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Abstract: The technical complexity of organizing energy systems’ operation has recently been com-
pounded by the complexity of reconciling the interests of individual entities involved in interactions.
This study proposes a possible solution to the problem of modeling their relationships within a large
system. Our solution takes into account multiple levels of interactions, imperfect information, and
conflicting interests. We present a mathematical statement of the problem of optimal interactions
between the centralized system and prosumers in the integrated energy system (IES) with due con-
sideration of the layered architecture of the IES. The paper also contributes a model for arranging the
interactions between centralized and distributed energy sources for cases when IES prosumers form
coalitions. The implementation of this model is based on multi-agent techniques and cooperative
game theory tools. In order to arrive at a rational arrangement of the interactions of prosumers in the
IES, the model implements different approaches to the allocation of the coalition’s total payoff (the
Shapley value, Modiclus, PreNucleolus solution concepts). Furthermore, we propose a criterion for
deciding on the “best” imputation. We contribute a multi-agent system that implements the proposed
model and use a test IES setup to validate the model by simulations. The results of the simulations
ensure optimal interactions between the entities involved in the energy supply process within the IES
and driven by their own interests. The results also elucidate the conditions that make it feasible for
prosumers to form coalitions.

Keywords: cooperative game theory; multi-agent approach; distributed generation; prosumer;
integrated energy system

MSC: 91B74; 91A12; 93A16; 90C90

1. Introduction

Recent energy trends clearly gravitate towards energy transition, or the transformation
of energy systems under the banner of the three Ds: decarbonization, digitalization, and
decentralization [1]. Decentralization of energy systems, backed by modern technology
(highly efficient energy sources of the latest generations, energy-saving automatic control
systems, highly sensitive state-of-the-art devices, and sensors for tracking system param-
eters, etc.), will allow for meeting the needs of different levels of consumers, including
prosumers, who will be able to choose the most efficient and cost-effective energy sources
for themselves. This, in turn, will ensure better quality energy supply, which takes into
account the interests of all entities involved in the energy system. In this regard, the
expansion of centralized energy supply in developed countries is accompanied by the
increasingly established trend of large-scale development of distributed energy generation
systems [2,3], which allows prosumers to become involved in their energy supply, including
by supplying energy back to the system. Consequently, competition between centralized
and decentralized energy supply, on the one hand, and between large-scale and distributed
power generation, on the other hand, becomes much tighter. This calls for the use of new
approaches to forming energy systems and managing centralized and distributed energy
sources so as to find the optimal balance between them.
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The development of new technologies and the adoption of innovative energy equip-
ment has a significant impact on the operation of energy infrastructures, including power
supply, heating, cooling, and gas supply systems. These systems are becoming all the
more intertwined, both at the technological and organizational levels. Conversion of one
type of energy into another under normal operation, and emergencies in power, heat-
ing, cooling, and gas supply systems broadens their capabilities, enhances reliability and
flexibility of control, and ensures a high level of comfort in residential, public, and indus-
trial buildings, the efficiency of energy supply systems, and the mitigation of negative
environmental impacts.

Energy supply is structured as a holistic system, which has made convex optimization
models the staple tool for its modeling and optimization. This is due to a number of
reasons: convex optimization models find the global optimum, have efficient computational
algorithms developed for them, and produce solutions which are easy to interpret in
economic terms [4]. In most cases, the problem is stated as a problem of maximizing the
total payoff of all players, subject to constraints that include balancing constraints for each
node in the system, generation constraints for energy sources, and capacity constraints for
network sections.

New modeling methods that rely on game theory approaches undergo rapid devel-
opment progress to address the increasing complexity of interactions in modern power
supply systems, including conflicting interests and imperfect information about the state of
the entire system available to each participant [5,6]. Both non-cooperative game theory and
cooperative game theory can be used to that end. This paper presents one such complex
system of interactions within an integrated energy system (IES).

The first problem is to model the interactions between the centralized part of the
system and the consumers that run their own generation facilities. In particular, it is
possible to state such a problem in terms of a Stackelberg game [7,8] by assigning the roles
of the leader and follower to the centralized system (CS) and consumers, or to use an
even more advanced model with multiple leaders [9]. Nevertheless, it is not possible to
formulate the Stackelberg model [10] in its standard form due to imperfect information.
For example, the CS may not have complete and detailed information about the distributed
generation of prosumers. One conceivable way out is to search for equilibrium iteratively
so that the decision-maker at each step has enough information to choose a strategy of
their behavior.

The second problem that we cover in this study is how to model interactions between
prosumers capable of forming coalitions [11]. To this end, we leverage the tools of coop-
erative game theory [12]. Having a shared payoff (in the case of consumers, it may be a
reduction in energy costs) implies its distribution among the players. The solution must
have a number of properties to attract consumers to join the coalition [13]. Furthermore,
the CS may also be interested in a coalition.

We choose the multi-agent approach to formalize complex interaction within energy
systems, which include a number of entities driven by their own goals and interests as
part of the energy supply process. The multi-agent approach is a branch of artificial
intelligence that uses systems consisting of many interacting agents to solve complex
problems. The approach has been successfully applied by researchers around the world
to study engineering systems and search for solutions in systems with a large number of
individual entities acting on their own [14,15]. It enables proper and detailed studies of the
mechanisms of interaction and coordination of individual entities in the IES [16].

