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Abstract: This study presents a new approach to optimize the dynamic evacuation pro-
cess through a dynamic traffic assignment model formulated using mixed-integer linear
programming (MILP). The model approximates the travel time for evacuee groups with a
piecewise linear function that accounts for variations in travel time due to load-dependent
factors. Significant delays are transferred to subsequent groups to simulate delay propa-
gation. The primary objective is to minimize the network clearance time—the total time
required for the last group of evacuees to reach safety from the start of the evacuation. Given
the model’s computational intensity, a simplified version is introduced for comparison.
Both the original and simplified models are tested on small networks and benchmarked
against the Cell Transmission Model, a well-regarded method in dynamic traffic assignment
literature. Additional objectives, including average travel time and average evacuation
time, are explored. A sensitivity analysis is conducted to assess how varying the number of
evacuee groups impacts model outcomes.

Keywords: evacuation planning; disaster management; optimal routing; mixed-integer
linear programming; dynamic traffic assignment

MSC: 90C11; 90B20; 90C29; 90B06; 90B10

1. Introduction
Evacuation is essential in the case of natural and manmade disasters such as hurri-

canes, nuclear disasters, fire accidents, and terrorism epidemics. Random evacuation plans
can increase risks and incur more losses. Hence, numerous simulation and mathematical
models have been proposed over the past few decades to help transportation planners make
decisions to reduce costs and protect lives. However, the dynamic transportation process is
inherently complex. Thus, modeling this process can be challenging and computationally
demanding. The objective is to build a balanced model that reflects the realism of the
dynamic transportation process, and is still computationally tractable and can be imple-
mented in reality by decision-makers. On the other hand, the users of the transportation
network require reasonable travel times within the network to reach their destinations. The
output of the model should align with the decision-maker and the user requirements.

In this paper, we propose a novel approach to model the evacuation process in order
to help decision-makers allocate demands on the available capacity resources to reduce the
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congestion effect and find the optimal network clearance time. Specifically, a mixed-integer
linear programming (MILP) model is developed as a dynamic traffic assignment (DTA)
model that we call a latency-based model (LBM). To the best of our knowledge, there is no
mathematical programming modeling approach that computes the estimated time each
group of evacuees spends on each route. Most of the mathematical programming DTA
models find the network clearance time (NCT), and some models compute the estimated
average travel time (ATT) and average evacuation time (AET) of the evacuees [1]. In this
proposed model, evacuees use the set of shortest routes to reach their destination. There
are many algorithms that can find the set of shortest routes [2]. Moreover, the travel time
on any road segment is load-dependent as a function of the flow. The function used is a
modified version of the Bureau of Public Roads (1964) function proposed by [3]. Our model
is capable of propagating the delay that takes place in downstream road segments to the
upstream segments along the predefined routes. Using small network examples, the results
of the model are compared with the cell transmission model (CTM) introduced by [4,5],
which was later modified to a linear programming (LP) model by [6]. We also show that
the CTM model regulates the entry to a road segment rather than slowing the traffic along
the road segment, which indicates that the CTM model is insensitive to the length of a
congested road segment. The model is also tested on a real-world network, and the results
are compared with the CTM. Further, sensitivity analysis is implemented by changing the
number of groups to observe the behavior of the ATT and AET.

This paper is organized as follows: The state-of-the-art and relevant studies are listed
in Section 2. A new modeling approach is introduced and discussed in Section 3. Then, a
reduced complexity version of the model is introduced in Section 4. Next, trivial examples
are used to illustrate the model and compare it with the CTM in Section 5.1. In addition,
a real-world network is used for experimentation, and the reduced complexity model is
compared with the original model in Section 5.2. Then, the computational complexity is
discussed in Section 5.3. Finally, conclusions and future work are discussed in Section 6.

2. Literature Review
Most evacuation models in mathematical programming are based on static and dy-

namic traffic assignments. See [7–12] for static and dynamic traffic assignment examples.
There are several objectives in these models, such as system optimal (SO), user equilibrium
(UE), nearest allocation (NA), and constrained system optimal (CSO). The objective in SO,
as defined by [13], is to minimize the total evacuation time of evacuees to minimize the
NCT. In UE, the evacuation time for each group or individual on all routes is minimized so
that no individual can improve their travel time by changing routes (Nash equilibrium). UE
is equivalent to min-max fairness (MMF), where the maximum evacuation time of all evac-
uees is minimized until it cannot be improved any further. Then, the next group of evacuees’
evacuation time that can be improved is minimized until they cannot be improved, and so
on until all evacuation times of all evacuees are minimized [14,15]. Evacuees are assigned
to the nearest shelter or safe destination in NA [16]. The models SO and UE/NA are
contradicting since the SO does not consider the distribution of the individual evacuation
times. However, CSO considers both SO and UE/NA since additional constraints are
added to redistribute the evacuees to acceptable routes proposed by [7]. The drawback of
SO is that the model does not consider the congestion in different parts of the network as
the model objective is to minimize the network clearance time. Hence, parts of the network
can be highly congested, leading to longer evacuation times [17].

One of the first attempts to model the DTA as a discrete-time SO mathematical program
was by [18,19]. The M-N model captures the traffic propagation due to congestion through a
link exit function, and the travel time is represented through the link performance function
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of the traffic volume. The model has been extended and investigated with different exit
flow functions, link travel time models, and first-in-first-out (FIFO) properties by [20–22]. In
general networks, additional constraints of a non-convex structure are imposed to maintain
the FIFO requirement, which can lead to greater computational complexity, as discussed
by [23]. Another issue that commonly occurs in discrete SO-DTA is the traffic holding-back,
where the traffic on one route is delayed for an unreasonable time in favor of other traffic
since there is no restriction on how long a group of evacuees can be delayed. Both FIFO
and traffic holding-back are discussed by [24]. Another modeling approach of the DTA is
the point queue (PQ) model. The assumption in this model is that the time spent in the
network is the travel time at free-flow speed plus the waiting time in the queue. The vehicle
waits in an exit queue on the link until it is possible to move forward to the next link based
on the capacity and the cost of the link. See [25,26] for more illustrations on PQ models.

One of the widely accepted approaches for modeling the dynamic evacuation process
is the CTM developed by [4,5] based on [27,28] (LWR) hydrodynamic model of traffic flow.
The model is called CTM since the network is divided into homogeneous cells. On the
tick of a clock, the evacuees in one cell move to the next cell once the capacity allows them
to move forward. Ziliaskopoulos [6] introduced a linear programming (LP) formulation
of CTM with a single destination and SO objective. Ukkusuri and Waller [29] proposed a
linear dynamic user equilibrium network design problem (UE-NDP) based on the CTM
model. However, the M-N model and the CTM are based on a similar concept of traffic
movement and delay propagation. Nie [30] shows that incorporating additional constraints
to the linearized M-N model results in relaxed CTM and proposes an algorithm to solve
the issue of flow holding back. Therefore, both models are generally similar in the basic
concept since CTM can be derived from the original M-N model. Essential information
lacking in these models is the total time each group of evacuees spends in the network until
they reach their destination.

