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Abstract: Manipulator systems are increasingly deployed across various industries to
perform complex, repetitive, and hazardous tasks, necessitating high-precision control for
optimal performance. However, the design of effective control algorithms is challenged by
nonlinearities, uncertain dynamics, disturbances, and varying real-world conditions. To
address these issues, this paper proposes an advanced orbit-tracking control approach for
manipulators, leveraging advancements in Time-Delay Estimation (TDE) and Fixed-Time
Sliding Mode Control techniques. The TDE approximates the robot’s unknown dynamics
and uncertainties, while a novel nonsingular fast terminal sliding mode (NFTSM) sur-
face and novel fixed-time reaching control law (FTRCL) are introduced to ensure faster
convergence within a fixed time and improved accuracy without a singularity issue. Ad-
ditionally, an innovative auxiliary system is designed to address input saturation effects,
ensuring that system states converge to zero within a fixed time even when saturation
occurs. The Lyapunov-based theory is employed to prove the fixed-time convergence
of the overall system. The effectiveness of the proposed controller is validated through
simulations on a 3-DOF SAMSUNG FARA AT2 robot manipulator. Comparative analyses
against NTSMC, NFTSMC, and GNTSMC methods demonstrate superior performance,
characterized by faster convergence, reduced chattering, higher tracking accuracy, and a
model-free design. These results underscore the potential of the proposed control strategy
to significantly enhance the robustness, precision, and applicability of robotic systems in
industrial environments.

Keywords: terminal sliding model control; robot manipulator; fixed-time control; time
delay control; model-free control method; input saturation

MSC: 93B52; 93C10; 93C85

1. Introduction
Manipulator systems are widely utilized in diverse fields, including industrial au-

tomation, daily tasks, and rescue missions, to handle complex, repetitive, and high-risk
operations, thereby improving product quality, safety, and reliability. These applications
require advancements in control strategies to achieve desired performance levels. As ex-
pectations for faster response times and enhanced precision increase, so does the need for
more advanced control techniques. However, developing highly accurate controllers is a
challenging task due to factors such as nonlinear behaviors, unpredictable disturbances,
and dynamic environmental conditions.

Mathematical models of robotic system behavior are often developed using funda-
mental techniques, such as the Lagrange and Newton–Euler formulations or algorithms
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like virtual decomposition. While these models effectively describe general dynamics,
accurately identifying system parameters remains a significant challenge due to the unique
designs of each robot, unknown uncertainties, and external disturbances. To overcome
these difficulties and estimate manipulator dynamics, various soft computing techniques,
such as fuzzy logic systems (FLSs) [1–3] and neural networks (NNs) [4,5], have been pro-
posed. Although these methods effectively capture system behaviors, they often introduce
challenges, including a large number of adjustable parameters, additional estimation errors,
and high computational demands, which complicate real-time implementation.

TDE has recently emerged as a powerful and straightforward technique for approxi-
mating unknown dynamics in modern control systems [6,7]. The core concept of TDE is to
use intentionally delayed measurements of acceleration and control input to estimate the
current compensation term of the dynamics. TDE models system dynamics by dividing
them into three distinct components: an acceleration term, which includes acceleration
and its associated gain matrix; an offset term; and a control input term. By leveraging this
unique mechanism, TDE eliminates the need for detailed knowledge of system dynam-
ics, making it a simple yet effective model-free approach [8]. Its straightforward design
and real-time implementation capabilities have led to its widespread adoption across
various applications.

For instance, TDE has been successfully applied to approximate the complex dynamics
of n-DOF manipulators, effectively addressing uncertainties [9]. In exoskeleton robots,
TDE enables precise force control in virtual reality environments, even in the presence of
dynamical uncertainties and bounded disturbances [10]. Furthermore, TDE achieves the
desired tracking performance in the decoupling control of robotic systems [11].

The effectiveness of TDE has been extensively validated through rigorous theoretical
analyses and experimental demonstrations, underscoring its practical significance. A robust
and precise estimation mechanism, such as TDE, is essential for achieving optimal control
performance in complex systems, including robotics. However, most TDE-based controllers
employ linear error dynamics, which ensure only asymptotic stability [12,13]. This limita-
tion prevents them from guaranteeing the rapid stabilization required for precise control
within a fixed time frame. Additionally, the reliance on exact acceleration measurements
presents a significant challenge in practical implementations.

Given these requirements, Sliding Mode Control (SMC) is often favored for its robust-
ness to uncertainties, simplicity, and a wide range of applications [14]. However, analyses
reveal that linear SMC methods only guarantee asymptotic error stability. To enhance
convergence speed, sufficiently large reaching gains are required, particularly when the
sliding mode surface approaches zero. To overcome this limitation, Terminal Sliding Mode
Control (TSMC) techniques have been developed, introducing nonlinear functions into
both the sliding surface design and the reaching control laws [15]. TSMC preserves the
robustness of conventional SMC against uncertainties while ensuring finite-time conver-
gence. In addition, super-twisting algorithms (STAs) have been introduced to achieve
finite-time convergence, including the generalized super-twisting algorithm mentioned
in [16]. However, STAs have certain limitations. For instance, they require knowledge
of the bounds of disturbances and their derivatives for proper tuning. Additionally, pa-
rameter tuning is complex, and while chattering is reduced, it is not entirely eliminated.
Residual chattering may still affect the performance of sensitive systems, particularly in
high-precision applications.

The Terminal Sliding Mode (TSM) introduces a nonlinear sliding surface, often in-
corporating a negative exponential or fractional term in the tracking error, which enables
finite-time convergence. However, as the tracking error approaches zero, the control input
required by the TSM tends to infinity, resulting in singularity issues [15]. To address this
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limitation, the Nonsingular Terminal Sliding Mode (NTSM) controller was developed, mod-
ifying the sliding surface design to eliminate the singularity problem and ensure smooth
operation near zero tracking error, as discussed in [17,18].

As detailed in [17], an NTSM sliding surface is designed to ensure the finite-time
convergence of the system trajectory when confined to this manifold. In addition, the stud-
ies [19,20] introduced fixed-time NTSMC that can ensure tracking error convergence in
fixed time. To address mismatched disturbances, combinations of the NTSM with estima-
tion methods or disturbance observers—such as FLSs [1,2], NNs [21–23], or high-order
sliding mode observers [24,25]—have been developed, demonstrating excellent nomi-
nal performance recovery and reduced chattering effects. Furthermore, the fast stability,
singularity-free behavior, and robust properties of the NTSM have been enhanced through
the application of Nonsingular Fast Terminal Sliding Mode (NFTSM) controllers, which
have been successfully implemented in robotic manipulators [26,27].

However, a significant challenge associated with various SMC techniques is the re-
quirement for detailed knowledge of system dynamics. Additionally, to ensure stabil-
ity and robustness, robust gains are typically chosen to exceed the upper bound of the
lumped unknown terms, and these gains are combined with switching functions. However,
this combination can induce chattering, resulting in high-frequency oscillations that may
shorten the lifespan of system components [28].

