A Novel Method for Boosting Knowledge Representation Learning in Entity Alignment through Triple Confidence
<p>Method overview. The dashed lines connect the equivalent entities in the two KGs.</p> "> Figure 2
<p>Framework of PTC.</p> "> Figure 3
<p>Example of the pairing rate.</p> "> Figure 4
<p>Example of the confidence adjacency matrix.</p> "> Figure 5
<p>Framework of Confidence-GCN-Align.</p> "> Figure 6
<p>An example of a confidence swapping strategy.</p> "> Figure 7
<p>The effect of gamma on Hits@k. (<b>a</b>–<b>c</b>) describe the effects of the gamma value on Hits 1, Hits 10, and Hits 50, respectively.</p> ">
Abstract
:1. Introduction
- We propose a method to calculate the triple confidence by utilizing the pairing rates of the entities and relations. This method employs a finer-grained method by using the pairwise pairing rates between the head entity, the relation, and the tail entity as the feature vectors of the triple in order to learn its confidence.
- Two general strategies are designed to incorporate confidence into the knowledge representation learning methods to enhance their feature extraction capabilities. For methods such as GCN that utilize neighbor information, we propose a dynamic adjacency matrix strategy where the confidence of the triples is treated as the reliability of the neighbors, enabling the method to aggregate the adjacent nodes with a higher confidence. For TransE, which employs a Hinge Loss function, we introduce a dynamic margin strategy that dynamically adjusts the margin values, allowing the model to prioritize the triples with a higher confidence and mitigate the impact of the triples with a lower confidence.
- We apply the two proposed knowledge representation learning methods to the entity alignment tasks and prove the feasibility of using confidence in these tasks using experiments.
2. Related Work
2.1. Triple Confidence Calculation
2.2. Entity Alignment
3. Method Overview
4. Method
4.1. Triple Confidence Calculation
4.2. Confidence-Based KRL
4.2.1. Confidence-Enhanced GCN
Algorithm 1 Confidence-GCN. |
Input: T, X, CP // T = {(h, r, t)} is a set of triple id forms in the training set, X is the entity feature matrix, CP is the confidence set of the triple obtained through the confidence calculation. Output: O // O is embedded representation set of triple T learned from the knowledge representation and confidence. Initialize adjacency matrix 2. for (h, r, t) ∈T do 3. if (a(h, t) not in C) then 4. a(h, t) = CP(h, r, t) 5. else 6. a(h, t) = max(a(h, t), CP(h, r, t)) 7. if (a(t, h) not in C) then 8. a(t, h) = CP(h, r, t) 9. else 10. a(t, h) = max(a(t, h), CP(h,r,t)) ← + I ← 13. W ← Normal distribution randomly generates parameter matrix 14. for epoch in range(epochs) do 15. H ← The first Confidence-GCN layer 16. O ← The second Confidence-GCN layer 17. Calculate Loss 18. Update parameters using GradientDescentOptimizer |
4.2.2. Confidence-Enhanced TransE
4.3. Entity Alignment Based on Confidence KRL
4.3.1. Entity Alignment Based on Confidence-Enhanced GCN
4.3.2. Entity Alignment Based on Confidence-Enhanced TransE
5. Experiments
5.1. Datasets
5.2. Triple Confidence Calculation
5.3. Entity Alignment
5.3.1. Confidence-GCN-Align
- (1)
- Structural embedding (SE).
- (2)
- Combination of structural embedding and attribute embedding (SE + AE).
5.3.2. Confidence-TransE-Align
- (1)
- In terms of the Hits@1, Hits@5, and Hits@10 metrics, Confidence-MMEA performed better than MMEA. It was particularly noteworthy that our method demonstrated a nearly 9% improvement when trained with 50% of the data. This indicated that Confidence-TransE possessed a stronger capability for knowledge representation learning compared with TransE without confidence. This suggested that Confidence-MMEA was more effective at correctly aligning the entities within the top-ranked predictions.
- (2)
- The MRR metric for Confidence-MMEA was significantly better than MMEA. This showed that Confidence-MMEA was more likely to find the correct triple relations among the top-ranking positions.