The motivation of this research is to develop a model that captures the desirable prop-
erties of both static and dynamic traffic assignment models. The static traffic assignment
models use the load-dependent nonlinear travel time functions but do not reflect the reality
of the traffic congestion propagation effect. The DTA models consider the propagation
by controlling the movement of the traffic but do not provide enough information about
the evacuees. The estimated time for each group of evacuees, for example, to reach their
destination, is unknown in CTM, which can result in very long evacuation times for some
evacuees and lead to selfish behavior. Selfish routing has regained great interest in recent
years after Wardrop’s first principle UE. Game theory or network games is a common
approach that addresses selfish routing (see [31–34]). Also, other objectives are tested to be
compared with the NCT. Hence, a new approach is introduced to express the congestion in
a more obvious and realistic way.

More recent studies introduce a modified version of the CTM for better accuracy [35–37].
Shrike et al. [35] propose a new model, Arterial Cell Transmission Model (ACTM), that extends
the capability of the CTM to better capture the essence of arterial networks. Wu et al. [36]
study the case of using adaptive cruise control and cooperative adaptive cruise control using
the CTM in the case of congestion of mixed traffic flow of both connected automated vehicles
and human-driven vehicles. Alimardani and Baras [37] propose a modified version of the
CTM that is based on the piecewise approximation of the flow–density relation. Bayram and
Yaman [38] consider risk as the main objective in their CTM model.

Another recent study proposes a multi-objective optimization model aimed at reducing
risk during the evacuation process, called the Risk Reduction Model (RRM), where problem-
specific indicators for screening for optimal solutions are considered [39]. The study uses
the Ogu area in Tokyo as a case study, where the high density of wooden structures increases
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the risks of building collapse and fire spread after an earthquake. Another study focuses
on evacuating vulnerable residents using both electric and conventional vehicles [40]. It is
classified as a vehicle routing problem with energy constraints (VRPEC) since the electric
vehicles used in this research do not require recharging during operation, ensuring rapid
evacuation, which is crucial. Another study proposed a model that incorporates several
features, including vehicle reuse, multi-trip and split delivery scenarios for evacuees and
emergency relief items, uncertainty in evacuation demands, and closing time windows
at evacuation points to identify an optimal solution to minimize loss and damage [41]. A
study presents a crowdsourcing delivery optimization model that considers the bounded
rationality of crowdsourcing couriers [42]. It analyzes the couriers’ participation rate under
three types of uncertainties and assists logistics companies in reducing delivery costs by
adjusting the delivery price per parcel and delivery distance while ensuring a certain level
of delivery coverage. The reader is referred to a full review of transit-based evacuation
planning in emergency logistics management [43].

Recent research has focused on optimizing evacuation strategies for various scenar-
ios using mixed-integer programming (MIP) approaches. A study introduces a mixed-
integer programming model to optimize the evacuation of isolated communities using a
coordinated fleet of heterogeneous recovery resources [44]. This research evaluates the
structure-based heuristics to solve the deterministic and stochastic versions of the isolated
Community Evacuation Problem (ICEP). Another study proposes a goal programming
model for the early evacuation of vulnerable people and the distribution of relief supplies
during a wildfire, which is a dynamic, multi-modal, and multi-criteria problem that con-
siders the classification of evacuees and supplies as well as the dynamic arrival of both
evacuees and supplies over time [45].

From the previous studies listed in this paper, the research gaps identified in this
study lie in the fact that dynamic models, such as the Cell Transmission Model (CTM), do
not account for the total travel time or evacuation time for each group of evacuees. These
crucial metrics are typically incorporated in static evacuation models. Consequently, this
study proposes a model that integrates the strengths of both static and dynamic models.

3. Evacuation Model (LBM I)
In this section, a novel evacuation modeling approach is introduced. Before running

the model, the network is preprocessed by identifying all the hub nodes in the network
and adding artificial hub nodes if necessary. Then, the shortest routes from source nodes
to terminal nodes are identified. The hub nodes are identified or added so that the travel
time at free-flow speed between each consecutive pair of hub nodes is constant. Once a
group of evacuees passes through a hub node on a certain route, this group enters a new
road segment with time increments of one-time units. The time unit is decided by the
traveling time between two of the consecutive hub nodes at free-flow speed. However, the
evacuees may be delayed by more than one-time unit to travel between two hub nodes due
to congestion.

Since the travel time is load-dependent, the travel time function (1) is incorporated
into the model. The travel time function, also known as the BPR function, describes the
relationship between the volume of traffic and the travel time used by the U.S. Department
of Commerce Bureau of Public Roads (1964). The travel time T( f ) with traffic volume f on
a road segment is described as follows:

T( f ) = T0

(
1 + α

(
f
c

)β
)

, (1)
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where T0 is the travel time on a road segment at free-flow speed under normal road
conditions, given the capacity c of the road segment and α and β are turning parameters
describing road characteristics with α ≥ 0 and β ≥ 0. Those parameters are set to 0.15 and
4, respectively, by the U.S. Department of Commerce Bureau of Public Roads (1964).

Since this function is non-linear, we approximate it through a linear piecewise approx-
imation, given that each linear segment is represented by a slope and intercept, as shown
in Figure 1. Note that f is the flow volume, and T( f ) is the travel time function (1). The
accuracy of the output increases as the number of linear segments increases. These linear
segments intercept at f 1, f 2, and f 3, for example.
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3.1. LBM I Model Definition

Given a graph G = (N, A) with a set of nodes N and a set of directed arcs A, each
arc a ∈ A connects two nodes i, j ∈ N, where a = (i, j). The nodes of the network are
composed of a set of source nodes NS ⊂ N, a set of terminal nodes NT ⊂ N, and a set of
hub nodes NH ⊂ N, given that NS ⊂ NH and NT ⊂ NH since the evacuees are allowed to
enter or exit through a hub node. Given a set of communities K to be evacuated, Rk is the
set of routes that community k can use, where R is the set of shortest routes in the networks
from NS to NT . T = {1, . . . , te} is the set of times when evacuees are evacuated, given that
te is the time when the last group of evacuees is evacuated and H = {1, . . . , he} is the set
of times evacuees are spending in the network, given that he is the hub when the last group
of evacuees reaches the safe destination. When the time t ∈ T equals 1, the evacuation
process starts. The time path forms a network, and each time segment connects two hubs
h, g ∈ H where (h, g) ∈ HP. The set V is the traffic volume set, and each element in this
set is decided based on the number of vehicles passing per time unit. The link (i, j) on a
route is linked to the time of evacuation t from hub h to hub g through the tuple S given
that (i, j, t, h, g) ∈ S. More illustration of time path constraints will be given in the example
in Section 3.