To mitigate chattering, tuning laws for robust gains have been proposed, which rely
on control error information. These laws activate the learning mechanism only after
a sufficient amount of undesired control error has accumulated. While effective, this
delay in activation may limit the adaptation speed of the learning mechanism. This
underscores the need for further research to improve the efficiency of updating the robust
gains or to explore alternative solutions that minimize the reliance on robust gains, thereby
reducing chattering.

This challenge motivates the development of a controller that does not depend on the
comprehensive dynamic information of the manipulator system. Such a controller, utilizing
bounded smooth control inputs, must ensure fixed-time stability even in highly perturbed
environments. This approach effectively addresses the challenges posed by system cou-
pling, nonlinearity, and uncertainty, while significantly enhancing tracking performance.

In constrained control, input saturation—reflecting the capacity limitations of the
plant—represents a significant source of performance degradation and can lead to insta-
bility, resulting in increased overshoot and tracking errors if not properly managed [29].
Several methods have been proposed to address control design under input saturation.
For instance, a nonlinear saturated PID controller for robotic manipulators was introduced
in [30], assuming knowledge of both the saturator and the system dynamics. The study [31]
focused on global tracking and stabilization while accounting for external disturbances and
input saturation. Additionally, learning control schemes for nonlinear uncertain systems
with input saturation were explored in [32].

Adaptive neural network controllers have been utilized to address output constraints
in uncertain systems [33], while adaptive tracking control for uncertain nonlinear systems
with saturation was proposed in [34]. Furthermore, fuzzy controllers employing backstep-
ping techniques for systems with unknown dead zones have also been discussed in [35].
Additional research has been conducted on neural network-based distributed adaptive
approach and SMC [36].

Building on the previous discussions, this study presents an advanced orbit-tracking
control strategy for manipulators. The main contributions of this research include
the following:

• Effective approximation of the manipulator’s dynamics using the TDE technique.
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• Development of a novel SMC framework designed to achieve objectives such as
a model-free design, high accuracy, robustness, reduced control input chattering,
and faster convergence relative to contemporary fixed-time control methods. This
approach is formulated based on equivalent control derived from TDE results, a new
NFTSM surface, and a new FTRCL.

• Introduction of an innovative auxiliary system to address the effects of input saturation.
• Comprehensive proof of the fixed-time convergence and stability of the control system

based on Lyapunov theory.
• Detailed analysis and validation of the proposed control strategy through simulations

on a 3-DOF SAMSUNG FARA AT2 robot manipulator. The results demonstrate su-
perior performance across various testing scenarios, with quantitative evaluations
revealing improved tracking accuracy, faster convergence, reduced chattering, and en-
hanced robustness compared to NTSMC, NFTSMC, and GNTSMC methods.

The remainder of the paper is organized as follows: Section 2 provides the nota-
tions and preliminaries, Section 3 presents the detailed design of the proposed controller,
Section 4 discusses the simulated validation in a robotic system, and Section 5 concludes
the paper.

2. Notations and Preliminaries
2.1. Notations

The following notations are used consistently throughout this paper for clarity
and convenience:

• For vectors y = [y1, y2, . . . , yn]T ∈ Rn and a = [a1, a2, . . . , an]T ∈ Rn:

– [y1]
a1 = |y1|a1 sign(y1) ∈ R, where sign(y1) denotes the sign function.

– ya = [ya1
1 , ya2

2 , . . . , yan
n ]T ∈ Rn , with each component raised to its correspond-

ing power.
– [y]a = [[y1]

a1 , [y2]
a2 , . . . , [yn]an ]T ∈ Rn, extending the operation component-wise

with [yi]
ai = |yi|ai sign(yi).

– |y|a = [|y1|a1 , |y2|a2 , . . . , |yn|an ]T ∈ Rn, applying the absolute value to each com-
ponent before raising it to the corresponding power.

• diag(y1, . . . , yn) =


y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn

 ∈ Rn×n is a diagonal matrix.

• The Euclidean norm is denoted as ∥ · ∥.

2.2. Preliminaries

Lemma 1. Consider the system [27,37]:

ẏ = −p1|y|j1 − p2|y|j2 , (1)

where p1 > 0, p2 > 0, j1 > 1, and 0 < j2 < 1. The origin of the system in (1) is fixed-time stable,
with the settling time bounded by T ≤ Tmax = 1

p1(j1−1) +
1

p2(1−j2)
.

Lemma 2. Consider the system [38]:

ẏ = −d1|y|k1 − d2|y|k2 , (2)
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where d1 > 0, d2 > 0, and the exponents are defined as k1 = qsign(|y|−1)
1 and k2 = qsign(1−|y|)

2 ,
with q1 > 1 and 0.5 < q2 < 1. The origin of the system in (2) is fixed-time stable, and the settling
time is bounded by:

T ≤ Tmax = min
{

1
(q1 − 1)d2

ln
(

1 +
d2

d1

)
,

q2

(1 − q2)d1
ln
(

1 +
d1

d2

)}
+ min

{
1

(1 − q2)d1
ln
(

1 +
d1

d2

)
,

q1

(q1 − 1)d2
ln
(

1 +
d2

d1

)}
.

(3)

Lemma 3. For any variable yi ∈ R+, i = 1, . . . , n, ϑ > 1, 0 < θ < 1 , the inequality always
holds

n

∑
i=1

yϑ
i ≥ n1−ϑ

(
n

∑
i=1

yi

)ϑ

,
n

∑
i=1

yθ
i ≥

(
n

∑
i=1

yi

)θ

. (4)

3. Proposed Controller Design Process
3.1. Design of the Novel Fixed-Time Control System

Theorem 1. Consider the following system:

ẏ = −P−1(y)(m1[y]n1 + m2[y]n2) (5)

where P(y) = a + (1 − a)/(1 + r|y|h), 0 < a < 1, r > 0, h is an even positive integer, m1 > 0,
m2 > 0, n1 = lsign(y|−1)

1 , l1 > 1, n2 = lsign(1−|y|)
2 , and 0.5 < l2 < 1.

The system in Equation (5) achieves fixed-time stability, and the maximum settling time is
given by:

Tmax = min
{

ā
(l1 − 1)m2

ln
(

1 +
m2

m1

)
,

l2 ā
(1 − l2)m1

ln
(

1 +
m1

m2

)}
+ min

{
1

(1 − l2)m1
ln
(

1 +
m1

m2

)
,

l1
(l1 − 1)m2

ln
(

1 +
m2

m1

)}
,

(6)

where ā = a + 1−a
1+r .