- (3)
- The MR value for Confidence-MMEA was higher than that of MMEA. This could be attributed to the fact that, after incorporating the confidence scores, the algorithm tended to focus more on the entities with a higher confidence. However, there may have been some errors in the current confidence score calculations, leading to higher MR values for certain cases.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, H.; Peng, T.; Xiao, F.; Han, J.; Han, R.; Liu, L. Incorporating anticipation embedding into reinforcement learning framework for multi-hop knowledge graph question answering. Inf. Sci. 2023, 619, 745–761. [Google Scholar] [CrossRef]
- Liu, C.; Ji, X.; Dong, Y.; He, M.; Yang, M.; Wang, Y. Chinese mineral question and answering system based on knowledge graph. Expert Syst. Appl. 2023, 231, 120841. [Google Scholar] [CrossRef]
- Shen, J.; Pan, T.; Xu, M.; Gan, D.; An, B. A novel DL-based algorithm integrating medical knowledge graph and doctor modeling for Q&A pair matching in OHP. Inf. Process. Manag. 2023, 60, 103322. [Google Scholar] [CrossRef]
- Bertram, N.; Dunkel, J.; Hermoso, R. I am all EARS: Using open data and knowledge graph embeddings for music recommendations. Expert Syst. Appl. 2023, 229, 120347. [Google Scholar] [CrossRef]
- Dai, Q.; Wu, X.-M.; Fan, L.; Li, Q.; Liu, H.; Zhang, X.; Wang, D.; Lin, G.; Yang, K. Personalized knowledge-aware recommendation with collaborative and attentive graph convolutional networks. Pattern Recognit. 2022, 128, 108628. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Hu, S.; Xu, X.; Chen, S.; Tu, Z. DUSKG: A fine-grained knowledge graph for effective personalized service recommendation. Future Gener. Comput. Syst. 2019, 100, 600–617. [Google Scholar] [CrossRef]
- Tiddi, I.; Schlobach, S. Knowledge graphs as tools for explainable machine learning: A survey. Artif. Intell. 2022, 302, 103627. [Google Scholar] [CrossRef]
- Chang, C.; Zhou, J.; Weng, Y.; Zeng, X.; Wu, Z.; Wang, C.-D.; Tang, Y. KGTN: Knowledge Graph Transformer Network for explainable multi-category item recommendation. Knowl.-Based Syst. 2023, 278, 110854. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wang, G.; Du, Y.; Chen, P. EGNN: Constructing explainable graph neural networks via knowledge distillation. Knowl.-Based Syst. 2022, 241, 108345. [Google Scholar] [CrossRef]
- Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; et al. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 2015, 6, 167–195. [Google Scholar] [CrossRef]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 1247–1250. [Google Scholar]
- Zeng, K.; Li, C.; Hou, L.; Li, J.; Feng, L. A comprehensive survey of entity alignment for knowledge graphs. AI Open 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Murali, L.; Gopakumar, G.; Viswanathan, D.M.; Nedungadi, P. Towards electronic health record-based medical knowledge graph construction, completion, and applications: A literature study. J. Biomed. Inform. 2023, 143, 104403. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.G.; Starly, B. Knowledge graph construction for product designs from large CAD model repositories. Adv. Eng. Inform. 2022, 53, 101680. [Google Scholar] [CrossRef]
- Li, J.; Song, D.; Wang, H.; Wu, Z.; Zhou, C.; Zhou, Y. Entity alignment for temporal knowledge graphs via adaptive graph networks. Knowl.-Based Syst. 2023, 274, 110631. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Z.; Wan, Y.; Wei, J.; Zhao, J.; Wang, P. FuAlign: Cross-lingual entity alignment via multi-view representation learning of fused knowledge graphs. Inf. Fusion 2023, 89, 41–52. [Google Scholar] [CrossRef]