3.1.1. Parameters and Sets of LBM I Model

K The set of communities
R The set of shortest routes from the source nodes to the terminal nodes
V The set of traffic volumes
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UB The set of upper bounds based on road capacity where uv is the upper bound of the
traffic volume v ∈ V
LB The set of lower bounds based on road capacity where lv is the lower bound of traffic
volume v ∈ V
D The set of linear segments of the piecewise approximation to the BPR function
md The slope of the linear segment d ∈ D of the piecewise approximation
bd The intercept of the linear segment d ∈ D of the piecewise approximation
µ The minimum number of evacuees to be evacuated in any group
ρ The time in minutes to travel from one hub to the next hub and the system clock
cij The time to travel from node i to node j on the link (i, j) ∈ A at free-flow speed
Cr The time to travel on route r from source to destination at free-flow speed
Qk The population of community k

3.1.2. Set of Variables of LBM I Model

xktrv
ijhg A non-negative variable represents the number of evacuees from community k

evacuated at time t on route r with traffic volume v on arc (i, j) on time path segment (h, g).
x′ijh A non-negative variable represents the number of evacuees on arc (i, j) at hub h
f kt
r A non-negative variable represents the number of evacuees of community k on route r

evacuated at time t
yv

ijh A binary variable equals 1 if the evacuees on arc (i, j) at hub h is within traffic volume v

zktrv
ijhg A binary variable equals 1 if the evacuees in community k evacuated at time t are

allowed to pass on arc (i, j) on route r at time path segment (h, g) within traffic volume v
and 0 otherwise
τijh A non-negative variable represents the latency on arc (i, j) at hub h transferred to the
group of evacuees that follows
τ̂ijh A non-negative variable represents the slack latency on arc (i, j) at hub h not trans-
ferred to the group of evacuees that follows
τ′ktr

ijh A non-negative variable represents the latency of the group evacuated from commu-
nity k on route r at time t on arc (i, j) at hub h
sktr

ijh A non-negative variable represents the slack variable to complement the latency of
the group evacuated from community k on route r at time t on arc (i, j) at hub h
lkt
r A non-negative variable represents the latency on a full route r of a community k

evacuated at time t
ekt

r A non-negative variable represents the travel time of community k on route r evacuated
at time t
e′kt

r A non-negative variable represents the evacuation time of community k on route r
evacuated at time t
E A non-negative variable represents the network clearance time

3.2. Constraints of LBM I Model

The objective of this model is subjected to several constraints that work as the limita-
tions that define the feasible space where the optimal solution exists. These constraints also
compute the evacuation time for each group of evacuees and add the propagation effect of
delay on the following groups of evacuees.

3.2.1. Flow Conservation Constraints

In the flow conservation constraints (2), evacuees’ hub ĝ is greater than h since the
evacuees pass through a hub node. The hub ĝ equals h if the evacuees pass through a
non-hub node in the flow conservation constraint (3). Hence, exiting evacuees from node
i follow one time path. Every community to be evacuated has a population size of Qk as
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seen in constraint (4).

∑
ĝ|(h,ĝ)∈HP

xktrv
iĵhĝ

− ∑
g|(g, h)∈HP

xktrv
jigh =


f kt
r i f i ∈ NS

− f kt
r i f i ∈ NT

0, otherwise

∀ k ∈ K, v ∈ V, r ∈ R,
∀ (j, i),

(
i, ĵ
)
∈ r, ĵ ∈ NH ,

∀ t, h, g|(i, j, t, h, g) ∈ S
(2)

xktrv
iĵhĝ

− ∑
g|(g, h)∈HP

xktrv
jigh = 0

∀ k ∈ K, v ∈ V, r ∈ R,
∀ (j, i),

(
i, ĵ
)
∈ r, ĵ /∈ NH ,

∀ t, h, g|(i, j, t, h, g) ∈ S
(3)

∑
t∈T

∑
r∈R

f kt
r = Qk ∀ k ∈ K (4)

3.2.2. Networks Link Constraints

Since all the evacuees share the same road network, constraint (5) sums all evacuees
from all communities k evacuated at different times t with all traffic volumes v using all the
routes r passing through the arc (i, j) at hub h to the variable x′ijh.

x′ijh = ∑
r∈R

∑
k∈K

∑
v∈V

∑
t|(i,j,t,h,g)∈S

xktrv
jihg

∀ (i, j) ∈ A,
∀ h, g|(i, j, t, h, g) ∈ S

(5)

3.2.3. Flow Volume Constraints

The amount of the flow passing through the arc (i, j) is decided by the traffic volume
variable yv

ijh. If the flow x′ijh falls between the upper bound ur and the lower bound lv of
traffic volume v, then yv

ijh equals 1 as shown in constraints (6) and (7) given that M is a
significantly large number. The evacuees passing on arc (i, j) at hub h are allowed to pass
through one traffic volume as seen in constraint (8).

x′ijh ≥ ∑
v∈V

lvyv
ijh ∀ (i, j) ∈ A, h ∈ H (6)

x′ijh ≤ ∑
v∈V

uvyv
ijh + M

(
1 − yv

ijh

)
∀ (i, j) ∈ A, h ∈ H (7)

∑
v∈V

yv
ijh ≤ 1 ∀ (i, j) ∈ A, h ∈ H (8)

3.2.4. Path Latency Constraints

To find the latency τijh on arc (i, j) at hub h, the inventory constraint (9) is used. The
latency of an arc (i, j) at hub h equals the required time for evacuees to travel on the arc
based on their volume, adding the latency of the evacuees on the same arc at hub h − 1 and
subtracting the time they would spend at a free-flow speed. It can be noticed that τ̂ijh in
(10) is bounded by the time evacuees spend on the arc at free-flow speed, but it can be less
in case no evacuees are passing on the arc to maintain the constraint feasibility. The initial
latency of the arc (i, j) equals 0 in constraint (11).

Note that constraint (9) transfers the effect of congestion to the group of evacuees that
follows. As the link becomes more congested, the latency increases; then, it is added to the
total latency of the following group of evacuees. Although the evacuees are not delayed by
the earlier groups on the upstream links of the congested link, the delay is added once they
pass the congested road segment.

τijh = cijtijh + τijh−1 − τ̂ijh ∀ (i, j) ∈ A, ∀ h ∈ H (9)
τ̂ijh ≤ cij ∀ (i, j) ∈ A, ∀ h ∈ H (10)
τijh = 0 ∀ (i, j) ∈ A, h = 0 (11)

To find the travel time on a road segment based on the traffic volume, the piecewise
approximation to the BPR convex function is used. Since the function is convex, the travel
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time tijh on arc (i, j) at hub h can be found as seen in constraint (12).

tijh ≥ mdx′ ijh + bd ∀ (i, j) ∈ A, ∀ h ∈ H, ∀ d ∈ D (12)

3.2.5. Time Path Constraints

All evacuees of community k on arc (i, j) at time h evacuated at time t on route r
can pass through one time path as shown in constraints (13) and (15) given that M is a
sufficiently large number. Hence, no part of the group is delayed or outrun the rest of the
group. In constraint (14), each group of evacuees is bounded by a minimum number µ

decided by the decision-maker. In constraint (16), the evacuees follow one time path based
on the traffic volume decided by the set of constraints (6) and (7).

xktrv
ijhg ≤ Mzktrv

ijhg
∀ (i, j) ∈ A, ∀ r ∈ R, ∀ t ∈ T,
∀ h ∈ H, ∀ k ∈ K, ∀ d ∈ DT

(13)

xktrv
ijrhg ≥ µ zktrv

ijhg
∀ (i, j) ∈ A, ∀ r ∈ R,
∀ t ∈ T, ∀h ∈ H, k ∈ K

(14)