Proof of Theorem 1. The proof considers two distinct cases: |y| > 1 and |y| ≤ 1.
Case |y| > 1: For this case, n1 = l1 > 1 and n2 = 1/l2 > 1. Thus, Equation (5)

simplifies to:

ẏ = −P−1(y)
(

m1|y|l1 + m2|y|
1
l2

)
. (7)

Let ϕ1 = |y|1−l1 . Substituting this into Equation (7), we obtain:

ϕ̇1 = (1 − l1)|y|−l1sign(y)
[
−P−1(y)

(
m1|y|l1 + m2|y|

1
l2

)]
= (l1 − 1)P−1(y)

(
m1 + m2ϕv1

1
)
,

(8)

where v1 = 1 − 1−l2
l2(l1−1) < 1.
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Note that lim|y|→+∞ ϕ1 = 0 for |y| ∈ [1,+∞] and ϕ1 ∈ (0, 1]. Solving Equation (8),
the convergence time is given by:

∫ Ts11

0
dt =

∫ 1

0

P(y)dϕ1

(l1 − 1)
(
m1 + m2ϕv1

1
)

Ts11 =
1

l1 − 1

∫ 1

0

P(y)dϕ1

m1 + m2ϕv1
1

<
1

l1 − 1

∫ 1

0

P(y)dϕ1

m1 + m2ϕ1
.

(9)

Since r > 0 and h is an even positive integer, we have r|y|h ≥ r. Hence, P(y) ≤ ā < 1,
and Equation (9) simplifies further:

Ts11 <
1

l1 − 1

∫ 1

0

ādϕ1

m1 + m2ϕ1

<
ā

(l1 − 1)m2
ln
(

1 +
m2

m1

)
.

(10)

Next, define β1 = |y|1−
1
l2 . Substituting into Equation (7), the transformed system is:

β̇1 =

(
1 − 1

l2

)
|y|−

1
l2 sign(y)

[
−P−1(y)

(
m1|y|l1 + m2|y|

1
l2

)]
=

(
1
l2

− 1
)

P−1(y)
(

m1βb1
1 + m2

)
,

(11)

where b1 = 1 − l2(1−l2)
1−l2

< 1.
Similarly, lim|y|→+∞ β1 = 0 for |y| ∈ [1,+∞] and β1 ∈ (0, 1]. Solving Equation (11),

the convergence time is given by:

∫ Ts12

0
dt =

∫ 1

0

P(y)dβ1(
1
l2
− 1
)(

m1βb1
1 + m2

)
Ts12 =

l2
1 − l2

∫ 1

0

P(y)dβ1

m1βb1
1 + m2

<
l2

1 − l2

∫ 1

0

ādβ1

m1β1 + m2

<
l2 ā

(1 − l2)m1
ln
(

1 +
m1

m2

)
.

(12)

From Equations (10) and (12), the settling time for |y| > 1 is:

Ts1 = min
{

ā
(l1 − 1)m2

ln
(

1 +
m2

m1

)
,

l2 ā
(1 − l2)m1

ln
(

1 +
m1

m2

)}
. (13)

Since 0 < ā < 1, the convergence time of the proposed method is shorter than that
described in Lemma 2.

Case |y| ≤ 1: For this case, we have n1 = 1
l1

< 1 and n2 = l2 < 1. Therefore,
Equation (5) reduces to:

ẏ = −P−1(y)
(

m1[y]
1
l1 + m2[y]l2

)
. (14)
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Let us define the variable ϕ2 = |y|1−l2 . Then, ϕ2 ∈ [0, 1] for |y| ∈ [0, 1]. Using this
substitution, Equation (14) becomes:

ϕ̇2 = −(1 − l2)P−1(y)
(
m1ϕv2

2 + m2
)
, (15)

where v2 = 1 − l1−1
l1(1−l2)

< 1.
The convergence time can be derived by integrating Equation (15) as follows:

∫ Ts21

0
dt =

∫ 0

1
− P(y)dϕ2

(1 − l2)
(
m1ϕv2

2 + m2
)

Ts21 =
1

1 − l2

∫ 1

0

P(y)dϕ2

m1ϕv2
2 + m2

.
(16)

The convergence time for the method described in Lemma 2, denoted as TLM2
s21 , is:

TLM2
s21 =

1
1 − l2

∫ 1

0

dϕ2

m1ϕv2
2 + m2

. (17)

Given ā ≤ P(y) < 1 for |y| ∈ (0, 1], it follows that Ts21 < TLM2
s21 , and Ts21 is bounded by:

Ts21 <
1

1 − l2

∫ 1

0

dϕ2

m1ϕ2 + m2

<
1

(1 − l2)m1
ln
(

1 +
m1

m2

)
.

(18)

Next, define β2 = |y|1−
1
l1 , such that β2 ∈ [0, 1] for |y| ∈ [0, 1]. Substituting this

variable, Equation (14) transforms into:

β̇2 = − (l1 − 1)
l1

P−1(y)
(

m1 + m2βb2
2

)
, (19)

where b2 = 1 − l1(1−l2)
l1−1 < 1.

The convergence time for this case can be derived as:

∫ Ts22

0
dt =

∫ 0

1
− l1P(y)dβ2

(l1 − 1)
(

m1 + m2βb2
2

)
Ts22 =

l1
l1 − 1

∫ 1

0

P(y)dβ2

m1 + m2βb2
2

.

(20)

The convergence time of Lemma 2 in this case is:

TLM2
s22 =

l1
l1 − 1

∫ 1

0

dβ2

m1 + m2βb2
2

. (21)

Since ā ≤ P(y) < 1 for |y| ∈ (0, 1], it follows that Ts22 < TLM2
s22 , and Ts22 is bounded by:

Ts22 <
l1

l1 − 1

∫ 1

0

dβ2

m1 + m2β2

<
l1

(l1 − 1)m2
ln
(

1 +
m2

m1

)
.

(22)
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From Equations (18) and (22), the total settling time for |y| ≤ 1 is given by:

Ts2 = min
{

1
(1 − l2)m1

ln
(

1 +
m1

m2

)
,

l1
(l1 − 1)m2

ln
(

1 +
m2

m1

)}
. (23)

Combining the results for |y| > 1 and |y| ≤ 1, the overall settling time of the system
described by Equation (5) is:

Ts = Ts1 + Ts2. (24)

The proof is now complete.

Remark 1. Based on the analysis above, it is evident that the proposed method achieves a faster
convergence speed than the existing fixed-time control methods [27,37–39]. To validate this claim,
numerical simulations were conducted to compare the convergence speed of the proposed method
(MT3) with the methods described in Lemma 1 (denoted as MT1) and Lemma 2 (denoted as MT2).
All control parameters for the methods were set identically, with values of p1 = d1 = m1 = 2,
p2 = d2 = m2 = 2, j1 = q1 = l1 = 1.5, j2 = q2 = l2 = 0.7, a = 0.2, r = 20,
and h = 2. Based on these parameters, the theoretical convergence times were computed as follows:
TMT1 = 2.67 (s), TMT2 = 1.73 (s), TMT3 = 1.21 (s). These results clearly indicate that the pro-
posed method (MT3) exhibits the fastest convergence among the three approaches. Additionally,
Figure 1 provides a visual comparison, highlighting the significantly improved convergence speed of
the proposed method (MT3) relative to MT1 and MT2. This superior performance underscores the
efficiency and effectiveness of the proposed approach in achieving rapid stabilization.