- Qian, Y.; Pan, L. Variety-aware GAN and online learning augmented self-training model for knowledge graph entity alignment. Inf. Process. Manag. 2023, 60, 103472. [Google Scholar] [CrossRef]
- Heindorf, S.; Potthast, M.; Stein, B.; Engels, G. Vandalism Detection in Wikidata. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 327–336. [Google Scholar]
- Wang, X.; Chen, L.; Ban, T.; Usman, M.; Guan, Y.; Liu, S.; Wu, T.; Chen, H. Knowledge graph quality control: A survey. Fundam. Res. 2021, 1, 607–626. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2787–2795. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 1112–1119. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2181–2187. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Beijing, China, 26–31 July 2015; pp. 687–696. [Google Scholar]
- Xie, R.; Liu, Z.; Lin, F.; Lin, L. Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning With Confidence. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7 February 2018; pp. 4954–4961. [Google Scholar]
- Jia, S.; Xiang, Y.; Chen, X.; Wang, K. Triple Trustworthiness Measurement for Knowledge Graph. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2865–2871. [Google Scholar]
- Chen, X.; Chen, M.; Shi, W.; Sun, Y.; Zaniolo, C. Embedding uncertain knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 3363–3370. [Google Scholar]
- Yang, S.; Zhang, W.; Tang, R.; Zhang, M.; Huang, Z. Approximate inferring with confidence predicting based on uncertain knowledge graph embedding. Inf. Sci. 2022, 609, 679–690. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J.J.N.C. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chen, M.; Tian, Y.; Yang, M.; Zaniolo, C. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1511–1517. [Google Scholar]
- Wang, Z.; Lv, Q.; Lan, X.; Zhang, Y. Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 349–357. [Google Scholar]
- Yang, H.-W.; Zou, Y.; Shi, P.; Lu, W.; Lin, J.; Sun, X. Aligning Cross-Lingual Entities with Multi-Aspect Information. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 4431–4441. [Google Scholar]
- Cai, W.; Wang, Y.; Mao, S.; Zhan, J.; Jiang, Y. Multi-heterogeneous neighborhood-aware for Knowledge Graphs alignment. Inf. Process. Manag. 2022, 59, 102790. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, S. A cross-linguistic entity alignment method based on graph convolutional neural network and graph attention network. Computing 2023, 105, 2293–2310. [Google Scholar] [CrossRef]
- Tam, N.T.; Trung, H.T.; Yin, H.; Van Vinh, T.; Sakong, D.; Zheng, B.; Hung, N.Q.V. Entity alignment for knowledge graphs with multi-order convolutional networks. IEEE Trans. Knowl. Data Eng. 2020, 34, 4201–4214. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Qin, X. Dual-view graph neural network with gating mechanism for entity alignment. Appl. Intell. 2023, 53, 18189–18204. [Google Scholar] [CrossRef]
- Liu, F.; Chen, M.; Roth, D.; Collier, N. Visual pivoting for (unsupervised) entity alignment. In Proceedings of the AAAI Conference on Artificial Intelligence, Vitrtual, 2–9 February 2021; pp. 4257–4266. [Google Scholar]
