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Abstract: In recent years, ensuring communication security at the physical layer has become increas-
ingly important due to the transmission of sensitive information over various networks. Traditional
approaches to physical layer security often rely on artificial noise generation, which may not offer
robust solutions against advanced interception techniques. This study addresses these limitations by
proposing a novel security technique based on non-orthogonal signaling using Faster-than-Nyquist
(FTN) signaling. Unlike conventional FTN methods that utilize fixed symbol intervals, the proposed
technique employs variable symbol intervals encoded as secure information, shared only with le-
gitimate receivers. This encoding enables effective interference cancellation and symbol detection
at the receiver, while preventing eavesdroppers from deciphering transmitted signals. The per-
formance of the proposed technique was evaluated using the DVB-S2X system, a practical digital
video broadcasting standard. Simulation results demonstrated that the proposed method maintains
smooth communication with minimal performance degradation compared to traditional methods.
Furthermore, eavesdroppers were unable to decode the transmitted signals, confirming the enhanced
security. This research presents a new approach to physical layer security that does not depend on
generating artificial noise, offering a path to more secure and efficient communication systems.

Keywords: physical layer security; FTN; non-orthogonal signaling; IDD; DVB-S2X

MSC: 68W40

1. Introduction

In recent years, a huge amount of private information has been transmitted and
shared through many kinds of communication and broadcasting platforms, such as the
internet of things (IoT), the digital broadcast network, and the wireless sensor network
(WSN) [1–4]. Because important and private information such as clinical records, bank ac-
counts, and credit card information can be transmitted and shared over the communication
network, communication security is required. Traditionally, cryptographic protocols have
been researched and adopted to secure digital communication systems [5–9]. Physical
layer security has recently become an emerging hot topic in digital communication and
broadcasting systems [10], and various physical layer security technologies have been
investigated [11–19]. Trappe briefly introduced the issues and opportunities for applying
physical layer security to real systems [11], and Yener et al. provided an overview of
research results in information-theoretic security [12]. However, most existing studies have
used an artificial noise generation scheme to obtain physical layer security function [13–16].
Although the authors of [17,18] described some analysis and service models for physical
layer security, these did not depict clear analytic and mathematical results.
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Furthermore, recently, various physical layer security techniques have been investi-
gated. The authors of [20] proposed a mixed integer linear program (MILP)-based security
technique for physical layer security in elastic optical networks. The proposed technique
can provide high-level encryption operation results. However, its limitation is that it is
impractical for large-scale networks, due to its very high computational complexity and the
fact that it requires a lot of resources. The authors of [21] proposed a method to enhance
physical layer security using an intelligent reflecting surface (IRS). This technique improves
security performance by using a convolutional neural network (CNN)-based model, even
when the instantaneous channel information of the eavesdropper is unknown. However,
applying a CNN-based algorithm requires a large amount of high-quality data, and since
IRS technology is still in its early stages, this could pose a challenge to its practical imple-
mentation. The authors of [22] proposed a method based on RF fingerprint technology
to enhance the security of IoT devices. The proposed technology can identify internet of
things (IoT) devices with a high accuracy through RF fingerprints by utilizing a machine
learning-based model. However, RF fingerprints are greatly affected by environmental
conditions such as channel conditions and signal-to-noise ratio (SNR), making it difficult
to operate stably. In addition, frequent environmental changes based on such uncertain-
ties lead to the limitation that machine learning training must be performed frequently.
Therefore, there are limitations in practicality.

This paper presents a novel physical layer security technique based on non-orthogonal
signal processing. For the non-orthogonal signaling, Faster-than-Nyquist (FTN) signaling
is considered [23,24]. FTN signaling is a communication technique that enhances spectral
efficiency [25–28]. FTN signaling can simply accomplish high spectral efficiency based on
a faster symbol rate than the Nyquist rate. However, because the use of a faster symbol
rate than the Nyquist rate destroys the orthogonality between symbols, inter-symbol
interference (ISI) is inevitably generated. To reduce the ISI and detect the transmitted
symbols, the receiver should know and utilize the information about symbol rate or ISI
values. In the turbo equalizer based on the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm,
the ISI filter values are used for BCJR tap coefficients in FTN signaling [29,30].