Figure 1. Comparison of convergence behavior across fixed-time control methods under different
initial conditions.
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3.2. Dynamic Model Approximation Using Time-Delay Estimation

The dynamic model of n-joint robot arms is articulated as follows:

J(α)α̈ + V(α, α̇)α̇ + τG(α) + τF(α̇) = τ − τd, (25)

where α ∈ Rn signifies the joint position vector, α̇ ∈ Rn and α̈ ∈ Rn represent the vectors
of angular velocity and acceleration, respectively. J(α) ∈ Rn×n denotes the inertia matrix,
while V(α, α̇) ∈ Rn×n describes the matrix of centrifugal and Coriolis forces. τG(α) ∈ Rn

represents the gravity vector, and the friction force is denoted by the vector τF(α̇) ∈ Rn.
External disturbances are accounted for in the vector τd ∈ Rn, while the control input
torque is denoted as τ ∈ Rn.

With a positive diagonal gain matrix J̄ ∈ Rn×n, Equation (25) can be rewritten as:

J̄α̈ + W(α, α̇, α̈) = τ, (26)

where W(α, α̇, α̈) = (J(α)− J̄)α̈ + V(α, α̇)α̇ + τG(α) + τF(α̇) + τd ∈ Rn encapsulates all the
dynamic model components and uncertainty terms.

Accurately computing the complete dynamic model of a robotic manipulator and its
uncertainties is often challenging. This difficulty arises from factors such as a high degree
of freedom, the manipulator’s complex structure, and unknown uncertainties. To address
these challenges, this study employs a practical technique called TDE. TDE approximates
the value of W(α, α̇, α̈) by utilizing past state values of the control input and acceleration.

The estimation of W(α, α̇, α̈) is given by [40–42]:

Ŵt
∆
= Wt−K = τt−K − J̄α̈t−K, (27)

where •t−K denotes the time-delayed value of •, and K is a small time delay, often chosen
as the sampling time. The delayed acceleration term α̈t−K is computed as:

α̈t−K =

0 if t ≤ T,
αt−2αt−K+αt−2K

K2 if t > T,
(28)

where T ≥ 2K. The value of T should not be excessively large to maintain accuracy.
Using Equation (28) effectively mitigates the pronounced fluctuations observed in

the early stages of α̈t−K. As a result, the TDE method achieves accurate estimation with
relatively small and bounded errors [43].

For K ≈ 0, the TDE error, defined as ∆W = W − Ŵt, remains small and bounded.
The magnitude of the estimation error is influenced by K and satisfies:

∥∆W∥ ≤ ∆W, (29)

where ∆W is a positive constant.

Remark 2. The TDE error ∆W can be effectively bounded, as shown in Equation (29), provided
that the matrix J̄ is selected to satisfy the condition ∥I − J−1(α) J̄∥ < 1. This condition ensures
that the approximation error introduced by the TDE remains within acceptable limits. Furthermore,
as detailed in [40–42], the validity of this bound is well-supported for sufficiently small values of
K, making it a practical and reasonable assumption for ensuring the robustness and stability of the
proposed control strategy.
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The position and velocity tracking errors are defined as e = α − αd and ė = α̇ − α̇d,
respectively, where αd represents the desired trajectory. Consequently, Equation (26) can be
reformulated in the error space as:

ë = J̄−1(τ − Ŵt + ∆W
)
− α̈d, (30)

where J̄ is the positive diagonal matrix, τ denotes the control input, Ŵt is the estimated
dynamics, and ∆W is the estimation error.

3.3. Design of the Novel Auxiliary System for Input Saturation

To mitigate the effects of actuator saturation, a novel auxiliary system is proposed by:

γ̇ = − J̄−1ξγ − J̄−1ξ̄sign(γ)− PST(γ)(m3[γ]
n3 + m4[γ]

n4) + J̄−1∆τ, (31)

where PST(γ) = diag
(

1
P(γ1)

, . . . , 1
P(γn)

)
, and the components of P(γi) are expressed as:

P(γi) = a1 +
1 − a1

1 + r1|γi|h1
,

with 0 < a1 < 1, r1 > 0, and h1 is an even positive integer. Consequently, we have
0 < P(γi) ≤ 1. ξ = diag(ξ1, . . . , ξn), ξ̄ = diag(ξ̄1, . . . , ξ̄n), m3 = diag(m31, . . . , m3n),
m4 = diag(m41, . . . , m4n) are positive diagonal matrices, and ∆τ > 0. The exponents

n3 = [n31, . . . , n3n]
T and n4 = [n41, . . . , n4n]

T are defined as n3i = lsign(|γi |−1)
3 and n4i =

lsign(1−|γi |)
4 , where l3 > 1 and 0.5 < l4 < 1.

The term ∆τ represents the mismatch between the actual control input and the satu-
rated actuator output. It is expressed as:

∆τ = τSAT − τ, (32)

where ∆τ is bounded by ∥∆τ∥ < ∆τ.
The saturated actuator output τSAT is defined by:

τSAT =


τmax if τ ≥ τmax,

τ if τmin < τ < τmax,

τmin if τ ≤ τmin,

(33)

where τmin < 0 and τmax > 0 denote the lower and upper saturation limits of the actuator,
respectively.

To analyze the stability of the system (31), consider the Lyapunov candidate function
V1 = 0.5γTγ. By differentiating V1 and substituting the auxiliary system dynamics from
Equation (31), we obtain:

V̇1 = γTγ̇

= γT
[
− J̄−1ξγ − J̄−1ξ̄sign(γ)− PST(γ)(m3[γ]

n3 + m4[γ]
n4) + J̄−1∆τ

]
=

n

∑
i=1

1
J̄i

(
∆τiγi − ξiγ

2
i − ξ̄i|γi|

)
−

n

∑
i=1

1
P(γi)

(
m3|γi|n3i+1 + m4|γi|n4i+1

)
≤

n

∑
i=1

1
J̄i

(
∆τi − ξiγi − ξ̄i

)
|γi| −

n

∑
i=1

1
P(γi)

(
m3|γi|n3i+1 + m4|γi|n4i+1

)
.