∑
v∈V

zktrv
ijhg ≤ 1

∀ (i, j) ∈ A, ∀ r ∈ R,
∀ t ∈ T, ∀ k ∈ K

(15)

xktrv
jihg ≤ Myv

ijh
∀ (i, j) ∈ A, ∀ r ∈ R, ∀ t ∈ T,
∀ (h, g) ∈ HP, ∀k ∈ K, ∀ v ∈ V

(16)

3.2.6. Evacuees Latency Constraints

The latency on a route r of a community k evacuated at time t in constraint (17) is the
sum of the latencies (transferred and non-transferred) of the evacuees on that route in the
network. Since all communities evacuated at various times using different routes share the
same network, the latency of a community k on route r is a subset of the latencies of the
network. To extract the latencies of a specific group of evacuees, the variable zktrv

ijhg is used to
identify the time path that the evacuees followed, as shown in constraints (18)–(20).

lkt
r = ∑

(i,j)∈r
∑

h∈H
τ′ktr

ijh ∀ t ∈ T, ∀ r ∈ Rk , ∀ k ∈ K (17)

τijh + τ̂ijh = τ′ktr
ijh + sktr

ijh
∀ (i, j), ∀ r ∈ R, ∀(i, j),∈ A,
∀ t ∈ T, ∀ h ∈ TH , ∀ k ∈ K

(18)

τ′ktr
ijh ≤ Mzktrv

ijhg
∀ (i, j) ∈ A, ∀ p ∈ P,
∀ t ∈ T, ∀ h ∈ H, k ∈ K

(19)

sktr
ijh ≤ M

(
1 − zktrv

ijhg

) ∀ (i, j) ∈ A, ∀ r ∈ R, ∀ t ∈ T,
∀ h ∈ H, ∀ k ∈ K

(20)

3.2.7. Evacuation Constraints

The time required to travel for each group of evacuees evacuated from community k
on route r at time t to reach their destination is the travel time on route r at free-flow speed
in addition to the latency as shown in constraint (21). The evacuation time for each group of
evacuees evacuated from community k on route r at time t to reach their destination is the
waiting time since the start of the evacuation process, the travel time on route r at free-flow
speed, and the latencies on the route as seen in constraint (22). To minimize the network
clearance time, the maximum evacuation time is minimized as shown in constraint (23).

ekt
r = Crzktrv

ijhg + lkt
r

∀ k ∈ K, ∀ r ∈ R, ∀ ( i, j) ∈ A,
∀ r, i ∈ NS, ∀ t, h, g|(i, j, t, h, g) ∈ S

(21)

e′kt
r = ρ(t − 1)zktrv

ijhg + Crzktrv
ijhg + lkt

r
∀ k ∈ K, ∀ r ∈ R, ∀ (i, j) ∈ A,

∀ r, i ∈ NS, ∀ t, h, g|(i, j, t, h, g) ∈ S
(22)

e′kt
r ≤ E ∀ k ∈ K, ∀ r ∈ R, ∀ t ∈ T (23)
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The set of constraints (24) prevents later evacuees from preceding earlier evacuees on
the same route, stating that the volume of the later evacuees is greater than or equal to the
earlier evacuees or no evacuees follow them.

yv
ijh ≤ ∑

q∈V|q≥v
yq

ij(h+1) + y0
ij(h+1)

∀(i, j) ∈ A, ∀ h = 1, .., te − 1,
∀ v ∈ V

(24)

Lastly, the following are non-negativity constraints (25) and binary variables con-
straints (26).

xktrv
ijhg , x′ ijh, f kt

r , τijh, τ̂ijh, τ′ktr
ijh ,

sktr
ijh , lkt

r , ekt
r , e′kt

r , E ≥ 0

∀ k ∈ K, ∀ r ∈ R, ∀ (i, j) ∈ A,
∀ v ∈ V, ∀ t, h, g|(i, j, t, h, g) ∈ S

(25)

yv
ijh, zktrv

ijhg ∈ {0, 1}
∀ k ∈ K, ∀ r ∈ R, ∀ (i, j) ∈ A,

∀ v ∈ V, ∀ t, h, g|(i, j, t, h, g) ∈ S
(26)

Before building the MILP model, all the possibilities of all groups of evacuees passing
through road and time networks are built and stored into sets. When building the model,
the constraints refer to these sets.

3.3. Objective Functions

The objective of the model is to minimize the network clearance time (NCT) given that
E is the total travel time of the last group arriving at the safe destination since the beginning
of the evacuation process, as seen in the objective function (27).

Min NCT = E (27)

However, different objectives are experimented. The average travel time (ATT) and
the average evacuation time (AET) for each group of evacuees are incorporated in the
model as seen in objectives (28) and (29), respectively. The sum of zktrv

ijhg for all i ∈ NS is
the number of groups to be evacuated, given that the minimum number of groups to be
evacuated is one group. The total number of groups zktrv

ijhg is decided by the decision-maker,
which makes the constraints (28) and (29) linear.

Min ATT =
∑k∈K ∑r∈R ∑t∈T ekt

r

∑k∈K ∑r∈R ∑(i,j)∈r|i∈NS ∑t,h,g|(i,j,t,h,g)∈S zktrv
ijhg

(28)

Min AET =
∑k∈K ∑r∈R ∑t∈T e′kt

r

∑k∈K ∑r∈R ∑(i,j)∈r|i∈NS ∑t,h,g|(i,j,t,h,g)∈S zktrv
ijhg

(29)

3.4. Illustrative Example

Consider a network with five nodes and four arcs, as shown in Figure 2. Suppose that
the population in the source node n1 is evacuated to the shelter in the terminal node n5.
Node n1 is a source node, node n5 is a terminal node, and n1, n2, n4, n5 are hub nodes.
The time to travel from n1 to n2 at free-flow speed is 60 min, and the time to travel from
n2 to n4 is 60 min. The total travel time, at free-flow speed, from n1 to n5 is 180 min. The
travel time based on the number of evacuees is shown in Table 1. The traffic can fall into
three volumes. The lower bounds set of the traffic volumes is LB = {0, 1, 4351, 4901}, and
the upper bounds set is UB = {0, 4350, 4900, 5200}.
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Figure 2. A small network example with 5 nodes and 4 arcs.

