Spherical Gravity Forwarding of Global Discrete Grid Cells by Isoparametric Transformation
<p>View of a tesseroid in the geocentric coordinate system. In the spherical coordinate system, integral point <span class="html-italic">Q</span> and computational point <span class="html-italic">P</span> with a local coordinate system. <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>2</mn> </msub> </semantics></math> (blue dashed line) represent the lower and upper limits of the spherical azimuth; <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> </semantics></math> (red dashed line) are the lower and upper limits of the spherical center angle; <math display="inline"><semantics> <msub> <mi>r</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math> (black dashed line) are the lower and upper bounds of the radius of the cell body; <span class="html-italic">r</span> and <span class="html-italic">l</span> (green dashed line) represent the distances from the center point <span class="html-italic">O</span> and the integral point <span class="html-italic">Q</span> to the computational point <span class="html-italic">P</span>, respectively.</p> "> Figure 2
<p>Schematic representation of spherical shell based on the Discrete Global Grid System subdivision.</p> "> Figure 3
<p>Isoparametric transformation of Discrete Global Grid System (DGGS) cells. (<b>a</b>) Local coordinate system. (<b>b</b>) System coordinate system. The numbers 1 to 12 represent the serial number of the integration point <span class="html-italic">i</span>.</p> "> Figure 4
<p>Schematic representation of traditional integration points for a regular hexagonal prism.</p> "> Figure 5
<p>Integration points on a regular hexagon. (<b>a</b>) Integral point position (<math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>), the dash line and colors are represented as auxiliary lines to differentiate six regular triangles. (<b>b</b>) Integral point weight (<math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>), the asterisk * of the numbers 1–6 represents the vertex number, where <span class="html-italic">a</span> and <span class="html-italic">b</span> (i.e., red dots in the middle of the regular hexagon) correspond to the positions of the integration points.</p> "> Figure 6
<p>The coordinate transformation of a tetrahedron. (<b>a</b>) Local coordinate system. (<b>b</b>) System coordinate system.</p> "> Figure 7
<p>Schematic of cube discretized by tetrahedrons.</p> "> Figure 8
<p>Results for the cubic model using tetrahedron-based forwarding algorithm (see <a href="#mathematics-12-00885-f007" class="html-fig">Figure 7</a>).</p> "> Figure 9
<p>Residuals between the results of the tetrahedron-based forwarding algorithm Equation (<a href="#FD19-mathematics-12-00885" class="html-disp-formula">19</a>) and analytical solutions [<a href="#B83-mathematics-12-00885" class="html-bibr">83</a>] for the cubic model.</p> "> Figure 10
<p>Results for Experiment 1 with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> and 28,130,947 subcells using tesseroid-based forwarding algorithm.</p> "> Figure 11
<p>Results for Experiment 3 with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> and 4096 subcells using tesseroid-based forwarding algorithm.</p> "> Figure 12
<p>Schematic diagram of a tesseroid with a size of <math display="inline"><semantics> <mrow> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo>×</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> <mo>×</mo> <mn>1</mn> </mrow> </semantics></math> km discretized by 10,315 tetrahedrons (after 4 refinements).</p> "> Figure 13
<p>Residuals between the results of the tetrahedron-based (after 7 refinements) and tesseroid-based forwarding algorithms (see <a href="#mathematics-12-00885-f008" class="html-fig">Figure 8</a>) for Experiment 1.</p> "> Figure 14