(34)
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By choosing ξi to be sufficiently large, the term −ξiγi dominates ∆τi, ensuring ∆τi −
ξiγi ≤ ξ̄i. Substituting this condition into Equation (34) further simplifies it to:

V̇1 ≤ −
n

∑
i=1

(
m3|γi|n3i+1 + m4|γi|n4i+1

)
. (35)

The stability analysis is performed under two distinct cases based on the magnitude
of |γi|:

Case 1: |γi| ≥ 1
In this scenario, n3i = l3 > 1 and n4i = l−1

4 > 1. Therefore:

m3i|γi|n3i+1 + m4i|γi|n4i+1 = m3i

(
|γi|2

) l3+1
2

+ m4i

(
|γi|2

) l−1
4 +1

2 . (36)

Given that l−1
4 +1

2 > 1 > l4+1
2 and |γi|2 > 1, it follows that:

(
|γi|2

) l−1
4 +1

2
>
(
|γi|2

) l4+1
2 . (37)

Thus, the inequality can be bounded as:

m3i|γi|n3i+1 + m4i|γi|n4i+1 > m3i

(
|γi|2

)ω3
+ m4i

(
|γi|2

)ω4
, (38)

where ω3 = l3+1
2 and ω4 = l4+1

2 .
Case 2: |γi| < 1
In this case, n3i = l−1

3 < 1 and n4i = l4 < 1. Consequently:

m3i|γi|n3i+1 + m4i|γi|n4i+1 = m3i

(
|γi|2

) l−1
3 +1

2
+ m4i

(
|γi|2

) l4+1
2 . (39)

Since l−1
3 +1

2 < 1 < l3+1
2 and |γi|2 < 1, we have:

(
|γi|2

) l−1
3 +1

2
>
(
|γi|2

) l3+1
2 . (40)

Thus, the inequality can again be bounded as:

m3i|γi|n3i+1 + m4i|γi|n4i+1 > m3i

(
|γi|2

)ω3
+ m4i

(
|γi|2

)ω4
. (41)

From the above cases, the derivative of V1 can be represented as:

V̇1 ≤ −
n

∑
i=1

(
m3i

(
|γi|2

)ω3
+ m4i

(
|γi|2

)ω4
)

. (42)

Using minimum eigenvalues, we write:

V̇1 ≤ −λmin(m3)
n

∑
i=1

(
|γi|2

)ω3 − λmin(m4)
n

∑
i=1

(
|γi|2

)ω4
. (43)

Applying Lemma 3, this simplifies further to:

V̇1 ≤ −m̄3Vω3
1 − m̄4Vω4

1 , (44)
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where m̄3 = n1−ω3 λmin(m3)2ω3 and m̄4 = λmin(m4)2ω4 .
Using Equation (44) and Lemma 1, the state γ converges to zero within a fixed time.

The settling time is given by:

Tc <
1

m̄3(ω3 − 1)
+

1
m̄4(1 − ω4)

. (45)

Finally, by defining φ1 = e and φ2 = ė − γ, the auxiliary system transforms into:
φ̇1 = φ2 + γ

φ̇2 = J̄−1(τSAT − Ŵt + ∆Wt
)
− α̈d + J̄−1ξγ + J̄−1ξ̄sign(γ)

+PST(γ)
(
m3[γ]

n3 + m4[γ]
n4
)
− J̄−1∆τ

(46)

3.4. Design of the Novel NFTSM Surface

The novel NFTSM surface is formulated based on the proposal in Theorem 1 as:

Si =

φ2i + P−1(φ1i)(m5i[φ1i]
n5i + m6i[φ1i]

n6i ), if S̄i = 0 or (S̄i ̸= 0 and |φ1i| > χ),

φ2i + P−1(φ1i)
(
ε5i φ1i + ε6i[φ1i]

2), if S̄i ̸= 0 and |φ1i| ≤ χ,
(47)

where S̄i = φ2i + P−1(φ1i)(m5i[φ1i]
n5i + m6i[φ1i]

n6i ), P(φ1i) = a2 +
(1−a2)

1+r2|φ1i |h2
≤ 1, with

0 < a2 < 1, r2 > 0, and h2 being an even positive integer. The parameters m5i and
m6i satisfy m5i > 0 and m6i > 0, while the constants l5 > 1 and 0.5 < l6 < 1 govern

the exponents n5i = lsign(|φ1i |−1)
5 and n6i = lsign(1−|φ1i |)

6 . Additionally, ε5i = m5i(2 −
n5i)χ

n5i−1 + m6i(2 − n6i)χ
n6i−1, ε6i = m5i(n5i − 1)χn5i−2 + m6i(n6i − 1)χn6i−2, and χ > 0 is

a small positive constant.
Once the sliding mode condition (Si = 0) is satisfied, and when S̄i = 0 or (S̄i ̸=

0 and |φ1i| > χ), the system behavior reduces to:

φ2i = −P−1(φ1i)(m5i[φ1i]
n5i + m6i[φ1i]

n6i ), (48)

After time Tc, it is assumed that γ = 0. Therefore, Equation (48) simplifies further to:

φ̇1i = −P−1(φ1i)(m5i[φ1i]
n5i + m6i[φ1i]

nφ1i ), (49)

This equation conforms to the structure described in Theorem 1, ensuring that φ1

converges to zero within a fixed time Ts = max{Tsi}, where Tsi is determined as follows:

Tsi = min
{

ā2

(l5 − 1)m6i
ln
(

1 +
m6i
m5i

)
,

l6 ā
(1 − l6)m5i

ln
(

1 +
m5i
m6i

)}
+ min

{
1

(1 − l6)m5i
ln
(

1 +
m5i
m6i

)
,

l5
(l5 − 1)m6i

ln
(

1 +
m6i
m5i

)} (50)

When S̄i ̸= 0 and |φ1i| ≤ χ, the system transitions from a fixed-time sliding mode to
a general sliding mode as described in Figure 2. The design of the general sliding mode
surface ensures the continuity of Si and its derivative, the mitigation of singularity issues
inherent in classical TSMC designs [44]. Since φ1 = e, the tracking error e is guaranteed to
converge within a small bound χ in a fixed time Ts.
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Figure 2. Proposed sliding surface.

3.5. Design of the Proposed Control Law

Taking the time derivative of the sliding mode surface S and utilizing Equation (46),
the expression becomes:

Ṡ = J̄−1(τ − Ŵt + ∆W
)
− α̈d + J̄−1ξγ + J̄−1ξ̄sign(γ)

+ PST(γ)(ε3[γ]
n3 + ε4[γ]

n4) + Ψ,
(51)

where Ψ = [Ψ1, . . . , Ψn]T , and each component Ψi is defined as:

Ψi =



P−1(φ1i)
(

n5im5i|φ1i|n5i−1 + n6im6i|φ1i|n6i−1
)

φ̇1i

− P−2(φ1i)Ṗ(φ1i)
(

m5i|φ1i|n5i + m6i|φ1i|n6i
)

,
if S̄i = 0 or

(
S̄i ̸= 0 and |φ1i| > χ

)
,

P−1(φ1i)
(

ε5i + 2ε6i|φ1i|
)

φ̇1i

− P−2(φ1i)Ṗ(φ1i)
(

ε5i φ1i + ε6i|φ1i|2
)

,
if S̄i ̸= 0 and |φ1i| ≤ χ.