Table 1. Travel time between each pair of hub nodes based on the number of evacuees.

d Number of Vehicles Travel Time

1 2200 0.0167
2 4350 1
3 4650 1.5
4 4900 2
5 5200 3

The model is tested on three different population sizes in three scenarios, A, B, and
C, assuming that in each scenario, the population is divided into two groups, as shown
in Table 2. The first group is evacuated at t1 and the second group is evacuated at t2. As
shown in scenario A in Figure 2, the population of 8500 is divided into two groups of 4350
and 4150 evacuees with the same traffic volume. The latency of the first group is 180 min,
resulting from a delay of 60 min between every two consecutive hub nodes. The second
group’s latency is 163.54 min, resulting from the delay by their own congestion. The delay
of the first group is not transferred to the second group since the latency of the first group is
less than or equal to the travel time at free-flow speed, as seen in constraint (10). In scenario
B, the population is 9500, and the first group of evacuees’ traffic volume is 2 resulting in a
delay of 254.7 min. The second group of evacuees falls in traffic volume 3 with a latency
of 385.5 min delayed partially by the first group of evacuees since there is a gap of time
between them. The first group in scenario C is delayed by 180 min between every pair of
consecutive hub nodes, for a total of 540 min. The second group is delayed by 540 min in
addition to the transferred delay from the first group of 360 min. The travel time is the
latency in addition to the travel time at free-flow speed, the evacuation time is the travel
time in addition to the waiting time of 60 min, and the NCT is the maximum evacuation
time. We conclude that the travel time grows exponentially as the number of evacuees in a
group becomes larger.
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Table 2. Results of the example network of the three scenarios.

Scenario Population Size Time Number of Evacuees Latency Travel Time Evacuation Time NCT

A 8500
1 4350 180.00 360 360

403.542 4150 163.54 343.54 403.54

B 9500
1 4599 254.7 434.7 434.7

625.52 4901 385.5 565.5 625.5

C 10400
1 5200 540 720 720

11402 5200 900 1080 1140

Figure 3 illustrates the time path of the groups of evacuees in all three scenarios. In
the experimentation section, other objectives are tested, resulting in different distributions
of evacuees with the same network clearance time.
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Figure 3. Results of the network example of the 3 scenarios.

As seen in Figure 3, the evacuees evacuated from node 1 at time 1 either reach node 2
at time 2 at free-flow speed, reach at time 3 under moderate congestion, or reach at time 4
under high congestion. The evacuees must stay in one group to find their travel time and
keep track of them. The binary variable zktrv

ijhg indicates the time path the evacuees follow
based on their volume v. Hence, the number of binary variables used increases with the
number of routes r, times of evacuation t, number of communities k, and the length of
route for all (i, j) ∈ r. This motivates us to develop the model to reduce its complexity.
Computational complexity is discussed in a later section.

4. Evacuation Model (LBM II)
In this section, we propose a reduced complexity version of the LBM in order to

help decision-makers allocate demands on the available capacity resources for large-scale
problems. Specifically, a linear programming (LP) model is developed as a dynamic traffic
assignment (DTA) model, as illustrated in Figure 4. The results of the original model and
the less complex version of the model are compared. The computational time for both
models is included in the comparison. In addition, the results of the model are compared
with the known cell transmission model.
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4.1. LBM II Model Definition

The model definition of LBM II is similar to that of LBM I. Only the tuple S is reduced
to (i, j, t, h) ∈ S.

4.1.1. Parameters and Sets of LBM II Model

K The set of communities
R The set of shortest routes from the source nodes to the terminal nodes
D The set of linear segments of the piecewise approximation to the BPR function
md The slope of the linear segment d ∈ D of the piecewise approximation
bd The intercept of the linear segment d ∈ D of the piecewise approximation
u The maximum number of evacuees on any arc
µ The minimum number of evacuees to be evacuated in any group
ρ The time in minutes to travel from one hub to the next hub node at free-flow speed and
the system clock
cij The time to travel from node i to node j on the link (i, j) ∈ A
Cr The time to travel on route r from source to destination at free-flow speed
Qk The population of community k.

4.1.2. Set of Variables of LBM I Model

xkt
ijrh A non-negative variable represents the number of evacuees on arc (i, j) on route r at

hub h of community k evacuated at time t
x′ijh A non-negative variable represents the number of evacuees on arc (i, j) at hub h
f kt
r The number of evacuees of community k on route r evacuated at time t

zkt
ijrh A binary variable equals 1 if community k evacuated at time t is allowed to pass on

arc (i, j) on route r at hub h, and it equals 0 otherwise
tijh A non-negative variable represents the travel time on arc (i, j) at time h based on the
piecewise approximated travel time function
τijh A non-negative variable represents the latency on arc (i, j) at hub h transferred to the
group of evacuees that follows
τ̂ijh A non-negative variable represents the slack latency on arc (i, j) at hub h not transferred
to the group of evacuees that follows
τ′ktr

ijh A non-negative variable represents the latency of the group evacuated from commu-
nity k at time t on route r on arc (i, j) at hub h
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sktr
ijh A non-negative variable represents the slack variable to remove the effect of latency

of the group of evacuees from community k if they do not pass through the arc (i, j) on
route r at hub h
lkt
r A non-negative variable represents the latency of the group of evacuees on route r of a

community k evacuated at time t
ekt

r A non-negative variable represents the travel time of community k on route r evacuated
at time t
e′kt

r A non-negative variable represents the evacuation time of community k on route r
evacuated at time t
E A non-negative variable represents the network clearance time.

4.2. Latency-Based Model

Min NCT = E (30)

Subject to

xkt
ijr(h+1) − xkt

jirh =


f kt
r i f i ∈ NS

− f kt
r i f i ∈ NT

0, otherwise
, i f i ∈ NH

∀ r ∈ R, (i, j) ∈ A, ∀ r,
∀ k ∈ K , ∀ t, h|(i, j, t, h) ∈ S

(31)

xkt
ijrh − xkt

jirh = 0, i f i /∈ NH
∀ r ∈ R, ∀ (i, j) ∈ A, ∀ r, k ∈ K,

∀ t, h|(i, j, t, h) ∈ S
(32)

∑
t∈T

∑
r∈R

f kt
r = Qk ∀ k ∈ K (33)

x′ijh = ∑
r∈R

∑
k∈K

∑
t|(i,j,t,h)∈S

xkt
ijrh ∀ (i, j) ∈ A, ∀ h ∈ H (34)

τijh = cijtijh − τ̂ijh ∀ (i, j) ∈ A, ∀ h ∈ H (35)
τ̂ijh ≤ cij ∀ (i, j) ∈ A, ∀ h ∈ H (36)
τijh = 0 ∀ (i, j) ∈ A, ∀ h = 0 (37)

tijh ≥ mdx′ ijh + bd ∀ (i, j) ∈ A, ∀ h ∈ H, ∀ d ∈ D (38)

τijh ≥ τjlv − ρ(1 + h − v)
(

1 − zkt
ijrh

) ∀ (i, j) ∈ A, ∀ k ∈ K,
∀ h, v ∈ H|h ≥ v, ∀ r ∈ R,
∀ t ∈ T, ∀(i, j, t, h) ∈ S

(39)

xkt
ijph ≤ u zkt

ijrh
∀ i ∈ NS, (i, j) ∈ A, ∀r ∈ R,
∀ t, h|(i, j, t, h) ∈ S, ∀ k ∈ K

(40)

xkt
ijph ≥ µ zkt

ijrh
∀ i ∈ NS, ∀ (i, j) ∈ A, ∀ r ∈ R,
∀ t, h|(i, j, t, h) ∈ S, ∀ k ∈ K

(41)

lkt
r = ∑

(i,j)∈r
∑

h∈H
τ′ijh ∀ t ∈ T, ∀ k ∈ K, ∀ r ∈ Rk (42)