In this paper, a physical layer security technique based on FTN signaling is proposed.
Unlike general FTN signaling, the proposed technique uses a different symbol interval
for each transmission symbol. Therefore, each symbol has a different symbol position
and interference value. Furthermore, the information about the symbol interval is shared
between the transmitter and legitimate receivers. The legitimate receivers can remove
the interference and detect the transmitted symbols. However, the eavesdropper cannot
execute the interference cancellation operation. Furthermore, the eavesdropper cannot even
find the position of each symbol. In this paper, we introduce three transmission schemes.
The first scheme is symbol-wise coded FTN signaling. In this scheme, the symbol interval
values are randomly generated. The number of symbol interval values is equal to the frame
length of the transmitted signal, and the generated symbol interval is allocated to each
symbol. The second method is block-wise coded FTN signaling. Block-wise coded FTN
signaling divides a transmission frame into symbol blocks of identical length, and different
symbol intervals are assigned to the respective symbol blocks. Symbols in the same block
have an identical symbol interval. The third method is variable-length block-wise coded
FTN signaling. The third scheme adjusts the block length according to the symbol interval
of the block. In blocks with short symbol intervals, interference values are high due to the
large overlapping area between adjacent symbols. Therefore, the third method assigns
short block lengths to blocks with short symbol intervals and long block lengths to blocks
with long symbol intervals.

For performance evaluation, the digital video broadcasting–satellite–second gener-
ation extensions (DVB-S2X) system [31] is considered. To improve the DVB-S2X system,
there have been efforts to apply an FTN signaling scheme to the DVB-S2X system [32–34].
Therefore, the proposed technique is applied to the DVB-S2X system, and a performance
evaluation of the designed system is carried out.
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The contributions of this study are summarized as follows:
Introduction of a novel physical layer security technique: a novel security method is

proposed that exploits the non-orthogonality of Faster-than-Nyquist (FTN) signals with
variable symbol intervals to enable secure communication without relying on artificial noise.

Development of coded FTN signaling schemes: three innovative schemes (symbol-
wise coded FTN signals, block-wise coded FTN signals, and variable-length block-wise
coded FTN signals) are introduced to balance complexity, bit error rate (BER) performance,
and interference management.

Application to real communication systems: the proposed technique is integrated
into a DVB-S2X system to demonstrate its practical applicability and effectiveness in a real
digital broadcasting environment.

The rest of this paper is organized as follows. Section 2 presents the FTN system model.
Section 3 describes the proposed physical layer security techniques based on coded FTN
signaling. Next, the DVB-S2X system operation with a coded FTN signaling and iterative
decoding and detection (IDD) scheme is described in Section 4. The simulation results are
reported in Section 5, followed by some concluding remarks in Section 6.

2. System Model with FTN Signaling

In FTN signaling, a transmission signal can be described as follows:

z(t) = ∑
k

wk · f (t − kτ T) (1)

where f(t) is a baseband transmit pulse, whose bandwidth is (1+ α)/(2T) for a roll-off factor α;
wk is the k-th transmit symbol, which is one of M-QAM symbols c = [c(1), · · · , c(m), · · · , c(M)];
and τ is the FTN factor which controls the symbol interval. τT is the symbol interval (0 < τ ≤ 1);
the symbol interval τT is shorter than or equal to the Nyquist pulse interval, T, and the pulses
are not orthogonal for τ < 1. In the case of τ = 1, Equation (1) becomes the conventional
Nyquist signaling. In addition, f(t) has the unit energy,

∫∞
−∞| f(t)|

2dt = 1. For a practical model, a
root-raised cosine (RRC) pulse is considered for f(t).