Here, Ṗ(φ1i) is expressed as Ṗ(φ1i) = (a2 − 1)r2h2|φ1i|h2−1 sign(φ1i)φ̇1i/(
1 + r2|φ1i|h2

)2
.

Based on Equation (51), the proposed model-free fixed-time NFTSMC law is designed
as follows:

τ = τeq + τr,

τeq = Ŵt + J̄
(

α̈d − J̄−1ξγ − J̄−1ξ̄sign(γ)− PST(γ)
(
m3[γ]

n3 + m4[γ]
n4
)
− Ψ

)
,

τr = −∆W sign(S)− PR(S)
(
m7[S]n7 + m8[S]n8

)
,

(52)

where τeq represents the equivalent control law, and τr is the novel FTRCL designed accord-
ing to the proposal outlined in Theorem 1. The term PR(S) = diag(1/P(S1), . . . , 1/P(Sn))

is a diagonal positive definite matrix, with its elements P(Si) = a3 + (1− a3)/(1+ r3|Si|h3),
ensuring that 0 < P(Si) ≤ 1. The parameters a3 and r3 are positive scalars, with 0 < a3 < 1,
while h3 is an even positive integer. The coefficients m7 = diag(m71, . . . , m7n) and
m8 = diag(m81, . . . , m8n) are diagonal matrices with positive entries. The exponents

n7 = [n71, . . . , n7n] and n8 = [n81, . . . , n8n] are adaptive, defined as n7i = lsign(|Si |−1)
7 and

n8i = lsign(1−|Si |)
8 , where l7 > 1 and 0.5 < l8 < 1.
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The structure of the proposed control system is depicted in Figure 3.

Desired Trajectory Auxiliary
System

Novel Fixed Time
Reaching Control Law

Equivalent Control
Law

Time Delay
Estimation

External Disturbances

Novel NFTSM
Surface

Input Saturation

Time
Delay

Time
Delay

Time
Delay

Figure 3. Structure of the proposed control system.

3.6. Stability Analysis

Substituting the proposed control law from Equation (52) into Equation (51) yields:

Ṡ = J̄−1(∆W − ∆W sign(S)− PR(S)
(
m7[S]n7 + m8[S]n8

))
. (53)

To analyze the stability, consider the Lyapunov candidate function V2 = 0.5STS.
Taking its time derivative and substituting Equation (53) leads to:

V̇2 = ST Ṡ

= ST J̄−1(∆W − ∆W sign(S)− PR(S)
(
m7[S]n7 + m8[S]n8

))
=

n

∑
i=1

J−1
i

(
∆WiSi − ∆W|Si| − P−1(Si)

(
m7i|Si|n7i+1 + m8i|Si|n8i+1))

≤
n

∑
i=1

J−1
i
(
∆Wi − ∆W

)
|Si| −

n

∑
i=1

J−1
i P−1(Si)

(
m7i|Si|n7i+1 + m8i|Si|n8i+1)

≤ −
n

∑
i=1

J−1
i
(
m7i|Si|n7i+1 + m8i|Si|n8i+1).

(54)

Following the analysis in Equation (35), Equation (54) can be reformulated as:

V̇2 ≤ −
n

∑
i=1

J−1
i

(
m7i
(
|Si|2

)ω7 + m8i
(
|Si|2

)ω8
)

≤ −λ−1
max(J)λmin(m7)

n

∑
i=1

(
|Si|2

)ω7 − λ−1
max(J)λmin(m8)

n

∑
i=1

(
|Si|2

)ω8 ,
(55)

where ω7 = l7+1
2 and ω8 = l8+1

2 .
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Using Lemma 3, Equation (55) can be rewritten as:

V̇2 ≤ −n1−ω7 λ−1
max(J)λmin(m7)2ω7

(
0.5

n

∑
i=1

|Si|2
)ω7

− λ−1
max(J)λmin(m8)2ω8

(
0.5

n

∑
i=1

|Si|2
)ω8

≤ −m̄7Vω7
2 − m̄8Vω8

2 ,

(56)

where m̄7 = n1−ω7 λ−1
max(J)λmin(m7)2ω7 and m̄8 = λ−1

max(J)λmin(m8)2ω8 .
From Equation (56) and Lemma 1, it follows that the sliding surface S converges to

zero within a fixed time. The settling time Tr is given by:

Tr <
1

m̄7(ω7 − 1)
+

1
m̄8(1 − ω8)

. (57)

Therefore, the total convergence time is bounded by the sum Ts + Tr + Tc.

4. Numerical Simulation and Discussion
To assess the effectiveness of the proposed control method, numerical simulations

were conducted in the MATLAB/SIMULINK-2021b environment for a 3-DOF SAMSUNG
FARA AT2 robot manipulator. The mechanical model of the manipulator was meticulously
designed in SOLIDWORKS-2018 software, as illustrated in Figure 4. This model was
then integrated into the SIMULINK simulation environment using the SIMSCAPE MULTI-
BODY LINK tool, ensuring that the simulation closely mirrored the actual robotic system.
The robot’s parameters are detailed in our previous study [5]. The sampling time for the
simulations was set to 10−3 s, ensuring high fidelity in dynamic response analysis.

To highlight the advantages of the proposed control method, its performance
was benchmarked against several well-established approaches, including NTSMC [45],
NFTSMC (based on [46]), and global NTSMC (GNTSMC) (based on [47]).

Figure 4. Three-dimensional SOLIDWORKS model of SAMSUNG FARA AT2 manipulator.
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The control law for NTSMC [45] is given by:

s = ℓ+ Hė
ς1
ς2 , (58)

ℓ =

[(
1 + e2

1

) ς1
ς2 arctan(e1), . . . ,

(
1 + e2

n

) ς1
ς2 arctan(en)

]T

, (59)

τ = J0(α̈d − M) + V0(α, α̇)α̇ + τG0(α)− J0(κ1sign(s) + κ2s), (60)

M =

[
ς2(1+e2

1)
ς1
ς2

−1
ė

2− ς1
ς2

1
H1ς1

(
1 + 2ς1e1 arctan(e1)

ς2

)
, . . . , ς2(1+e2

n)
ς1
ς2

−1
ė

2− ς1
ς2

n
Hnς1

(
1 + 2ς1en arctan(en)

ς2

)]T

. (61)

Here, H, κ1, and κ2 are positive diagonal matrices, ς1 and ς2 are positive odd constants,
and 1 < ς1

ς2
< 2.