τ′ktr
ijh + sktr

ijh = τijh + τ̂ijh ∀ (i, j) ∈ A, ∀ h ∈ H, ∀ k ∈ K (43)

τ′ijh ≤ Mzkt
ijrh

∀ (i, j) ∈ A, ∀ k ∈ K,
∀ t, h|(i, j, t, h) ∈ S

(44)

sijh ≤ M
(

1 − zkt
ijrh

) ∀ (i, j) ∈ A, ∀ k ∈ K,
∀ t, h|(i, j, t, h) ∈ S

(45)

ekt
p = Cpzkt

ijph + lkt
p

∀i ∈ NS, ∀ r ∈ R, ∀(i, j) ∈ A,
∀ r, t, h|(i, j, t, h) ∈ S

(46)

e′kt
r = ρ(t − 1)zkt

ijrh + Crzkt
ijrh + lkt

r
∀i ∈ NS, ∀ r ∈ R, ∀(i, j) ∈ A,

∀ r, t, h|(i, j, t, h) ∈ S
(47)
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e′kt
r ≤ E ∀ k ∈ K, ∀ r ∈ R, ∀ t ∈ T (48)

xkt
ijrh, x′ ijh, f kt

r , τijh, τ̂ijh, τ′
ijh,

sijh, lkt
r , ekt

r , e′kt
r , E ≥ 0

∀ (i, j) ∈ A, ∀ k ∈ K, ∀ r ∈ R,
∀ t ∈ T, ∀ h ∈ H,
∀ (i, j, t, h) ∈ S

(49)

zkt
ijh ∈ {0, 1}

∀ (i, j) ∈ A, ∀ k ∈ K,
∀ t, h|(i, j, t, h) ∈ S

(50)

Note that the flow conservation constraints (31) and (32) are slightly modified com-
pared to the original flow conservation constraints. These constraints allow evacuees to
follow one time path along the predefined route. Constraint (33) sums all evacuees evacu-
ated at all times on all routes to equal the community population. Evacuees from different
communities evacuated at different times from different routes meet on a road segment
(i, j) at hub h. The latency τijh is the travel time based on the volume of the evacuees
subtracting their travel time at free-flow speed as seen in constraint (35). Note that τ̂ijh

can be less than the free-flow speed in case no evacuees pass to maintain the constraint
feasibility as shown in constraint (36), given that the initial latency is 0, as seen in constraint
(37). The travel time based on the volume is illustrated in constraint (38) since the travel
time is a convex function. Constraint (39) transfers the delay to the group of evacuees
that follow to propagate the congestion to the upstream road segments. Constraints (40)
and (41) use the binary variable zkt

ijrh to determine whether it allows the evacuees from
community k evacuated at time t to pass through the arc (i, j) on route r at hub h, given that
u is the capacity of the road segment and µ is the minimum number of evacuees in a group.
The latency of the group from community k evacuated at time t on route r is the sum of
latencies along that route, as seen in constraint (42). Since the routes overlap, constraints
(43)–(45) are extracted from the network with the help of the indicator variable zkt

ijrh. The
travel time of a group is the travel time at free-flow speed in addition to the latency, as seen
in constraint (46), and the evacuation time is the waiting time since the beginning of the
evacuation process in addition to the travel time as seen in constraint (47). The network
clearance time E is the maximum evacuation time among all evacuated groups, as shown
in constraint (48). Finally, constraints (49) and (50) are the non-negativity constraints.

5. Illustration and Experimentation
In this section, a trivial network is used to illustrate the model. A real-world small

network is also used for illustration and experimentation.

5.1. Illustrative Examples
5.1.1. Example 1

Consider the two simple networks as road segments illustrated in Figure 5. Assume
that each road segment is composed of two lanes with a capacity of 1750 vehicles/lane/hour.
The travel time at free-flow speed from one node to the next node is 60 min, and the travel
time increases due to congestion, as illustrated in Table 3. The latency based on the number
of vehicles is shown in Table 3. This information is used to approximate the nonlinear BPR
flow–travel time function using a piecewise linear approximation. The lane capacity is set
to 1750 vehicles/lane/hr, and each link in the network is assumed to consist of two lanes.
To find the latency on a road segment, the latency column in Table 3 is multiplied by the
travel time on the road segment at free-flow speed. It can be seen as a scalar that adjusts
the travel time based on the number of vehicles.
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Figure 5. Road segment with 60 min travel time between each pair of consecutive nodes at free-
flow speed.

Table 3. Travel time based on the number of vehicles using modified BPR and the shockwave speed
to the free-flow speed ratio.

Number of Vehicles Latency Speed Ratio δ

0 0 1
2200 0.0167 0.99
4350 1 0.5
4650 1.5 0.4
4900 2 0.33
5200 3 0.25

The number of evacuees is 4900, traveling through the three-node network in Figure 5
from the source node S0 to the terminal node T2, with a total travel time of 120 min under
normal conditions. When using the CTM model, we set the link capacity to 5200 vehicles,
and the shockwave speed ratio is set to 0.33, as seen in Table 3. The NCT is 300 min,
while the NCT of the LBM is 360 min. Now, we assume that the distance is doubled in
the network with five nodes to become 240 min under normal conditions, as illustrated in
Figure 5. Evacuating 4900 evacuees requires 420 min when using the CTM, and it requires
720 min when using the LBM. Notice that the NCT of the LBM is doubled as the distance is
doubled, while the NCT in the CTM is increased by 120 min, which is the distance of the
added road segment. We conclude that the CTM does not capture the congestion on the
added road segment; it regulates the entry of vehicles at the beginning of the road segment.
Then, the vehicles travel the rest of the road segment at free-flow speed, which does not
reflect the reality of real-world congestion.

5.1.2. Example 2

Consider the network with seven nodes and seven arcs shown in Figure 6. The
population in node S0 is evacuated to the shelter in node T6. Node S0 is a source node,
node T6 is a terminal node, and all nodes are set as hub nodes. The time to travel from one
node to the next node is 60 min at free-flow speed. The predefined routes are S0-1-3-5-T6
and S0-2-4-5-T6. The total travel time from the source to the terminal on either route in
normal conditions is 240 min, and the number of vehicles to be evacuated is assumed to
be 15,000.

Mathematics 2025, 13, 12 15 of 25 
 

 

 

Figure 5. Road segment with 60 min travel time between each pair of consecutive nodes at free-flow 
speed. 

The number of evacuees is 4900, traveling through the three-node network in Figure 
5 from the source node S0 to the terminal node T2, with a total travel time of 120 min 
under normal conditions. When using the CTM model, we set the link capacity to 5200 
vehicles, and the shockwave speed ratio is set to 0.33, as seen in Table 3. The NCT is 300 
min, while the NCT of the LBM is 360 min. Now, we assume that the distance is doubled 
in the network with five nodes to become 240 min under normal conditions, as illustrated 
in Figure 5. Evacuating 4900 evacuees requires 420 min when using the CTM, and it re-
quires 720 min when using the LBM. Notice that the NCT of the LBM is doubled as the 
distance is doubled, while the NCT in the CTM is increased by 120 min, which is the dis-
tance of the added road segment. We conclude that the CTM does not capture the conges-
tion on the added road segment; it regulates the entry of vehicles at the beginning of the 
road segment. Then, the vehicles travel the rest of the road segment at free-flow speed, 
which does not reflect the reality of real-world congestion. 