<p>Residuals between the results of the tetrahedron-based (after 2 refinements with 144 subcells) and tesseroid-based forwarding algorithms (see <a href="#mathematics-12-00885-f011" class="html-fig">Figure 11</a>) for Experiment 3.</p> "> Figure 15
<p>Residuals between the results of the tetrahedron-based (after 3 refinements with 526 subcells) and tesseroid-based forwarding algorithms (see <a href="#mathematics-12-00885-f011" class="html-fig">Figure 11</a>) for Experiment 3.</p> "> Figure 16
<p>Residuals between the results of the tetrahedron-based (after 4 refinements with 10,315 subcells) and tesseroid-based forwarding algorithms (see <a href="#mathematics-12-00885-f011" class="html-fig">Figure 11</a>) for Experiment 3.</p> "> Figure 17
<p>Schematic diagram of a DGGS cell discretized by tetrahedrons after 3 refinements with 12,762 subcells.</p> "> Figure 18
<p>Results for the DGGS (see <a href="#mathematics-12-00885-f017" class="html-fig">Figure 17</a>) using DGGS-based forwarding algorithm, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> </mrow> </semantics></math> 6378.137 km and the observation height is 260 km.</p> "> Figure 19
<p>Residuals between the results of the DGGS-based (see <a href="#mathematics-12-00885-f018" class="html-fig">Figure 18</a>) and tetrahedron-based forwarding algorithms (after 6 refinements with 15,491 subcells).</p> "> Figure 20
<p>Results for the DGGS (see <a href="#mathematics-12-00885-f017" class="html-fig">Figure 17</a>) using DGGS-based forwarding algorithm, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> </mrow> </semantics></math> 1738 km and the observation height is 10 km.</p> "> Figure 21
<p>Residuals between the results of the DGGS-based (see <a href="#mathematics-12-00885-f020" class="html-fig">Figure 20</a>) and tetrahedron-based forwarding algorithms (after 6 refinements with 15,491 subcells).</p> "> Figure 22
<p>Residuals between the results of the DGGS-based (see <a href="#mathematics-12-00885-f018" class="html-fig">Figure 18</a>) and tesseroid-based forwarding algorithms with 4978 tiny same-sized tesseroids.</p> "> Figure 23
<p>Residuals between the results of the DGGS-based (see <a href="#mathematics-12-00885-f020" class="html-fig">Figure 20</a>) and tesseroid-based forwarding algorithms with 694,287 tiny same-sized tesseroids.</p> ">
Abstract
:1. Introduction
2. The Principle of Forward Modeling Tensors and Gravity Gradients
3. Forward Modeling of Gravitational Fields Based on DGGS Cells
3.1. The Isoparametric Transformation of DGGS Cells
3.2. Integral Weights of DGGS Cells
4. Forward Modeling of Gravitational Fields Based on Arbitrary Tetrahedral Cells
- Describing the two spherical surfaces (curved surfaces) above and below the DGGS cell in the spherical coordinate system using the facets of polyhedrons is somewhat challenging;
5. Algorithm Verification
5.1. Phase 1: To Verify the Tetrahedron-Based Forwarding Algorithm in the Cartesian Coordinate System
5.2. Phase 2: To Verify the Tetrahedron-Based and Tesseroid-Based Forwarding Algorithms in the Spherical Coordinate System
5.3. Phase 3: To Verify the DGGS-Based Forwarding Algorithm
5.4. Additional Test: To Verify the DGGS-Based Forwarding Algorithm Via the Tesseroid-Based Forwarding Algorithm with Tiny Tesseroids
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DGGS | Discrete Global Grid System |
FEM | Finite Element Method |
GLQ | Gauss–Legendre Quadrature |
PLC | Piecewise Linear Complex |
PSLG | Planar Straight Line Graph |
References
- Turcotte, D.L.; Schubert, G. Geodynamics; Cambridge University Press: Cambridge, UK, 2002; pp. 34–45. [Google Scholar] [CrossRef]
- Li, X. Curvature of a geometric surface and curvature of gravity and magnetic anomalies. Geophysics 2015, 80, 15–26. [Google Scholar] [CrossRef]
- Karegar, M.A. Theory and Application of Geophysical Geodesy for Studying Earth Surface Deformation. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2018. Available online: https://digitalcommons.usf.edu/etd/7255 (accessed on 5 March 2024).