The NFTSMC law [46] is formulated as:

s = e + K[e]h̄1 + Tėh̄2 , (62)

τ = J0(α̈d − P) + V0(α, α̇)α̇ + τG0(α)− J0(κ1sign(s) + κ2s), (63)

P =

[
[ė1]

2−h̄2

h̄2T1

(
1 + K1|e1|h̄1−1

)
, . . . ,

[ėn]
2−h̄2

h̄2Tn

(
1 + Kn|en|h̄1−1

)]T

. (64)

Here, K, T, κ1, and κ2 are positive diagonal matrices, with 1 < h̄2 < 2 and h̄1 > h̄2.
The control law for GNTSMC [47] is constructed as follows:

si = ei + ρ1i[ei]
z1i + ρ2i[ėi]

z2i(t) + gi(t), (65)

gi(t) =

g1i + g2it −
(

3g1i
t̄2 + 2g2i

t̄2

)
t2 +

(
2g1i
t̄3 + g2i

t̄3

)
t3, if t ≤ t̄,

0, if t > t̄,
(66)

g1i = ei(0) + ρ1i[ei(0)]z1i + ρ2i[ėi(0)]z2i(t),

g2i = ėi(0) + z1iρ1i|ei(0)|z1i−1 ėi(0) + z2iρ2i|ėi(0)|z2i(t)−1 ëi(0)

+ ρ2i ż2i[ėi(0)]z2i(t) ln(|ėi(0)|),

(67)

z2i(t) =


1, if t ≤ t̄,

1 + t − t̄, if t̄ < t ≤ t̄ + Ξ,

1 + Ξ, if t > t̄ + Ξ,

(68)

τ = J0(α̈d − Π) + V0(α, α̇)α̇ + τG0(α)− J0

(
κ̂3[s]1/2 +

∫
κ̂4 sign(s)

)
, (69)

Πi = z−1
2i (t)ρ

−1
2i

(
1 + ρ1i|ei|z1i−1

)
|ėi|2−z2i(t) sign(ėi)

+ z−1
2i (t)ρ

−1
2i |ėi|1−z2i(t) ġi(t) + ż2i(t)z−1

2i (t)ėi ln(|ėi|),
(70)

κ̂3 = κ̄3ζ,

κ̂4 = κ̄4ζ,

ζ̇ = diag

(√
L
2

sign(|s|)
)

,

(71)

where ρ1i > 0, ρ2i > 0, z1i ≥ 2, t̄ > 0 and 0 < Ξ < 1. κ̄3, κ̄4 and L are positive diagonal

matrices with κ̄4i = 0.25κ̄3iz2i(t)ρ2i
˙|ei|

z2i(t)−1
.

The desired trajectory of the robot end-effector is defined as Xd = 0.43 + 0.02 sin(t),
Yd = 0.1 sin(t), Zd = 0.260 + 0.1 cos(0.5t). Using inverse kinematics, the desired joint
trajectories are calculated and provided as input to the controllers.
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To replicate realistic operating conditions, joint friction is modeled as τF = [2ϕ̇1 +

0.01sign(ϕ̇1), 2ϕ̇2 + 0.01sign(ϕ̇2), 2α̇3 + 0.01sign(α̇3)]
T . This model accounts for both vis-

cous and Coulomb friction, adding complexity to the control task.
External disturbances are introduced to test the robustness of the con-

trollers. The disturbances are defined as τd = [−2 sin(0.5t) − 2 sin(t), 2 sin(0.5t) +
1.5 sin(0.75t),−1.5 sin(0.5t)− 0.8 sin(0.25t)]T , simulating dynamic and time-varying exter-
nal forces acting on the robot’s joints.

Uncertainties in the robot’s dynamic model are incorporated by modifying the nominal
parameters. Specifically, the inertia matrix, Coriolis forces, and gravitational forces are
scaled as J0 = 0.85J, V0 = 0.85V, and τG0 = 0.85τG, respectively. These modifications
ensure that the simulation reflects potential discrepancies between the actual and nominal
models, challenging the controllers’ adaptability.

The joint actuators are subjected to input saturation limits. The saturation bounds are
set as τmin = [−35,−55,−30] (N.m) and τmax = [35, 55, 30] (N.m). These constraints mimic
real-world actuator limitations and test the controllers’ ability to maintain performance
within bounded inputs.

The control parameters for all methods are summarized in Table 1. From the control
parameters, we can calculate the theoretical convergence time of the proposed method as
Tmax = Ts + Tr + Tc = 0.97 + 1.28 + 2.96 = 5.21 (s).

Table 1. Parameters of control methods.

Methods Parameters Values

NTSMC H, κ1, κ2, ς1, ς2 diag(0.3,0.3,0.3), diag(14,14,14), diag(5,5,5), 7, 5

NFTSMC K, T, κ1, κ2, h̄1, h̄2 diag(5,5,5), diag(0.3,0.3,0.3), diag(14,14,14), diag(5,5,5), 1.61, 7/5

GNTSMC ρ1i, ρ2i, z1i, t̄, Ξ, κ̄3i, Li 5, 0.1, 2, 0.05, 0.5, 20, 5000

Proposed Method

J̄, ξi, ξ̄i diag(0.4,0.4,0.2), 50, 0.001
m3i, m4i, l3, l4, a1, r1, h1 2, 2, 1.5, 0.7, 0.4, 5, 2
m5i, m6i, l5, l6, a2, r2, h2, χ 5, 5, 1.25, 0.8, 0.4, 5, 2, 0.00001
m7i, m8i, l7, l8, a3, r3, h3, ∆W 3, 3, 1.25, 0.8, 0.3, 100, 4, 0.008

Remark 3. The parameters of the proposed control method were chosen following the guidelines
provided in the paper. The selection and tuning of these parameters play a critical role in shaping the
system’s performance and convergence properties. The effects of the parameters can be summarized
as follows:

• High values of m3i, m4i, m5i, m6i, m7i, m8i: Increasing these parameters enhances the likelihood
of system convergence by providing greater robustness against uncertainties and disturbances.

• Large values of l3, l5, l7 and hi: These parameters accelerate convergence when the system state
exceeds one, ensuring faster stabilization in such scenarios.

• Small values of l4, l6, l8: These parameters improve convergence when the system state is less
than one, enabling precise control in close proximity to equilibrium.

• Small ai and large ri: This combination promotes faster convergence when the system
state is far from the equilibrium point, ensuring efficient performance in scenarios with
significant deviations.

By adhering to these principles, parameters can be tailored to meet the specific needs of each
control system, ensuring optimal performance and robustness.

For all control methods evaluated, the parameters were systematically selected through an
iterative process of testing and fine-tuning. This approach involved evaluating the algorithms under
identical conditions to optimize their performance in terms of trajectory tracking and robustness.
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By fine-tuning the parameters, each method was adjusted to ensure fair and consistent comparison
while achieving the best possible control outcomes.

To compare the tracking accuracy of the control methods, the root mean square
errors (RMSEs) were calculated after the convergence period (from 2 to 20 s). The results,
summarized in Table 2, provide a quantitative assessment of the controllers’ performance.

The simulation outcomes are illustrated in Figures 5–10 and detailed in Table 2.
The time evolution of the auxiliary system variables is shown in Figure 5. It is evident
that these variables can converge to zero rapidly. Figure 6 depicts the trajectory tracking
performance of the robot arm’s end-effector, while Figure 7 demonstrates the tracking
performance at the joint level. From these figures, we can see that all four control methods
successfully follow the desired trajectory.

