5, the sample BRE
(with n = 30) and the asymptotic BRE (with n = 300) are nearly identical when β = 5 and
β = 50.

However, as shown in Figure A1b,c, prior information enhances Bayesian efficiency
for µ ≤ 5.
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Figure A1. Bayesian relative efficiency of the ZTP estimation if a Poisson distribution is true:
(a) asymptotic BRE (n = 300); (b) Sample BRE for β = 5 (n = 30); (c) Sample BRE for β = 50 (n = 30).

Appendix A.2. Negative Binomial Distribution (NB) Versus ZMNB (or ZTNB) Distribution

Using (24) and (25), we can assess the loss of efficiency in estimating µ and ϕ when
observations are drawn from a traditional negative binomial distribution, but parameter
estimates are obtained from the ZTNB distribution. From (25), we can express the lower
bounds for the variance of the Bayesian estimates of µ and ϕ, considering only the positive
samples and the ZTNB distribution, as follows:

V (ZTNB)

µµ =
Jϕϕ + Πϕϕ

(Jµµ + Πµµ)(Jϕϕ + Πϕϕ)−
(
Jµϕ + Πµϕ

)2 , (A3)

V (ZTNB)

ϕϕ =
Jµµ + Πµµ

(Jµµ + Πµµ)(Jϕϕ + Πϕϕ)−
(
Jµϕ + Πµϕ

)2 . (A4)
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The elements of the matrix J (µ, ϕ) are given by

Jµµ =
m

∑
i=1

[
−y+i hg(µ, ϕ) + h f (µ, ϕ)

]
,

Jµϕ = Jϕ,µ =
m

∑
i=1

[
−y+i tg(µ, ϕ) + t f (µ, ϕ)

]
,

Jϕϕ =
m

∑
i=1

[
−ka(y+i , ϕ)− y+i kg(µ, ϕ) + k f (µ, ϕ)

]
,

The evaluation of (A3) and (A4) depends on the choice of the prior density π0(µ, ϕ).
Here, we illustrate this assessment by considering the loss in efficiency through the BRE,
using independent prior gamma distributions G(α, β) for both µ and ϕ, respectively.

Using a similar procedure, we derived the observed information matrix for the param-
eters µ and ϕ of the traditional NB distribution. We denote this matrix by

J (NB)
(µ, ϕ) =

 J (NB)
µµ J (NB)

µϕ

J (NB)
ϕµ J (NB)

ϕϕ

,

and its elements are given by

J (NB)

µµ =
n

∑
i=1

[
−yihg(µ, ϕ) + h

(NB)

f (µ, ϕ)
]
,

where

h
(NB)

f (µ, ϕ) =
fµµ(µ, ϕ) f (µ, ϕ)− f 2

µ(µ, ϕ)

f 2(µ.ϕ)
.

J (NB)

µϕ = J (NB)

µϕ =
n

∑
i=1

[
yitg(µ, ϕ) + t

(NB)

f (µ, ϕ)
]
,

where

t
(NB)

f (µ, ϕ) =
fµϕ(µ, ϕ) f (µ, ϕ)− fµ(µ, ϕ) fϕ(µ, ϕ)

f 2(µ.ϕ)
.

J (NB)

ϕϕ =
n

∑
i=1

[
−ka(yi, ϕ

)
− µkg(µ, ϕ) + k

(NB)

f (µ, ϕ)
]
,

where

k
(NB)

f (µ, ϕ) =
fϕϕ(µ, ϕ) f (µ, ϕ)− f 2

ϕ(µ, ϕ)

f 2(µ.ϕ)
.

From the inverse Bayesian information matrix V for the NB distribution, we can derive
the variability of the posterior distribution for µ and ϕ as follows:

V (NB)

µµ =
J (NB)

ϕϕ + Πϕϕ

(J (NB)
µµ + Πµµ)(J

(NB)
ϕϕ + Πϕϕ)−

(
J (NB)

µϕ + Πµϕ

)2 , (A5)

V (NB)

ϕϕ =
J (NB)

µµ + Πµµ

(J (NB)
µµ + Πµµ)(J

(NB)
ϕϕ + Πϕϕ)−

(
J (NB)

µϕ + Πµϕ

)2 . (A6)
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By considering the Bayesian relative efficiency (BRE), we can assess the loss of efficiency
in estimating µ and ϕ when observations are drawn from a standard NB distribution, but
parameter estimates are obtained from the ZTNB distribution. Using (A3)–(A6), the BRE is
given by:

BRE(µ) =
V (NB)

µµ

V (ZTNB)
µµ

and BRE(ϕ) =
V (NB)

ϕϕ

V (ZTNB)
ϕϕ

.