- Guo, H.; Tang, J.; Zeng, W.; Zhao, X.; Liu, L. Multi-modal entity alignment in hyperbolic space. Neurocomputing 2021, 461, 598–607. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Wang, Y.; Xu, T.; Wang, Z.; Chen, E. MMEA: Entity alignment for multi-modal knowledge graph. In Proceedings of the Knowledge Science, Engineering and Management: 13th International Conference, KSEM 2020, Hangzhou, China, 28–30 August 2020; pp. 134–147. [Google Scholar]
- Cheng, B.; Zhu, J.; Guo, M. MultiJAF: Multi-modal joint entity alignment framework for multi-modal knowledge graph. Neurocomputing 2022, 500, 581–591. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Zhang, W.; Guo, L.; Fang, Y.; Huang, Y.; Zhang, Y.; Geng, Y.; Pan, J.Z.; Song, W.; et al. MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 3317–3327. [Google Scholar]
- Speer, R.; Chin, J.; Havasi, C. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4444–4451. [Google Scholar]
- Liu, Y.; Li, H.; Garcia-Duran, A.; Niepert, M.; Onoro-Rubio, D.; Rosenblum, D.S. MMKG: Multi-Modal Knowledge Graphs. In Proceedings of the European Semantic Web Conference, Portorož, Slovenia, 2–6 June 2019; pp. 459–474. [Google Scholar]
- Hu, J.; Cheng, R.; Huang, Z.; Fang, Y.; Luo, S. On Embedding Uncertain Graphs. In Proceedings of the CIKM 2017, Singapore, 6–10 November 2017; pp. 157–166. [Google Scholar]
Head Entity | Relation | Tail Entity |
---|---|---|
Alfred_Hitchcock | birthPlace | Turkey |
Agatha_Christie | birthPlace | Devonians |
Anguilla | currency | Parliamentary_system |
Anguilla | officialLanguage | Kingdom_of_England |
Anguilla | language | Kingdom_of_England |
Methods | GCN | TransE | Confidence 1 |
---|---|---|---|
MTransE | - | √ | - |
GCN-Align | √ | - | - |
HMAN | √ | - | - |
MHNA | √ | - | - |
GRGCN | √ | ||
EMGCN | √ | ||
DvGNet | √ | ||
EVA | √ | - | - |
HMEA | - | √ | - |
MMEA | - | √ | - |
MultiJAF | √ | - | - |
Triple | CP(h, r, t) | DM(h, r, t) |
---|---|---|
(/m/0sxg4, /film/film/genre, /m/04xvlr) | 0.8734 | gamma – 0.8734 |
(/m/028_yv, /film/film/country, /m/03rjj) | 0.4897 | gamma – 0.4897 |
(/m/01tv3x2, /music/artist/genre, /m/06rqw) | 0.9546 | gamma – 0.9546 |
(/m/04h68j, /film/writer/film, /m/01g3gq) | 0.4947 | gamma – 0.4947 |
(/m/02_1sj, /film/film/language, /m/02h40lc) | 0.8892 | gamma – 0.8892 |
Model | Pre | Acc | F1 |
---|---|---|---|
MLP * | - | 0.833 | 0.861 |
Bilinear * | - | 0.861 | 0.869 |
TransE + | 0.835 | 0.868 | 0.874 |
TransH + | 0.904 | 0.912 | 0.913 |
TransD + | 0.904 | 0.913 | 0.914 |
TransR + | 0.883 | 0.902 | 0.904 |
PTransE + | 0.934 | 0.941 | 0.941 |
KGTtm(TransE) * | - | 0.977 | 0.975 |
KGTtm(PTransH) * | - | 0.978 | 0.979 |
KGTtm(TransH) * | - | 0.981 | 0.982 |
PTC | 0.989 | 0.994 | 0.994 |
Model | MSE | MAE | Pre | Acc | F1 |
---|---|---|---|---|---|
URGE * [43] | 0.1032 | 0.2272 | - | - | - |
UKGErect * | 0.0861 | 0.01990 | - | - | - |
UKGElogi * | 0.0986 | 0.2074 | - | - | - |
UKGsE * | 0.0771 | 0.2134 | - | - | - |
PTC | 0.0479 | 0.1771 | 0.960 | 0.968 | 0.980 |
Triple | True Value | Predicted Value |
---|---|---|
(925, 9, 963) | 0.8927087856574166 | 0.854725 |
(9935, 3, 5404) | 0.8927087856574166 | 0.85451275 |
(815, 3, 3843) | 0.8927087856574166 | 0.91402173 |
(405, 0, 14502) | 0.24503988222454764 | 0.38096955 |
(8334, 11, 3256) | 0.8832813822224633 | 0.9209904 |
(2081, 0, 147) | 0.39421161184926345 | 0.38398254 |
(6854, 0, 5606) | 0.26278592891031644 | 0.38352108 |
Model | ZH-EN | EN-ZH | |||||
---|---|---|---|---|---|---|---|
Hits@1 | Hits@10 | Hits@50 | Hits@1 | Hits@10 | Hits@50 | ||
GCN-Align * | SE | 38.42 | 70.34 | 81.24 | 34.43 | 65.68 | 77.03 |