- Anderson, E.G. The Effect of Topography on Solutions of Stokes’ Problem. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 1976. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F.; Braitenberg, C. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics 2016, 81, F41–F48. [Google Scholar] [CrossRef]
- Deng, X.L.; Shen, W.B. Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels. J. Geod. 2018, 92, 415–429. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, G.Y.; Zhu, Z.Q.; Cao, S.J. An Improved 3D Magnetization Inversion Based on Smoothness Constraints in Spherical Coordinates. Magnetochemistry 2022, 8, 157. [Google Scholar] [CrossRef]
- Holmes, S.A.; Featherstone, W.E. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J. Geod. 2002, 76, 279–299. [Google Scholar] [CrossRef]
- Freeden, W.; Michel, V.; Simons, F.J. Spherical harmonics based special function systems and constructive approximation methods. In Handbook of Mathematical Geodesy; Birkhauser: Cham, Switzerland, 2018; pp. 753–819. [Google Scholar] [CrossRef]
- Kuhn, M.; Seitz, K. Comparison of Newton’s Integral in the Space and Frequency Domains. In A Window on the Future of Geodesy; Michael, K., Kurt, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 128, pp. 386–391. [Google Scholar] [CrossRef]
- Du, J.S.; Chen, C.; Liang, Q.; Wang, L.S.; Zhang, Y.; Wang, Q.G. Gravity Anomaly Calculation Based on Volume Integral in Spherical Cap and Comparison with the Tesseroid- Taylor Series Expansion Approach. Acta Geod. Cartogr. Sin. 2012, 41, 339–346. Available online: https://api.semanticscholar.org/CorpusID:124351845 (accessed on 15 January 2024).
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef]
- Barsoum, R.S. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int. J. Numer. Methods Eng. 1977, 11, 85–98. [Google Scholar] [CrossRef]
- Carlin, H.J. Distributed circuit design with transmisssion line elements. Proc. IEEE 1971, 59, 1059–1081. [Google Scholar] [CrossRef]
- Pfister, H.; Zwicker, M.; van Baar, J.; Gross, M. Surfels: Surface Elements as Rendering Primitives. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 23–28 July 2000; pp. 335–342. [Google Scholar] [CrossRef]
- Autrey, T.; Foster, N.S.; Klepzig, K.; Amonette, J.E.; Daschbach, J.L. A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility. Rev. Sci. Instrum. 1998, 69, 2246–2258. [Google Scholar] [CrossRef]
- Baykiev, E.; Ebbing, J.; Brönner, M.; Fabian, K. Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids. Comput. Geosci. 2016, 96, 124–135. [Google Scholar] [CrossRef]
- Heck, B.; Seitz, K. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geod. 2007, 81, 121–136. [Google Scholar] [CrossRef]
- Wang, W.; Cao, Y.; Okaze, T. Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES. Build. Environ. 2021, 195, 107717. [Google Scholar] [CrossRef]
- Sigg, C.; Peikert, R.; Gross, M. Signed Distance Transform Using Graphics Hardware. In Proceedings of the 14th IEEE Visualization 2003, Seattle, WA, USA, 19–24 October 2003; p. 12. [Google Scholar] [CrossRef]
- Zhong, Y.Y.; Ren, Z.Y.; Chen, C.J.; Chen, H.; Yang, Z.; Guo, Z.W. A new method for gravity modeling using tesseroids and 2D Gauss-Legendre quadrature rule. J. Appl. Geophys. 2019, 164, 53–64. [Google Scholar] [CrossRef]
- Ku, C.C. A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline. Geophysics 1977, 42, 610–622. [Google Scholar] [CrossRef]
- Grombein, T.; Seitz, K.; Heck, B. Optimized formulas for the gravitational field of a tesseroid. J. Geod. 2013, 87, 645–660. [Google Scholar] [CrossRef]
- Yao, C.; Hao, T.; Guan, Z.; Zhang, Y. High-Speed Computation and Efficient Storage in 3-D Gravity and Magnetic Inversion. Chin. J. Geophys. 2003, 46, 252–258. [Google Scholar] [CrossRef]