Table 3. Travel time based on the number of vehicles using modified BPR and the shockwave speed 
to the free-flow speed ratio. 

Number of Vehicles Latency Speed Ratio 𝜹 
0 0 1 

2200 0.0167 0.99 
4350 1 0.5 
4650 1.5 0.4 
4900 2 0.33 
5200 3 0.25 

5.1.2. Example 2 

Consider the network with seven nodes and seven arcs shown in Figure 6. The pop-
ulation in node S0 is evacuated to the shelter in node T6. Node S0 is a source node, node 
T6 is a terminal node, and all nodes are set as hub nodes. The time to travel from one node 
to the next node is 60 min at free-flow speed. The predefined routes are S0-1-3-5-T6 and 
S0-2-4-5-T6. The total travel time from the source to the terminal on either route in normal 
conditions is 240 min, and the number of vehicles to be evacuated is assumed to be 15,000. 

 

Figure 6. A small network for illustration. 

1 

2 4 

3 

5   S0 T6 

Figure 6. A small network for illustration.

The network consists of seven nodes and seven directed arcs. The optimal NCT is
667.9 min, assuming that there is no congestion at the beginning of the evacuation process,
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as seen in Table 4. Note that the first group of evacuees evacuated on both routes does
not cause any congestion, which is referred to as latency τ, until they reach the bottleneck
arc (5,6), but they cause a delay to themselves of 1 min on the non-bottleneck links on
route 1 and 14.72 min on the non-bottleneck links on route 2, which is the slack latency
τ̂. Although the delay is 120 min, as the total number of evacuees is 4900, the delay they
transfer to the succeeding group is 60 min since the latter are evacuated 60 min later. The
second group of evacuees is delayed by 60 min on arcs (3,5) and (4,5) by the first group.
Then, they cause a delay of 120 min on the bottleneck arc (5,6). The third group of evacuees
is delayed by the first and second groups. There is a 60 min delay on arcs (1,3) and (2,4)
due to the propagated delay from the first group, and a delay of 120 min on arcs (3, 5) and
(4,5) by the second group that causes a delay of 60 min on the bottleneck arc.

Table 4. The number of evacuees evacuated on each route in each period is illustrated for example 2.
The latency in each link is shown in addition to the NCT.

Number of Evacuees (f)
Latency (τ) Obj.

NCT (m)Slack Latency (τ̂)

Time Route 1 Route 2 (0,1) (0,2) (1,3) (2,4) (3,5) (4,5) (5,6)

1 2200 2700
0 0

667.86

1 14.72

2 3000 2200
0 0 0 0

22.9 1 1 14.72

3 2450 2450
0 0 0 0 0 0

7.86 7.86 22.95 1 1 14.72

4
60 60 60 60 60
0 0 0 0 60

5
120 120 120
0 0 60

6
60
60

The summary of the travel time and evacuation time on each route and different
evacuation times are presented in Table 5. Note that the travel time is the latency added
to the travel time at free-flow speed. The evacuation time is the travel time added to the
waiting time since the beginning of the evacuation process. The evacuation time for the
groups evacuated in the first period equals the travel time since they are evacuated at the
beginning of the evacuation process, while 60 min are added for every period the group of
evacuees is waiting to be evacuated.

Table 5. Summary of the results of the second example for each group of evacuees on different routes
and evacuation.

Time Route Latency Travel Time Evacuation Time

1
1 123.00 363.00 363.00
2 164.16 404.16 404.163

2
1 345.91 585.91 645.91
2 302.00 542 602.00

3
1 307.86 547.86 667.86
2 307.86 547.86 667.86
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5.1.3. Comparing the LBM with the CTM Model

The LBM is compared with the CTM. The network used for comparison is the network
illustrated in Figure 6. Although the number of groups to be evacuated cannot be decided
in the CTM, we assume that the total evacuees are divided into six groups evacuated in
three periods on two routes. From this assumption, the shockwave speed ratio can be
decided based on the travel time, as seen in Table 3. Note that the demand ranges from 500
up to 15,500. When the demand is 500, the NCT is 240 for both models since there is no
congestion, and all evacuees can be evacuated in the first period with no delays, as seen in
Figure 7. As the demand increases, the NCT increases nonlinearly following the behavior
of the BPR function, given that the shockwave speed parameter δi is updated for every
node i ∈ NR for each demand scenario.
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5.2. Experimentation

The network experimented in this section is Tampa City, Florida, and is obtained from
Google Maps (2014). Suppose node 1 and 2 populations are evacuated to the incapacitated
safe zone in nodes 21–25, as shown in Figure 8; first, the nodes are identified as hub or
non-hub nodes. The non-hub nodes set is N\NH = {4, 6, 7, 8, 14, 17}, and the remainder of
the nodes are hub nodes NH . Note that nodes 11 and 15 are examples of artificial nodes that
have been added to the network as hubs to give a hub increment to the evacuees passing
through them and the unit of time ρ is set to 30 min based on the size of the network. The
number of all possible simple routes, eliminating loops, from the source node 0 to the sink
node 26 is 17. All routes can be used, but in an evacuation process, the set of routes used
is the set of shortest routes to minimize the travel time to reach a safe destination. The
selected set of shortest routes is shown in Table 6.

The number of evacuees in the community in node 2 is assumed to be 25,000 evacuees.
When minimizing the network clearance time E, the model requires three time units, which
is equivalent to 1.5 h, to evacuate all the evacuees from the endangered area. Also, the
minimum network clearance time is 150 min or 2.5 h until the last group of evacuees reaches
the destination, as shown in Table 7.
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Table 6. The set of shortest routes in the Tampa City network from source node 0 to destination
node 26.

p Route Length (min)

0 0–2–12–17–16–21–26 90
1 0–2–12–17–18–22–26 90
2 0–2–6–9–18–22–26 90
3 0–2–6–8–13–19–23–26 90
4 0–2–4–8–13–19–23–26 90
5 0–2–4–10–14–20–24–26 90
6 0–2–4–5–7–14–20–24–26 90
7 0–2–4–5–7–15–25–26 90
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Table 7. Summary of results in minutes with different objectives when minimizing each objective in a
different run.

Objective
(Minimize) NCT ATT AET Groups Computational

Time (s)

NCT 150.02 123.32 147.32 15 5.65

ATT 182.00 97.25 127.25 24 16.4

AET 153.00 99.95 121.13 17 6.30

To find the optimal ATT and AET, the ϵ − constraint method is used since the range of
the number of groups is known. In the Tampa City network, the evacuation time is three
time units when the NCT is minimized. The maximum number of groups to be evacuated
is 24 when the evacuation time is fixed to three units, given that the number of routes is
eight. The following model is solved to find the optimal solution of ATT in addition to
Constraints (31)–(50):

Min TTT = ∑
k∈K

∑
r∈R

∑
t∈T

ekt
r (51)

subject to

∑
k∈K

∑
r∈R

∑
h∈H

∑
t∈T

∑
(i,j)∈r|i∈Ns

zkt
ijrh = ϵ (52)

Since the range of ϵ is known, the total travel time (TTT) in the objective function (51)
is minimized while changing the total number of groups in constraint (52). The model is
solved again, minimizing the total evacuation time (TET) in the objective function (53). The
result is illustrated in Figure 9.