Under an additive noise channel, the matched filter output at the receiver can be
written as:

y(t) = r(t) ∗ f ∗(−t)
= (z(t) + n(t)) ∗ f ∗(−t)

=

(
∑
k

wk · f (t − kτT)

)
∗ f ∗(−t) + η(t) (2)

where η(t) is the filtered additive Gaussian noise.
Figure 1 describes the signal waveforms of general Nyquist signaling and FTN sig-

naling, respectively. In Figure 1a, since the general symbol time is adopted, the symbols
are transmitted and received without interference. However, in Figure 1b, since a faster
symbol time generates interference, in the detection of the k-th symbol wk, there are two
previous and following symbols as interferences, which are [wk−2, wk−1, wk+1, wk+2].

Pulse shaping filters are superimposed according to the reduced symbol interval, and
the number of interference symbols and the coefficients of the superimposed pulses are
determined according to the value of τ.
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3. Physical Layer Security Technology Based on Coded FTN Signaling

In coded FTN signaling, specific code values are allocated to the τ. Consequently, a
different τ value is applied to each symbol. In this Section, three coded FTN signaling meth-
ods are introduced, considering physical layer security, complexity of signal processing,
and bit error rate (BER) performance.

3.1. Symbol-Wise Coded FTN Signaling

In this symbol-wise coded FTN signaling, each symbol has a different symbol interval.
Let us consider the transmission frame with K symbols (i.e., K is the length of transmission
frame). In this system, the specific τ code can be written as follows:

τcode = [τ1 τ2 τ3 · · · τK−1 τK] (3)

where different values can be allocated to different τk such as τk = 0.8, τk+1 = 0.7. The
different τk value is allocated to each symbol as

zcode(t) = ∑
k

wk · f

(
t −

k

∑
m=0

τm · T

)
. (4)

The transmission signal concept comparison between general FTN signaling and
coded FTN signaling with τcode is described in Figure 2. Because general FTN signaling
uses an identical τ value for all the transmission symbols, the ISI value for all the symbols
can be easily calculated based on the one τ. By using the calculated ISI value, the interfer-
ence cancellation and signal detection processes are performed. However, in coded FTN
signaling, since a different τ value is used for each symbol, interference cancellation and
signal detection can be accomplished when the receiver has the overall τcode. Furthermore,
according to the combinations of different τ values, various τcode values can be generated
and utilized as shown in Figure 2.
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The information about the τcode is released to the legitimate receivers, and the legiti-
mate receivers then operate the interference cancellation and signal detection process based
on the released τcode.

3.2. Block-Wise Coded FTN Signaling

For the convenience of implementing the proposed coded FTN signaling, this subsec-
tion considers a block-wise coded FTN signaling method, where a block consists of some
transmission symbols. In this block-wise coded FTN signaling, the same τ value is assigned
to symbols in the same symbol block. The τcode of the block-wise coded FTN signaling is
described as follows:

τcode = [τblk1τblk2τblk3 · · · τblkL−1τblkL] (5)

where L is the number of symbol blocks, L = K/B; B is the number of symbols in a symbol
block; and τblkl is the l-th τ block, which can be written as

τblkl = [τlτlτl · · · τl︸ ︷︷ ︸
length: B

]. (6)

In Equation (6), the l-th τ block with a length of B has an identical τl. Since the
identical symbol time can be used for consecutive B symbols, the implementation efficiency
of the coded FTN signaling can be improved. However, in symbol blocks with low τ
values, all the B symbols have a short symbol time, and relatively high interference occurs
continuously in the symbol block. Therefore, performance degradation occurs in symbol
blocks with low τ values.

3.3. Variable-Length Block-Wise Coded FTN Signaling

This subsection considers the performance improvement method for the coded FTN
signaling. As mentioned above, in block-wise coded FTN signaling, the symbol block with
a low τ value degrades the overall system performance because of the continuously high
ISI. To solve this problem, this scheme adjusts the symbol block length according to the
τ value. To prevent high ISI being generated from a low τ value, this method assigns a
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short symbol block length to a symbol block with a low τ value. In the opposite case, a
long symbol block length is assigned.