- Saraswati, A.T.; Cattin, R.; Mazzotti, S.; Cadio, C. New analytical solution and associated software for computing full-tensor gravitational field due to irregularly shaped bodies. J. Geod. 2019, 93, 2481–2497. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Chen, C.J.; Tang, J.T.; Chen, H.; Hu, S.G.; Zhou, C.; Xiao, X. Closed-form formula of magnetic gradient tensor for a homogeneous polyhedral magnetic target: A tetrahedral grid example. Geophysics 2017, 82, WB21–WB28. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996; pp. 419–435. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhong, Y.Y.; Chen, C.J.; Tang, J.T.; Pan, K.J. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics 2018, 83, G1–G13. [Google Scholar] [CrossRef]
- Wills, A.P.; Kyame, J.J. Vector Analysis with an Introduction to Tensor Analysis. Am. J. Phys. 1959, 27, 433. [Google Scholar] [CrossRef]
- Rathod, H.; Nagaraja, K.; Venkatesudu, B. Numerical integration of some functions over an arbitrary linear tetrahedra in Euclidean three-dimensional space. Appl. Math. Comput. 2007, 191, 397–409. [Google Scholar] [CrossRef]
- Tsoulis, D.; Gavriilidou, G. A computational review of the line integral analytical formulation of the polyhedral gravity signal. Geophys. Prospect. 2021, 69, 1745–1760. [Google Scholar] [CrossRef]
- Conway, J.T. Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest. Mech. Dyn. Astron. 2015, 121, 17–38. [Google Scholar] [CrossRef]
- Zhou, X.B. General line integrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast. Geophysics 2009, 74, I1–I7. [Google Scholar] [CrossRef]
- Zhang, Q.j. Research on the Volumerendering of Global Scalar Databasing on Hexagonal Mesh. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2016. Available online: https://cdmd.cnki.com.cn/Article/CDMD-10216-1016764468.htm (accessed on 13 December 2023). (In Chinese).
- Peterson, P.R. Discrete global grid systems. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Wiley: Hoboken, NJ, USA, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Lu, N.; Cheng, C.Q.; Ma, H.J.; Yang, Y.B. Global discrete grid systems analysis and comparison. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2771–2774. [Google Scholar] [CrossRef]
- Perraudin, N.; Defferrard, M.; Kacprzak, T.; Sgier, R. DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications. Astron. Comput. 2018, 27, 130–146. [Google Scholar] [CrossRef]
- Bondaruk, B.; Roberts, S.A.; Robertson, C. Assessing the state of the art in Discrete Global Grid Systems: OGC criteria and present functionality. Geoinformatica 2020, 74, 9–30. [Google Scholar] [CrossRef]
- Status, B. H3: A Hexagonal Hierarchical Geospatial Indexing System. 2015. Available online: https://github.com/xszhaob/h3/blob/master/README.md (accessed on 5 January 2024).
- Cheng, C.Q.; Tong, X.C.; Chen, B.; Zhai, W.X. A Subdivision Method to Unify the Existing Latitude and Longitude Grids. ISPRS Int. J. Geo Inf. 2016, 5, 161. [Google Scholar] [CrossRef]
- Gibb, R.G. The rHEALPix Discrete Global Grid System. IOP Conf. Ser. Earth Environ. Sci. 2016, 34, 012012. [Google Scholar] [CrossRef]
- Ben, J.; Tong, X.C.; Zhang, Y.S.; Zhang, H.Z. Discrete global grid systems: Generating algorithm and software model. In Proceedings of the Geoinformatics 2006: Geospatial Information Technology, Wuhan, China, 28–29 October 2006; Volume 6421, p. 64210J. [Google Scholar] [CrossRef]
- Breunig, M.; Bradley, P.E.; Jahn, M.W.; Kuper, P.V.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data Management Research: Progress and Future Directions. ISPRS Int. J. Geo Inf. 2020, 9, 95. [Google Scholar] [CrossRef]
- Li, M.; McGrath, H.; Stefanakis, E. Integration of heterogeneous terrain data into Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2021, 48, 546–564. [Google Scholar] [CrossRef]
- Sun, W.B.; Zhao, X.S.; Gao, Y.L.; Wang, H.B. Partition Methods and Character Analysis of Near-Equal Grids on Spherical Facet. Geogr. Geo-Inf. Sci. 2009, 25, 53–56+60. Available online: https://api.semanticscholar.org/CorpusID:123763671 (accessed on 12 November 2023). (In Chinese).
- Peterson, P. Close-Packed, Uniformly Adjacent, Multiresolutional, Overlapping Spatial Data Orderin. 2004. Available online: https://data.epo.org/gpi/EP1654707A1.pdf (accessed on 6 November 2023).