The conventional methods search for the best solution to a problem following a well-
defined algorithm, all resources are pre-specified and remain fixed in the course of solving
the problem. Moreover, the dimensionality of the problem is limited to avoid slowing
down the solution process. Multi-agent techniques seek to obtain a solution that results
from interactions between multiple independent purpose-driven agents [17,18]. To that
end, they rely on a distributed approach by breaking down a complex problem into a set
of problems of smaller dimensionality. This study also relies on the above technique to
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solve the problem stated above. Due to the fact that agents in the system are constantly
exchanging data and monitoring the states of facilities of the IES, it is possible to respond
quickly to various changes in the system and come up with decisions based on the actual
state of affairs. This provides ample opportunities to exercise the necessary control and
decision-making under imperfect information.

In this paper, we propose a model that implements the interaction between centralized
and distributed energy sources when prosumers form coalitions within a layered IES. This
study is a continuation of the authors’ research reported in [19]. It is important to consider
the CS as a public planner, guided by maximizing the public welfare, whereas prosumers
pursue their own interests, maximizing their own payoffs. The equilibrium under this
setting should correspond to the Nash equilibrium in the Stackelberg game. The presence
of constraints and imperfect information makes it impossible to compute the equilibrium
analytically, which is why we rely on multi-agent modeling to find the equilibrium solution.
The key contribution of this study is that it considers the possibility of consumers forming
a coalition and finds a general equilibrium informed by such a possibility. A major novelty
here is not only the calculation of the total payoff per se, but also the very model we propose
for the efficient allocation of the coalition’s payoff. Its basic principles are to choose the
allocation that is most fair in terms of contributions of players to the coalition and most
stable in terms of their incentives to leave the coalition. We consider the C-core, Shapley
value, PreNucleolus, Modiclus, and SM-core solution concepts. We test the model on IES
structures that makes coalitions of different numbers of consumers possible. We argue that
different solution concepts work best under different conditions.

The article is organized as follows. Section 2 provides a brief overview of the related
body of published research. We review research contributions that use game theory tools
to model interactions: non-cooperative games to describe the relationship between CS and
prosumers with their own generation, and cooperative games to describe opportunities
to form coalitions between consumers. The review also covers research on multi-agent
modeling. Section 3 deals with the mathematical statement of the problem. It is organized
into two parts. The first part describes the interaction between a centralized energy supply
system and consumers (Section 3.1). The subsection defines the objective functions of all
players and constraints. It also states the convex optimization problems that each player
involved in the interaction is to solve. Section 3.2 outlines the basic principles for solving
the multilevel problem stated in the previous subsection. Section 3.3 deals specifically with
the interaction between consumers, which is construed as a cooperative game. This is
where the principles of forming a coalition are defined, and the types of imputations of the
coalition’s payoff are chosen. We propose a model for selecting the best imputation. Next,
the model is tested. Section 4 outlines the basic principles of modeling the investigated
problem in a multi-agent system. Section 5 provides examples of energy system modeling.
It shows the efficacy of forming a coalition among consumers and its consequences. We
test different solution concepts as well as the principles of selecting the best one.

2. Literature Review

The complexity of modeling interactions between individual entities of energy systems
is due to their conflicting interests that manifest themselves as maximization of their own
gains. On the other hand, energy supply is a critical technology, and in this sense, large CSs
strive for the efficient organization of the industry and therefore the maximization of public
welfare. Such a perspective on the problem of interactions between CSs and consumers was
reported in Refs. [11,20,21], including the effect of the possible cooperation of consumers.
Ref. [21], in addition to the above, studied the case when a coalition of consumers could be
beneficial to CSs. In that case, the CS was willing to incentivize consumers to cooperate.

The issues of interaction and cooperation between consumers within a distributed
system have become the subject of a lively discussion after the publication of Ref. [22],
which considered the case of cooperation that led to disconnection from the centralized
power supply. The efficient organization of the industry should also take into account such
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possible effects. The study prioritized the application of cooperative game theory concepts
that are capable of revealing the stability and efficiency of cooperation as well as the market
power of the players [12]. Furthermore, these approaches take into account the gains from
forming a coalition as compared to non-cooperative behavior [23]. The outcome of the
cooperation is determined by the cooperative game solution chosen by the planner. The
published research on forming coalitions of consumers within distributed systems most
often reports the use of the Shapley value and related imputations [24] and, to a lesser
extent, the Nucleolus [25]. The other concepts are not considered.