In this paper, the symbol block length is selected as follows:

Bl = ⌊10 × τl⌋ (7)

where the Bl and τl are the block length and τ value for the l-th block, and ⌊∆⌋ is the largest
integer not exceeding ∆. Therefore, in the case of τl = 0.55, Bl = 5. Figure 3 shows the
conceptual diagrams of the block-wise coded FTN signaling and the variable-length block-
wise coded FTN signaling. In the case of block-wise coded FTN signaling, an identical
block length is assigned to all symbol blocks regardless of τ value; while in Figure 3b, a
different block length is assigned to each symbol block according to its τ value.
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Figure 4 shows a block/flow diagram of the proposed technique. The block/flow
diagram shows the end-to-end system design for the proposed methodology, highlighting
the coded FTN signaling scheme for physical layer security. The flow is divided into
the following key steps: The system starts with a channel encoder to prepare the input
data by adding error correction codes to ensure reliable transmission. The data are then
processed by an interleaver to rearrange the data sequence in order to increase the burst
error tolerance. Next, an M-ary mapper converts the encoded data into modulation symbols
such as QPSK or 16-QAM for efficient transmission. Then, an oversampler using the coded
FTN coefficient τ adjusts the symbol spacing to enable non-orthogonal signals. Here, the
oversampling interval for each symbol is adjusted according to the coded FTN τ value,
so that different τ values can be assigned to each symbol for the coded FTN. The signal
is then passed through a pulse-shaping filter which is root-raised cosine (RRC). Finally,
the signal is transmitted through the channel and is subject to noise and interference
during transmission. At the receiver side, the signal is first processed by a matched filter
(RRC) to extract the transmitted pulses. The filtered signal is downsampled using the
coded τ and aligned for further processing. Then, the interference canceller removes the
interference using the coded τ values shared by the legitimate transmitter and receiver.
The cleaned signal is demodulated by the M-ary demapper to convert the symbols back
into data bits. The bits are resequenced by the deinterleaver to restore the original order.
Finally, the channel decoder recovers the original data and corrects the errors that occurred
during transmission.
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4. DVB-S2X System Operation with Coded FTN Signaling and IDD

Figure 5 depicts the DVB-S2X system with the coded FTN signaling. The input data are
modulated through the encoder, interleaver and modulator. The modulated data symbols
are filtered by the FTN pulse-shaping filter, which uses the τcode for FTN signaling. The
received signal is filtered and down converted by the matched filter. For downsampling,
the symbol rate information τcode is required. For interference cancellation and signal
detection, the IDD scheme is considered. In the IDD scheme, to regenerate the transmitted
signal, an FTN filter is used, and the FTN filter requires information about the FTN symbol
rate. Therefore, for the sampling and interference cancellation, the τcode is used in the
receiver. In Figure 5, the gray dotted block represents IDD. As shown in the figure, the
signal decoded through the low-density parity check (LDPC) decoder is remodulated, and
FTN signaling is applied to regenerate the transmission signal. After that, the error value
between the regenerated FTN signal and the remodulated signal is calculated, and then
removed from the received signal iteratively.
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As shown in Equation (4), the transmitted physical layer security signal zcode is
received after additive noise, and filtered by the matched filter. After the log-likelihood ratio
(LLR) of the received signal is calculated, the deinterleaver and LDPC decoder are operated.
Then, the regeneration process of the decoded signal is executed. In the signal modulation
process of the transmitter, the decoded information is interleaved and modulated. The
coded FTN signal is regenerated by using the coded FTN, filtering with the τcode, as follows:

ŷ(t) =

(
∑
k

ŵk · f

(
t −

k

∑
m=0

τmT

))
∗ f ∗(−t) (8)
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where ŵk is the k-th remodulated symbol. The interference value sampled at k-th time is
calculated by using the regenerated coded FTN signal ŷk and the remodulated signal ŵk,
as follows:

ek = ŷk − ŵk (9)

In the second iterative process, the interference value ek is removed from the received
signal as follows:

∼
yk = yk − ek (10)

where yk is the received signal sampled at k-th time. After the interference cancellation, the
identical demodulation/ decoding and interference calculation processes are operated.