- Apparicio, P.; Gelb, J.; Dubé, A.S.; Kingham, S.; Gauvin, L.; Robitaille, É. The approaches to measuring the potential spatial access to urban health services revisited: Distance types and aggregation-error issues. Int. J. Health Geogr. 2017, 16, 1–24. [Google Scholar] [CrossRef]
- Reddy, J.N. Introduction to the Finite Element Method; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Szabó, B.; Babuška, I. Finite Element Analysis: Method, Verification and Validation; Wiley: Hoboken, NJ, USA, 2021; pp. 1–384. [Google Scholar] [CrossRef]
- Cotter, C.J. Compatible finite element methods for geophysical fluid dynamics. Acta Numer. 2023, 32, 291–393. [Google Scholar] [CrossRef]
- Liu, W.H.; He, Z.T.; Yao, W.; Li, M.H.; Tang, J.G. XFEM simulation of the effects of microstructure on the intergranular fracture in high strength aluminum alloy. Comput. Mater. Sci. 2014, 84, 310–317. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Hu, Y.F.; Fu, Z.P.; Zhu, S.Q. Defects analysis of the ultra-thick steel pipes using a mixed explicit-implicit FEM. Metall. Res. Technol. 2022, 119, 111. [Google Scholar] [CrossRef]
- Bishop, J.E. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 2014, 97, 1–31. [Google Scholar] [CrossRef]
- Qian, X.D.; Ren, Q.W. An Efficient Isoparametric Finite Element Inverse Conversion Method. Eur. J. Comput. Mech. Eur. 1998, 15, 437–441. [Google Scholar]
- Moens, D.; Hanss, M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elem. Anal. Des. 2011, 47, 4–16. [Google Scholar] [CrossRef]
- Jeng, G.; Wexler, A. Isoparametric, finite element, variational solution of integral equations for three-dimensional fields. Int. J. Numer. Methods Eng. 1977, 11, 1455–1471. [Google Scholar] [CrossRef]
- Baraldi, D.; Tullini, N. In-plane bending of Timoshenko beams in bilateral frictionless contact with an elastic half-space using a coupled FE-BIE method. Eng. Anal. Bound. Elem. 2018, 97, 114–130. [Google Scholar] [CrossRef]
- Lehrenfeld, C. High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 2015, 300, 716–733. [Google Scholar] [CrossRef]
- Lehrenfeld, C.; Reusken, A. High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces. In Transport Processes at Fluidic Interfaces; Birkhauser: Cham, Switzerland, 2017; pp. 33–63. Available online: https://api.semanticscholar.org/CorpusID:46431176 (accessed on 9 January 2024).
- Belarbi, M.O.; Tati, A.; Ounis, H.; Benchabane, A. Development of a 2D isoparametric finite element modelbased on the layerwise approach for the bending analysis of sandwich plates. Struct. Eng. Mech. 2016, 57, 473–506. [Google Scholar] [CrossRef]
- Belkaid, K. Development of a 2D Isoparametric Finite-Element Model Based on Reddy’s Third-Order Theory for the Bending Behavior Analysis of Composite Laminated Plates. Mech. Compos. Mater. 2019, 55, 241–258. [Google Scholar] [CrossRef]
- Liu, W.H.; Qiu, Q.; Chen, Y.Q.; Tang, C.P. Simulation of PFZ on intergranular fracture based on XFEM and CPFEM. J. Cent. South Univ. 2016, 23, 2500–2505. [Google Scholar] [CrossRef]