Figure A2a displays the BRE for µ considering an infinite sample size (here, n = 1000).
Figure A2b,c compare the asymptotic BRE (n→ ∞) with empirical BRE values calculated
for n = 50. Figure A2b shows the BRE with a less informative prior density (β = 5), where
the curve closely matches that obtained for a larger sample size (n = 1000). In Figure A2c, a
more informative prior density (β = 50) is used, showing that prior information improves
the BRE compared with that provided by the large sample size (n = 1000).

The plots in Figure A3 demonstrate that prior information enhances the BRE compared
with that provided by a large sample size. Figure A3a displays the BRE for ϕ when
considering an infinite sample size (n = 1000). Figure A3b,c compare the asymptotic BRE
(n = 1000) with empirical BRE values calculated for n = 50.

As shown in Figures A2 and A3, for both parameters µ and ϕ of the negative binomial
distribution, there is virtually no loss of efficiency from using the zero-truncated distribution
when µ > 6 and ϕ > 4. However, the prior densities can still enhance the efficiency of
estimating these parameters.
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Figure A2. Bayesian relative efficiency of the ZTNB estimation for µ if a negative binomial distribution
is true: (a) asymptotic BRE (µ); (b) empirical BRE (µ) for β = 5 ; (c) empirical BRE (µ) for β = 50.
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Figure A3. Bayesian relative efficiency of the ZTNB estimation for ϕ in a negative binomial dis-
tribution is true: (a) asymptotic BRE(ϕ); (b) empirical BRE(ϕ) for β = 5 ; (c) empirical BRE(ϕ) for
β = 50.

Appendix B. Results of the SGHMC Algorithm Applied to the Data in
Section 3.2

The results were obtained using the SGHMC algorithm outlined in Section 2.7. Three
Markov chains, each consisting of 100,000 samples, were generated with distinct initial
conditions. To minimize the effect of the burn-in period, 25% of each chain was discarded.
From the remaining 75%, a subsample was taken for every 75th generated value (a process
known as thinning) to reduce autocorrelation within the chains. This process yielded
a final sample of 3000 observations, which was used to compute Bayesian Monte Carlo
estimates. In addition, the Geweke [47] and Gelman–Rubin [48] convergence diagnostics
were calculated using the R CODA package [49] (see Tables A1 and A2). The graphs in
Figures A4 and A5 show the generated chains, the final combined chain, the histogram,
and the autocorrelation function for the samples from the final chain.

Table A1. The Gelman–Rubin and Geweke convergence diagnostics to the data of 2019.

Parameters
Gelman & Rubin Geweke

Point Est. Upper C.I. |Z| < 1.96

βµ,1 1.03 1.08 1.3895
βµ,2 1.03 1.08 1.3664
βω,1 1.01 1.04 0.4394
βω,2 1.01 1.04 0.4320

ϕ 1.00 1.00 1.1438
Multivariate potential scale reduction factor. 1.02.
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Figure A4. Results of the SGHMC algorithm for estimating the parameters of the ZMNB regression
model applied to the data of 2019: (a) β1 = βµ,1; (b) β2 = βµ,2; (c) β3 = βω,1 (d) β4 = βω,2; (e) ϕ.

Table A2. the Gelman–Rubin and Geweke convergence diagnostics to the data of 2020.

Parameters
Gelman & Rubin Geweke

Point Est. Upper C.I. |Z| < 1.96

βµ,1 1.03 1.08 1.3863
βµ,2 1.03 1.08 1.3648
βω,1 1.01 1.03 0.4278
βω,2 1.01 1.03 0.4206

ϕ 1.00 1.00 1.2430
Multivariate potential scale reduction factor. 1.02.

A sensitivity analysis was performed to assess the impact of the prior density pa-
rameters on the estimation of the model parameters. This analysis varied the prior mean
parameters within the interval [−50, 50] and considered prior variances of σ2 = 1, 10, 100,
and 10, 000. The results showed that, under the same generation procedure used in the
SGHMC algorithm as detailed in this paper, the parameter estimates did not exhibit sig-
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nificant changes. However, the variance of the prior densities had a minimal effect on
the parameter variances and, consequently, on the credibility intervals. Given the large
dataset (N = 642), the prior parameters had little impact on the estimates. However, for
smaller sample sizes, more informative prior densities could have a greater influence on
the estimates. This is a fundamental aspect of Bayesian inference and highlights one of the
key advantages of this approach.
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Figure A5. Results of the SGHMC algorithm for estimating the parameters of the ZMNB regression
model applied to the data of 2020: (a) β1 = βµ,1; (b) β2 = βµ,2; (c) β3 = βω,1 (d) β4 = βω,2; (e) ϕ.

Appendix C. Model Selection
Bayesian models can be evaluated and compared in several ways. Details on various

criteria for comparing models in the Bayesian context are presented by [38]. We use three
criteria to select the best-fitting ZMPS regression model: the conditional predictive ordinate
(CPO) [39], expected Bayesian information criterion (EBIC) [40], and Watanabe–Akaike
information criterion (WAIC) [41].