The IDD process is repeated up to a predetermined repetition number in consideration
of the detection performance and the processing time.

5. Experimental Design and Performance Evaluation
5.1. Experimental Design

This subsection covers the experimental design to evaluate the performance of the
proposed coded FTN signal. The simulations were performed using a DVB-S2X system
with the following configuration:

LDPC code parameters: an LDPC code length of 64,800 bits with a code rate of 2/3
was used.

Baseband modulation: two modulation schemes were considered, namely, Quadrature
Phase Shift Keying (QPSK) and 16-Quadrature Amplitude Modulation (16-QAM).

Pulse shaping: Root Raised Cosine (RRC) pulses with a roll-off factor of 0.35 were
applied, as specified in the DVB-S2X standard [31].

Symbol interval parameter (τcode): for all three of the coded FTN signal techniques,
the τ values were randomly generated in the range of 0.5 to 1, with an interval of 0.05.

The average τ value (E[τcode]) in the symbol-wise coded FTN signal was set to
0.75. Block lengths (B) of 3, 5, and 10 symbols were evaluated in the block-wise coded
FTN signal, and the average τ value was also set to 0.75.

For the variable-length block-wise coded FTN signal, the block length was dynamically
determined based on the τ value using Equation (7).

Comparison Benchmarks: the performance was compared with a regular FTN signal
system [31] with a fixed τ value of 0.75. The performance of a conventional DVB-S2X
system without an FTN signal was also included for reference.

Eavesdropping Mode: to evaluate the security, an eavesdropping mode was simulated,
where the receiver attempted to decode the coded FTN signal using a regular FTN receiver
with τ = 0.75.

Table 1 describes the parameters for the experimental design. The parameters this
paper chose are the commonly used parameters in DVB-S2X systems.

Table 1. Parameters for the experimental design.