- Wang, T.H.; Cai, Z.H.; Zhao, Y.F.; Wang, W.; Zheng, G.Q.; Wang, Z.; Wang, Y. The Influence of Cross-Links on Long-Segment Instrumentation Following Spinal Osteotomy: A Finite Element Analysis. World Neurosurg. 2019, 123, e294–e302. [Google Scholar] [CrossRef] [PubMed]
- Celia, M.A.; Gray, W.G. An improved isoparametric transformation for finite element analysis. Int. J. Numer. Methods Eng. 1984, 20, 1443–1459. [Google Scholar] [CrossRef]
- Edelmann, D. Isoparametric finite element analysis of a generalized Robin boundary value problem on curved domains. SMAI J. Comput. Math. 2020, 7, 57–73. [Google Scholar] [CrossRef]
- Deng, X.L.; Shen, W.B. Formulas of Gravitational Curvatures of Tesseroid Both in Spherical and Cartesian Integral Kernels. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 23–28 April 2017; Volume 93, pp. 14–23. [Google Scholar]
- von Frese, R.; Hinze, W.J.; Braile, L.W.; Luca, A.J. Spherical earth gravity and magnetic anomaly modeling by Gauss-Legendre Quadrature integration. J. Geophys. 1981, 49, 234–242. [Google Scholar]
- Asgharzadeh, M.F.; Von Frese, R.R.B.; Kim, H.R.; Leftwich, T.E.; Kim, J.W. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int. 2007, 169, 1–11. [Google Scholar] [CrossRef]
- Chen, N.; Zhu, S.Y.; Li, Y.L. The Case Study of Pseudoexcitation Method Combining Self-Adaptive Gauss Integration in Random Vibration Analysis. Shock Vib. 2019, 2019, 9154016. [Google Scholar] [CrossRef]
- Wang, X.C. Fundamentals and Numerical Methods of the Finite Element Method; Tsinghua University Press: Beijing, China, 1997; pp. 33–37. (In Chinese) [Google Scholar]
- Si, D.C.; Wang, J.A.; Wei, G.; Yan, X.J. Method and experimental study of voltage measurement based on electric field integral with Gauss-Legendre algorithm. IEEE Trans. Instrum. Meas. 2019, 69, 2771–2778. [Google Scholar] [CrossRef]
- Cao, S.J. Slope Response in DC Resistivity Model by Using Three-Dimensional Finite Element Method. Master’s Thesis, Central South University, Changsha, China, 2009. (In Chinese). [Google Scholar]
- Wang, X.C. Finite Element Method; Tsinghua University Press: Beijing, China, 2003; pp. 15–40. (In Chinese) [Google Scholar]
- Armattoe, K.M.; Bouby, C.; Haboussi, M.; Zineb, T.B. Modeling of latent heat effects on phase transformation in shape memory alloy thin structures. Int. J. Solids Struct. 2016, 88, 283–295. [Google Scholar] [CrossRef]
- Baye, D.; Eraly, J.D.; Schoofs, P. Structure changes along the lowest rotational band of the antiprotonic helium atom. Phys. Rev. A 2019, 99, 022508. [Google Scholar] [CrossRef]
- Kamiński, M. Hexagonal finite elements in heat conduction. Int. Commun. Heat Mass Transfer 2005, 32, 1143–1151. [Google Scholar] [CrossRef]
- Chari, M.V.; Salon, S.J. Numerical Methods in Electromagnetism; Academic Press: Cambridge, MA, USA, 2000; pp. 494–516. [Google Scholar] [CrossRef]
- Jerome, S.; Axel, R.; Conrad, B. Integrating Finite Element Analysis with Systems Engineering Models. In Proceedings of the NAFEMS World Congress 2017, Stockholm, Sweden, 11–13 June 2017; Available online: https://api.semanticscholar.org/CorpusID:58914576 (accessed on 1 November 2023).