The Conditional Predictive Ordinate (CPO) criterion [39] offers a functional cross-
validation approach and serves as a computationally efficient measure of model fit. It is
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calculated using the predictive probability density function of a future observation yi, given
the data excluding the i-th observation, D(−i), as follows:

πZMPS(yi | D−i) =
∫

ΩΘ

πZMPS(yi | Θ,D−i)π(Θ | D−i)dΘ, (A7)

where ΩΘ is the parameter space. From (A7) and the generated chain from the SGHMC
procedure {Θ(g), g = 1, · · · , G}, we can estimate CPOi by

ĈPOi =

[
1
G

G

∑
g=1

1

πZMPS(yi | Θ(g),D−i)

]−1

. (A8)

In many cases, it is computationally more convenient to calculate log(CPOi) rather
than CPOi. In such situations, log(ĈPO) is obtained by summing the estimates of
log(ĈPOi) see [38]. The model with the largest log(ĈPO) is then selected as the best-fitting
model for the data.

The expected Bayesian information criterion (EBIC) [40] is estimated from the SGHMC
output as

ÊBIC =
1
G

G

∑
g=1
−2 log(L(Θ(g) | Dn)) + p log(n), (A9)

where L(Θ(g) | Dn) is the likelihood function defined in (6) evaluated using the generated
chain from the SGHMC procedure {Θ(g), g = 1, · · · , G}, p is the number of parameters in
the model, and n is the total number of observations.

The Watanabe-Akaike information criterion (WAIC) was introduced by [41]. The
WAIC criterion can be estimated using SGHMC output as

ŴAIC = −2

{
n

∑
i=1

log

(
1
G

G

∑
g=1

πZMPS(yi | θ(g),D)
)
− pWAIC

}
, (A10)

where pWAIC = ∑n
i=1 VG

g=1 log
(

πZMPS(yi | θ(g),D)
)

, with VG
g=1 representing the sample

variance, i.e., VG
g=1ag =

1
G− 1 ∑G

g=1(ag − a)2.

To assess the performance of these model selection criteria for ZMPS regression models,
we conducted a simulation study. In this study, we generated samples of size N = 100
from each of the ZMP, ZMNB, ZMGP, and ZM-COMP distributions and fitted the four
models to each generated dataset. The SGHMC algorithm was applied with three different
initial conditions. For each chain, 100,000 samples were generated, with the first 25%
discarded as the burn-in period. From the remaining 75,000 samples, one was selected
every 75 iterations (thinned sample), resulting in a joint sample of 3000 values. We then
used this sample to calculate the Bayesian estimates for the logCPO, EBIC, and WAIC
criteria. The results are presented in Tables A3–A6.

As shown in Table A3, for the data generated with the ZMP distribution, only the
LogCPO criterion identified ZM-COMP as the best model, while the other criteria correctly
identified the ZMP distribution as the best model.

As shown in Table A4, only the LogCPO criterion incorrectly identifies the best model.
In contrast, both the WAIC and EBIC criteria correctly select the ZMNB model as the best fit.
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Table A3. Data generated from the ZMP distribution.

Model
Criteria

LogCPO WAIC EBIC

ZMP 162 333 347
ZMNB 164 336 355
ZMGP 163 334 353
ZM-COMP 178 361 382

The selected model is highlighted in bold.

Table A4. Data generated from the ZMNB distribution.

Model
Criteria

LogCPO WAIC EBIC

ZMP 156 323 335
ZMNB 150 308 327
ZMGP 150 309 328
ZM-COMP 157 321 341

The selected model is highlighted in bold.

Table A5. Data generated from the ZMGP distribution.

Model
Criteria

LogCPO WAIC EBIC

ZMP 162 339 349
ZMNB 152 314 332
ZMGP 152 312 330
ZM-COMP 159 325 344

The selected model is highlighted in bold.

In Table A5, we observe that the LogCPO criterion incorrectly identifies the best model.
However, both the WAIC and the EBIC criteria correctly select the ZMGP model as the
best fit.

Table A6. Data generated from the ZM-COMP distribution.

Model
Criteria

LogCPO WAIC EBIC

ZMP 116 240 254
ZMNB 116 240 258
ZMGP 116 241 260
ZM-COMP 117 239 259

The selected model is highlighted in bold.

In Table A6, we observe that for data generated with the ZM-COMP distribution,
both the LogCPO and WAIC criteria correctly identify the best model. However, the
EBIC criterion incorrectly selects the ZMP model as the best fit. This is likely due to the
lower complexity of the ZMP model, as the EBIC criterion tends to favor models with
greater parsimony.

As a final analysis of this simulation study with artificial data, we conclude that the
WAIC criterion is the most robust, consistently identifying the correct model as the best in
all cases. However, using all three criteria provides a valuable approach to resolving ties
and selecting the best model.
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