Parameter Value/Description

LDPC Code Length 64,800 bits
LDPC Code Rate 2/3

Baseband Modulation QPSK, 16-QAM
Pulse Shape RRC with 0.35 roll-off factor

τ Range 0.5 to 1 (0.05 intervals)
Conventional DVB-S2X Without FTN signaling

Eavesdropper Configuration General FTN receiver with τ = 0.75

5.2. Performance Evaluation

Figures 6 and 7 describe the performance of the DVB-S2X system with symbol-wise and
block-wise coded FTN signaling schemes, according to the baseband modulation. Figure 6
shows the BER performances of the DVB-S2X systems with 16-QAM. In Figure 6, the
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performance of the symbol-wise coded FTN signaling is about 0.3–0.6 dB better than that of
the block-wise coded FTN signaling at BER = 10−5. However, in the case of the symbol-wise
coded FTN signaling, since the symbol interval should be changed at every symbol time,
the implementation complexity becomes high. For the block-wise coded FTN signaling,
because the symbol interval is fixed for the block length, a simpler implementation is
possible. However, in the case of symbol blocks with a low τblkl value, high interference
causes performance degradation. Therefore, in the case of B = 10, although the symbol
interval can be fixed for ten symbols, the performance is the worst, because of high ISI. In the
block-wise coded FTN signaling, since the symbols with low τ values can be successively
transmitted, the performance degradation value is higher. However, both symbol-wise
coded FTN signaling and block-wise coded FTN signaling show smooth operation without
serious problems such as error floor, excessive performance degradation, and so on. From
the simulation results, it can be shown that the eavesdropper mode cannot demodulate
and decode the signal transmitted from the coded FTN signaling system. In Figure 7,
the BER performances of QPSK modulation are described. Compared with 16-QAM, the
performance degradation of block-wise coded FTN signaling is lower, since the QPSK is
more reliable from an ISI standpoint than the 16-QAM. However, the BER performance
tendency is similar in that the longer the block length, the worse the BER performance.
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Figures 8 and 9 depict the BER performance of the variable-length block-wise coded
FTN signaling. For a performance comparison, the DVB-S2 system with a general FTN
signaling of τ = 0.75 is inserted. Furthermore, the performance of the conventional DVB-S2
without FTN signaling is also added. Figure 8 shows the BER performance of 16-QAM.
The performance of general FTN signaling with τ = 0.75 is about 0.7 dB worse than that of
the conventional DVB-S2X system at BER = 10−5. However, in the ideal case, an efficiency
gain of more than 30% can be achieved using FTN signaling with τ = 0.75 compared to
regular Nyquist signaling. For the coded FTN signaling, compared to regular FTN signaling
with τ = 0.75, the performance degradation of the symbol-wise coded FTN signaling is
about 0.6 dB, while the performance degradation of the variable-length block-wise coded
FTN signaling is about 0.4 dB. Since the variable-length block-wise coded FTN signaling
adjusts the block length according to the τ value, the generation probability of a low τ
value is lower than that of the symbol-wise coded FTN signaling. In the variable-length
block-wise coded FTN signaling, the average τ value of the transmission signaling is
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about 0.785 (i.e., E[τ] = 0.785). Therefore, by using variable-length block-wise coded
FTN signaling, the performance of the coded FTN signaling is improved. Figure 9 shows
the BER performances of the QPSK modulation. The performance tendency of the QPSK
modulation is similar to that of the 16-QAM, shown in Figure 9. However, for the 16-QAM,
the performance of the symbol-wise coded FTN system is about 1.6 dB worse than the
typical 16-QAM performance, and for the QPSK, the performance of the symbol-wise
coded FTN is only about 0.8 dB worse than the typical QPSK performance. Therefore, the
performance degradation values of the QPSK with coded FTN signaling are lower than
that of the 16-QAM.
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with QPSK.

In addition to the BER vs. SNR analysis, the Peak-to-Average Power Ratio (PAPR) was
evaluated for different τ values in the FTN system with the 16-QAM modulation. Figure 10
illustrates the PAPR performance across various τ values (τ = 1, 0.875, 0.75, 0.625, 0.5).
The results indicate that as the τ value decreases, the PAPR increases due to enhanced ISI.
For τ = 1, which corresponds to the Nyquist signaling condition, the PAPR is minimal.
However, when τ is reduced to 0.5, a significant increase in PAPR is observed, highlighting
the trade-off between spectral efficiency and power efficiency in FTN signaling.
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The state-of-the-art method described in the referenced paper [21] evaluates perfor-
mance primarily through the secrecy outage probability (SOP) metric, while the proposed
technique in our manuscript is evaluated using the BER. This difference in performance
metrics makes a direct comparison challenging. However, it is noteworthy that the BER
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performance of our proposed technique remains highly stable, achieving exceptionally low
values as the SNR increases. In contrast, the secrecy outage probability of the state-of-the-
art method does not decrease significantly below 0.1, even with an increase in SNR. These
results indicate that our proposed technique demonstrates stable performance in terms of
reliability and robustness.

6. Conclusions

This paper proposed coded FTN signaling for physical layer security. To improve the
implementation efficiency and BER performance, three coded FTN signaling techniques
were proposed, and the BER performances of the three techniques were evaluated according
to the baseband modulation schemes. From the simulation results, the proposed scheme
can accomplish physical layer security without significant degradation and problems.
In addition, it was checked that the eavesdropper could not detect and demodulate the
transmitted signal with coded FTN signaling in all three of the proposed techniques.
Furthermore, because the performance evaluation of the proposed technique was executed
using a practical DVB-S2X system, the reliable operation of the proposed technique was
efficiently shown. Unlike existing physical layer security techniques with artificial noise
generation, since the proposed technique uses non-orthogonality of FTN signaling, a novel
methodology is suggested with the proposed technique.
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