- Duczek, S.; Duvigneau, F.; Gabbert, U. The finite cell method for tetrahedral meshes. Finite Elem. Anal. Des. 2016, 121, 18–32. [Google Scholar] [CrossRef]
- Cao, S.J.; Zhu, Z.J.; Lu, G.Y.; Zeng, S.G.; Guo, W.B. Forward modelling of full gravity gradient tensors based H-Adaptive mesh refinement. Prog. Geophys. 2010, 25, 1015–1023. (In Chinese) [Google Scholar]
- Jiang, S.; Jiang, W.S.; Li, L.L.; Wang, L.Z.; Huang, W. Reliable and Efficient UAV Image Matching via Geometric Constraints Structured by Delaunay Triangulation. Remote Sens. 2020, 12, 3390. [Google Scholar] [CrossRef]
- Hang, S. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 2015, 41, 11. [Google Scholar] [CrossRef]
- Li, X.; Chouteau, M. Three dimensional gravity modeling in all space. SEG Tech. Program Expand. Abstr. 1997, 474–477. [Google Scholar] [CrossRef]
- Ren, Z.Y. DC Resistivity Adaptive Finite Element Numerical Simulation Based on Unstructured Grid. Master’s Thesis, Central South University, Changsha, China, 2007. (In Chinese). [Google Scholar]
- Shewchuk, J.R. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 2002, 22, 21–74. [Google Scholar] [CrossRef]
- Pain, C.C.; Umpleby, A.P.; de Oliveira, C.; Goddard, A.J.H. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Eng. 2001, 190, 3771–3796. [Google Scholar] [CrossRef]
- Pierre, A.; David, C.S.; Mariette, Y.; Mathieu, D. Variational tetrahedral meshing. ACM Trans. Graph. 2005, 24, 617–625. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, Q.Y.; Xiong, Z.G.; Zhu, Q.D. L∞- and L2-norms superconvergence of the tetrahedral quadratic finite element. Comput. Math. Appl. 2023, 149, 71–74. [Google Scholar] [CrossRef]
- Li, Z.W.; Hao, T.Y.; Xu, Y.; Xu, Y. An efficient and adaptive approach for modeling gravity effects in spherical coordinates. J. Appl. Geophys. 2011, 73, 221–231. [Google Scholar] [CrossRef]
- Bahl, A.; Teleki, A.; Jakobsen, P.K.; Wright, E.M.; Kolesik, M. Reflectionless Beam Propagation on a Piecewise Linear Complex Domain. J. Light. Technol. 2014, 32, 4272–4278. [Google Scholar] [CrossRef]
- Johnson, M.P.; Sariöz, D. Representing a Planar Straight-Line Graph Using Few Obstacles. In Proceedings of the Canadian Conference on Computational Geometry, Halifax, NS, Canada, 11–13 August 2014; pp. 72–90. Available online: https://api.semanticscholar.org/CorpusID:3901829 (accessed on 18 November 2023).
- Sahr, K. DGGRID Version 7.0: User Documentation for Discrete Global Grid Software; Southern Oregon University: Ashland, OR, USA, 2019; pp. 14–23. Available online: https://webpages.sou.edu/~sahrk/docs/dggridManualV70.pdf (accessed on 2 November 2023).
Number of Integration Points n | Integration Position | Integration Weights | Position of Points |
---|---|---|---|
1 | |||
2 | |||
3 | |||
Number of Integration Points n | Integration Position | Integration Position | Integration Weights | Position of Points |
---|---|---|---|---|
1 | ||||
4 | ||||
9 | ||||
Order | Number of Integration Points | Integration Weights | Position of Points |
---|---|---|---|
1 | 1 | = 1 | 1/4, 1/4, 1/4, 1/4 |
2 | 4 | = 1/24 | a= 0.585 410 20 b = 0.138 196 60 |
5 | 3 | a= 1/2, b = 1/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Chen, P.; Lu, G.; Deng, Y.; Zhang, D.; Chen, X. Spherical Gravity Forwarding of Global Discrete Grid Cells by Isoparametric Transformation. Mathematics 2024, 12, 885. https://doi.org/10.3390/math12060885
Cao S, Chen P, Lu G, Deng Y, Zhang D, Chen X. Spherical Gravity Forwarding of Global Discrete Grid Cells by Isoparametric Transformation. Mathematics. 2024; 12(6):885. https://doi.org/10.3390/math12060885
Chicago/Turabian StyleCao, Shujin, Peng Chen, Guangyin Lu, Yihuai Deng, Dongxin Zhang, and Xinyue Chen. 2024. "Spherical Gravity Forwarding of Global Discrete Grid Cells by Isoparametric Transformation" Mathematics 12, no. 6: 885. https://doi.org/10.3390/math12060885
APA StyleCao, S., Chen, P., Lu, G., Deng, Y., Zhang, D., & Chen, X. (2024). Spherical Gravity Forwarding of Global Discrete Grid Cells by Isoparametric Transformation. Mathematics, 12(6), 885. https://doi.org/10.3390/math12060885