Min TET = ∑
k∈K

∑
r∈R

∑
t∈T

e′kt
r (53)
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of evacuees.

subject to
Constraints (31)–(50) and (52)

When a few groups are evacuated, the ATT and AET are high since the number of
evacuees in each group is large, leading to higher congestion rates, as illustrated in Figure 9.
As the number of groups increases, the ATT and AET decrease. Note that the AET decreases
to a point then it increases as the congestion effect fades, and the waiting time to evacuate
starts delaying the evacuees. The optimum number of groups to be evacuated depends
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on the objective. For the NCT and AET, the number of groups is selected to avoid delays
caused by congestion and waiting time, and the number of groups selected in the ATT is
the maximum since the waiting time does not affect travel time.

The minimum average travel time is 97.25 when evacuees are grouped into 24 groups,
while the minimum average evacuation time is 121.13 when evacuees are grouped into
17 groups.

Assume that the demand to evacuate in the Tampa City network is 45,000 evacuees.
Note that the ATT is around 350 min compared to 120 min when 25,000 people are evacu-
ated, and the number of groups is set to nine, as seen in Figure 10. The ATT and AET for
the 45,000 evacuees are significantly higher than the 25,000 evacuees since the congestion
is higher. Also, the AET for the 45,000 is not considerably affected by the waiting time
when the number of groups is set to 24, as shown in Figure 10. From this information, we
conclude that all routes can be used for all evacuating times when the demand to evacuate
is high in case of emergencies. When all routes are used for all evacuating times, the model
becomes LP.
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The number of evacuees in each group is illustrated in Figure 11. Note that the number
of evacuees on the routes that cause bottleneck congestion is minimal. The variability in
the number of evacuees for the objective NCT is high since the objective is to clear the
network in the shortest time. Minimizing the ATT distributes all evacuees on all routes
with minimum congestion since the waiting time to be evacuated does not affect the ATT.
Note that the number of evacuees does not exceed 2000 vehicles since the delay time for
this number of evacuees is insignificant, as seen in Table 3. After 2000, the function becomes
steeper, leading to more congestion and delay. Minimizing the AET pushes most evacuees
to be evacuated in the early periods to avoid waiting time, as seen in Figure 11.
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The travel and evacuation time for each group of evacuees on each route r evacuated
at time t for the three objectives is illustrated in Figure 12. Note that the travel time for
groups evacuated early is higher due to congestion in the NCT, and the evacuation time is
150 for most groups. The early groups are delayed because of the congestion, while the later
groups are delayed waiting to be evacuated. Hence, the model minimized the congestion
for the later groups since they were delayed by waiting to evacuate. The variability in
the travel time for the ATT is low since all evacuees are distributed on all routes, and
evacuating times minimize the overall congestion in the network. The overall travel and
evacuation times are minimized for most groups for the AET objective by minimizing the
congestion of the network but avoiding waiting time to evacuate.
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Comparing the Original LBM Model with the Reduced Complexity Model

The original LBM developed in Section 2 (LBM I) results are compared with the
reduced complexity version of the LBM developed in Section 3 (LBM II). The network used
is Tampa City with the set of routes R = {0, 1, 2, 3, 5, 7}. The NCT for LBM I and LBM II is
shown in Figure 13 when the demand is from 10,000 to 40,000 evacuees. Note that the NCT
is identical in both models; however, the reduction in computational time is significant.
The computational times for LBM I and LBM II are illustrated in Figure 14.

Notice that the computational time of the LBM I increases with the demand to evacuate,
while the computational time for the LBM II is not affected by the demand. The average
computational time for LBM II is 1.25 s. We conclude that the computational time can be
reduced by more than 99% while maintaining the same output.
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5.3. Computational Complexity

The model is tested on the Tampa City problem using Gurobi Optimizer [46], and the
experiment was conducted on a PC with an Intel quad-core 3.4 GH CPU and 32 GB memory.
The model can solve small-size problems with a limited number of routes. However, the
computational time can increase exponentially with the size of the problem. Note that zktrv

ijhg
is the binary variable that indicates the time path of the evacuees. The number of variables
zktrv

ijhg used in the model is decided by the number of hubs in a route γ, excluding the terminal

hub and the number of routes |R| used in the network. The number of variables zkt
ijph in

route r is γ2 at evacuation time t = 1. For t > 1, the number of variables is γ2 + (t − 1)γ,
and this conclusion leads us to the computational complexity of the model for multiple
routes. The computational complexity of the model is O

(
2|R|(γ

2+(t−1)γ)
)

given that |R| is
the number of routes, γ is the average number of hubs in all routes, excluding the terminal
hub, and t ∈ T is the time of evacuation. The two main factors affecting computational
complexity are the number of routes and the average length of these routes.

The computational complexity is significantly reduced in LBM II. The number of
variables zkt

ijrh used in the model is decided by the number of routes |R| used in the network
and the number of evacuating times |T|. The number of hubs does not contribute to
the number of variables zkt

ijrh. The number of variables zkt
ijrh in the model is the number

of routes r and the number of evacuating times |T|. The computational complexity of
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the model is reduced from O
(

2|R|(γ
2+(t−1)γ)

)
to O

(
2|R|·|T|)

)
given that |R| is the number

of routes. The two main factors affecting computational complexity are the number of
routes and evacuating times. However, the computational complexity can be reduced from
exponential to polynomial by assuming that all routes are used in all periods of evacuation,
as illustrated in Section 4.2. This assumption is valid in the case of emergencies, especially
when utilizing all routes since the high demand needs to be evacuated in a short period.

6. Concluding Remarks and Future Works
The latency-based evacuation model reports very detailed information about each

group of evacuees, such as their evacuation time, travel time, the route used, latency, and
the number of evacuees in each group. However, this information comes at a cost. The
computational time increases exponentially with the problem size. The model complexity
can be reduced by assuming that all routes are used in all evacuating times. This assumption
is valid in the case of high demands to evacuate over a short period of time. The model
distributes evacuees on the available routes and evacuating times based on the objective.
Minimizing AET is ideal for emergency evacuation and ATT for non-emergencies. When
the NCT objective is minimized, the evacuees are randomly distributed on routes as the
main objective is to send the evacuees from the endangered zone to the safe destination in
the shortest possible time.

In future research, the model’s robustness will be tested against the high variability of
demands since the demand is uncertain in reality. Since the travel time on each route and
evacuating time is estimated in the LBM, fairness among the routes will be implemented to
find a balanced solution between the minimum NCT and the minimum evacuation time
for each group of evacuees to improve the evacuees’ experience in the network.
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