SE + AE | 41.25 | 74.38 | 86.23 | 36.49 | 69.94 | 82.45 | |
GCN-Align + | SE | 38.97 | 69.98 | 79.98 | 36.93 | 67.34 | 77.72 |
SE + AE | 42.27 | 74.5 | 85.06 | 39.63 | 71.48 | 82.96 | |
Confidence-GCN-Align | SE | 41.66 | 73.23 | 83.21 | 38.14 | 69.36 | 80.00 |
SE + AE | 45.51 | 78.00 | 88.66 | 41.42 | 74.09 | 85.37 |
Model | JA-EN | EN-JA | |||||
---|---|---|---|---|---|---|---|
Hits@1 | Hits@10 | Hits@50 | Hits@1 | Hits@10 | Hits@50 | ||
GCN-Align * | SE | 38.21 | 72.49 | 82.69 | 36.90 | 68.50 | 79.52 |
SE + AE | 39.91 | 74.46 | 86.10 | 38.42 | 71.81 | 83.72 | |
GCN-Align + | SE | 40.12 | 73.16 | 82.5 | 37.99 | 68.95 | 78.95 |
SE + AE | 42.46 | 76.08 | 86.81 | 39.96 | 72.63 | 84.06 | |
Confidence-GCN-Align | SE | 41.90 | 75.4 | 84.77 | 39.67 | 71.73 | 81.80 |
SE + AE | 44.80 | 79.17 | 89.39 | 42.60 | 76.13 | 87.53 |
Model | FR-EN | EN-FR | |||||
---|---|---|---|---|---|---|---|
Hits@1 | Hits@10 | Hits@50 | Hits@1 | Hits@10 | Hits@50 | ||
GCN-Align * | SE | 36.51 | 73.42 | 85.93 | 36.08 | 72.37 | 85.44 |
SE + AE | 37.29 | 74.49 | 86.73 | 36.77 | 73.06 | 86.39 | |
GCN-Align + | SE | 40.04 | 75.73 | 86.03 | 38.54 | 72.99 | 84.37 |
SE + AE | 41.34 | 77.72 | 88.16 | 39.78 | 75.07 | 86.95 | |
Confidence-GCN-Align | SE | 42.04 | 78.25 | 88.78 | 40.89 | 77.01 | 88.05 |
SE + AE | 44.25 | 80.79 | 91.19 | 42.98 | 79.32 | 90.56 |
Margin | Hits@1 | Hits@10 | Hits@50 | MR | MRR |
---|---|---|---|---|---|
18.183 | 31.317 | 37.811 | 627.437 | 0.247957 | |
0.133 | 0.4 | 0.667 | 3364.582 | 0.004295 | |
23.332 | 42.794 | 51.624 | 153.007 | 0.328348 | |
27.68 | 45.307 | 53.57 | 298.893 | 0.363127 | |
28.058 | 46.575 | 55.194 | 237.045 | 0.371267 |
FB15K-DB15K | Train | Hits@1 | Hits@5 | Hits@10 | MR | MRR |
---|---|---|---|---|---|---|
MMEA | 20% | 26.042 | 44.946 | 53.175 | 143.465 | 0.353472 |
50% | 40.697 | 60.101 | 67.711 | 60.654 | 0.500465 | |
80% | 60. | 79.611 | 85.603 | 13.658 | 0.688278 | |
Confidence-MMEA | 20% | 28.081 | 47.831 | 56.383 | 191.551 | 0.376452 |
50% | 49.805 | 69.599 | 76.372 | 67.723 | 0.589590 | |
80% | 68.716 | 85.37 | 89.494 | 15.492 | 0.764087 |
FB15K-YAGO15K | Train | Hits@1 | Hits@5 | Hits@10 | MR | MRR |
---|---|---|---|---|---|---|
MMEA | 20% | 23.906 | 40.362 | 49.024 | 145.942 | 0.322338 |
50% | 39.942 | 57.178 | 65.461 | 61.571 | 0.483185 | |
80% | 57.557 | 76.994 | 83.914 | 11.790 | 0.665495 | |
Confidence-MMEA | 20% | 26.075 | 42.289 | 50.325 | 217.411 | 0.342644 |
50% | 48.538 | 67.292 | 73.833 | 69.307 | 0.572726 | |
80% | 67.203 | 82.574 | 87.131 | 13.954 | 0.745418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, T.; Wang, H. A Novel Method for Boosting Knowledge Representation Learning in Entity Alignment through Triple Confidence. Mathematics 2024, 12, 1214. https://doi.org/10.3390/math12081214
Zhang X, Chen T, Wang H. A Novel Method for Boosting Knowledge Representation Learning in Entity Alignment through Triple Confidence. Mathematics. 2024; 12(8):1214. https://doi.org/10.3390/math12081214
Chicago/Turabian StyleZhang, Xiaoming, Tongqing Chen, and Huiyong Wang. 2024. "A Novel Method for Boosting Knowledge Representation Learning in Entity Alignment through Triple Confidence" Mathematics 12, no. 8: 1214. https://doi.org/10.3390/math12081214
APA StyleZhang, X., Chen, T., & Wang, H. (2024). A Novel Method for Boosting Knowledge Representation Learning in Entity Alignment through Triple Confidence. Mathematics, 12(8), 1214. https://doi.org/10.3390/math12081214