Figure 5. Time evolution of the auxiliary system variables.

The detailed performance comparison is evaluated based on three main criteria:
convergence speed, trajectory tracking accuracy and robustness, and chattering sup-
pression in the control signal, providing a comprehensive evaluation of the proposed
method’s effectiveness.

Convergence speed: Examining the zoomed-in view during the initial period (0
to 0.6 s) in Figure 8, we observe that the NTSMC method exhibits the slowest conver-
gence among the approaches. NFTSMC achieves faster convergence than NTSMC, while
GNTSMC further improves the convergence speed compared to NFTSMC. Most notably,
the proposed method demonstrates the fastest convergence rate, quickly reaching the
steady state. This superior performance is attributed to the new FTSMS and new FTRCL,
enabling it to outperform the other three approaches. The convergence time of the proposed
method is approximately 0.3 s for all three joints, which is significantly lower than the
theoretical maximum settling time (Tmax = 5.21 s). These results confirm that the proposed
method achieves fixed-time convergence under practical conditions, validating the theo-
retical bounds derived in Theorem 1. Moreover, the consistent convergence time across
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joints, even in the presence of estimation errors, uncertainties, and external disturbances,
highlights the robustness and reliability of the proposed approach.

Figure 6. Trajectory tracking performance of the robot end-effector across four control methods.

Trajectory tracking accuracy and robustness: A detailed analysis of the tracking accu-
racy is provided in Figure 8, which compares the tracking errors at the joints, and Figure 9,
which highlights the RMSEs of the control methods. During the period from 0.6 to 20 s,
as shown in the zoomed-in view of Figure 8 and the RMSEs in Figure 9, the NTSMC and
NFTSMC methods exhibit comparable tracking accuracy. Their tracking errors are within
the range of 10−4 to 10−10 radians, as summarized in Table 2. However, NFTSMC demon-
strates slightly superior accuracy compared to NTSMC. The GNTSMC method achieves
a further improvement in accuracy, with tracking errors consistently within the range
of 10−5 radians. Most notably, the proposed method outperforms all others, delivering
exceptional tracking precision. Its tracking errors remain consistently within the range of
10−7 to 10−8 radians, showcasing its significant advantage in ensuring superior accuracy
and robustness.
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Figure 7. Joint-level trajectory tracking performance across four control methods.

With assumed uncertainties, including uncertain dynamics, friction forces, and ex-
ternal disturbances, the proposed method addresses these issues more effectively than
the other methods. Consequently, the tracking accuracy of the proposed method remains
consistently high throughout the robot’s operation.

Table 2. RMSEs of control methods.

Methods Joint 1 Joint 2 Joint 3

NTSMC 3.817 × 10−5 5.737 × 10−5 2.907 × 10−4

NFTSMC 3.725 × 10−5 5.221 × 10−5 2.435 × 10−4

GNTSMC 3.306 × 10−5 2.812 × 10−5 4.827 × 10−5

Proposed Method 3.822 × 10−8 1.065 × 10−7 9.174 × 10−8
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Figure 8. Tracking error comparison under four different control methods.

Chattering suppression: Figure 10 presents a comparison of the control input torques
generated by the various methods. It is apparent that both NTSMC and NFTSMC ex-
hibit significant chattering in their control signals. This behavior is attributed to the high
sliding gain (κ1) employed to compensate for the upper bounds of external disturbances
and system uncertainties. In contrast, GNTSMC and the proposed method generate sub-
stantially smoother control signals, highlighting their enhanced robustness and efficiency.
The GNTSMC method leverages a super-twisting algorithm to effectively suppress chatter-
ing, while the proposed method achieves similar smoothness with a smaller sliding gain,
relying on the TDE approach to handle modeling errors and disturbances. This reduction
in gain not only minimizes chattering but also enhances the overall energy efficiency of the
control system.

The enlarged views in Figure 10 further reveal instances of actuator saturation at
the joints, which could adversely affect system performance. Unlike the other methods,
the proposed approach incorporates an auxiliary system to actively compensate for the
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effects of input saturation. This feature ensures consistent and reliable tracking performance
even under saturation constraints, demonstrating the proposed method’s robustness and
adaptability in practical applications.

Figure 9. RMSEs across four control methods.

Figure 10. Control input comparison under four different control methods.
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Remark 4. The proposed method introduces additional parameters, which could slightly increase
the tuning effort. However, it is important to emphasize that the proposed approach is fundamentally
model-free, leveraging the TDE technique to approximate the robot’s dynamics without requiring ex-
plicit knowledge of its highly nonlinear model. This model-free design offers a significant advantage,
particularly for robot manipulators with a large number of DOFs. For such systems, deriving and
computing the dynamic model in real-time becomes exceedingly challenging and computationally
intensive, often necessitating substantial simplifications or approximations that compromise control
performance. By avoiding the need for explicit dynamic modeling, the proposed method simplifies
the implementation process and is better suited for high-DOF manipulators operating in dynamic
and uncertain environments. Furthermore, the computational overhead introduced by the additional
parameters is outweighed by the enhanced robustness, faster convergence, and higher tracking accu-
racy achieved by the proposed method. These benefits are particularly advantageous in applications
requiring precision and reliability under significant uncertainties and disturbances.

5. Conclusions
This paper proposed an advanced orbit-tracking control approach for robotic manipu-

lators, combining TDE and FSMC techniques to address challenges such as nonlinearities,
uncertainties, disturbances, and input saturation. The proposed method integrates a novel
NFTSM surface and a novel FTRCL to ensure faster convergence and higher accuracy.
An innovative auxiliary system effectively mitigates input saturation effects, maintaining
system stability and precision under constraints.

The simulation results on a 3-DOF SAMSUNG FARA AT2 robot manipulator validate
the superiority of the proposed approach. It outperforms NTSMC, NFTSMC, and GNTSMC
by achieving faster convergence, enhanced tracking accuracy, reduced chattering, and ro-
bust performance under uncertainties and disturbances. With its model-free design and
fixed-time convergence rigorously proven via Lyapunov theory, the proposed method sig-
nificantly advances the precision, robustness, and reliability of robotic systems, making it
highly suitable for demanding industrial applications requiring high-performance control.

Future work will extend the proposed control approach to nonlinear systems such
as UAVs and AUVs, addressing challenges like uncertainties, disturbances, and input
saturation. By adapting the NFTSM surface and FTRCL, the method can improve tracking
accuracy and robustness while the auxiliary system ensures stability under constraints.
Additionally, achieving prescribed performance for these systems is a valuable direction
for exploration. Furthermore, a limitation of this paper is the use of a constant matrix in the
design of TDE. To address this, future work will incorporate adaptive rules for the matrix,
enhancing flexibility and performance under varying system conditions.
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