We rely on the multi-agent approach to model the joint behavior of different entities in
the energy supply process in the IES. This approach enables the modelling of the behavior
of active subsystems in the IES and taking into account multiple decision-makers in such
systems when searching for trade-off solutions to organize the energy supply process. The
multi-agent approach has proven its efficacy in solving various problems in the energy
industry [26,27]. For example, Ref. [28] contributed a multi-agent system model for optimal
control of microgrids with RES. Electricity loads are served by distributed energy sources
in microgrids that run on energy resources of different types, and it is also possible to
supply electricity from the centralized power supply system, serving loads of different
categories. Ref. [29] reported a real-time autonomous energy management strategy for
multi-energy systems. The proposed control strategy made intelligent agents optimize
energy sales and their conversions to minimize daily costs. Ref. [30] used multi-agent
deep reinforcement learning to control a microgrid in a mixed cooperative and competitive
environment. Agents monitor wholesale energy prices, fluctuations in energy demand, and
renewable energy performance in order to manage the hybrid energy storage system to
minimize the cost of energy consumed and maximize the use of renewables.

Based on the literature review, we can conclude that the scope of the majority of
studies of IESs is mostly limited to individual systems or their local interactions, most often
considering small-scale energy systems with a limited amount of generating and network
equipment. As for coalition interactions within distributed energy supply systems, the
published research mainly covers the imputations derived from the Shapley value, which
does not always deliver the most efficient payoff allocation.

We have opted for a multi-agent approach to take into account the complex nature
of the behavior of energy system entities, which includes both public planner type be-
havior and the pursuit of only one’s own goals. Multi-agent interaction allows for the
implementation of direct and feedback communication between IES entities, which enables
each agent to use information about the other agents and adjust their decisions based on
the received data. Furthermore, we have embedded an additional unit into the overall
system to evaluate the performance of coalitions of prosumers and calculate their payoffs.
Our model offers a tool for determining the imputation of a coalition’s payoff, such that it
encourages individual consumers to join it.

3. Mathematical Problem Statement

The object of the study is IES, which integrates electricity, heating, cooling, and gas
supply systems that share an information environment backed by intelligent technology.
The IES is divided into the following levels:

- a centralized energy system with major energy sources and transmission systems,
- distributed energy systems having distributed energy sources and distribution net-

works, and
- energy consumption systems with consumers, including those with their own

energy sources.

The paper considers the creation of an energy–technological meta-system that inte-
grates electricity, heating, cooling, and gas systems. The systems inhabit a shared informa-
tion environment backed by intelligent technology, which is a promising way of designing
new generation energy systems [31].
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Modeling prosumers as part of the IES warrants a thorough analysis because they
have a significant impact on energy systems when adjusting their load profiles, and have
independent energy sources, which complicates the control and management of the over-
all energy systems. Proper interaction between prosumers and the CS is not yet well
established and calls for novel approaches and innovative models.

In this paper, the general model of interaction within IES is represented by several
models that implement the operation of systems of different levels. These models are then
embedded in the overall multi-agent system as behavioral strategies of agents of different
sizes and levels. This subsection presents two models: (1) a mathematical statement of the
problem that describes decision-making at the levels of the CS, prosumers, and coalitions
of prosumers, and (2) a model of interaction within coalitions that allows us to determine
the incentives for coalition formation and the allocation of the coalition’s payoff.

3.1. Mathematical Statement of the Problem of Interaction Between the CS and Consumers

The mathematical statement of the problem of finding the results of interactions
between the CS and prosumers consists of maximizing the public welfare function on the
part of the CS and maximizing the income (or minimizing the cost) by prosumers. The
CS acts as a public planner, and prosumers make use of their own sources of distributed
generation, including renewables. The problem is solved so as to minimize the cost of
energy supply to consumers along optimal routes, subject to technological constraints. The
given quantities are:

• electrical e, heat h, and gas g networks; GT = {e, h, g}, consisting of the set of sections
J ⊇ ⋃

j∈GT
Jj and their transmission capacity, where Je ⊇ ⋃

k∈SD
Jk,e are the sections of

the electrical network including power transmission lines (PTL) in the centralized
Jcs,e and distributed Jd,e network SD = {cs, d}; Jh ⊇ ⋃

k∈SD
Jk,h are the sections of the

heat network, including heat mains (HM) in the centralized Jcs,h and distributed Jd,h
networks; and Jg ⊇ ⋃

k∈SD
Jk,g are the sections of the gas network including gas mains

(GM) in the centralized Jcs,g and distributed Jd,g networks;
• energy sources I ⊇ ⋃

k∈SD

⋃
j∈GT

Ik,j, including sources of electricity Ik,e, heating Ik,h,

cooling Ik,c, and natural gas Ik,g;

• energy sources have constraints imposed on the amount of electricity Qi
k,e, heating

Qi
k,h, cooling Qi

k,c, and natural gas production Qi
k,g, i ∈ I, k ∈ SD, respectively;

• energy consumers D ⊇ Dcr ∪Dpr, which are made up of a set of ordinary consumers
Dcr ⊇ ⋃

j∈GT
Dcr,j, comprising electricity Dcr,e, heating Dcr,h, cooling Dcr,c, and gas

Dcr,g consumers, and a set of prosumers Dpr ⊇ ⋃
j∈GT

Dpr,j comprising electricity

Dpr,e, heating Dpr,h, cooling Dpr,c, and gas Dpr,g prosumers and having their own
distributed generation facilities. Demand for energy is specified in several ways: linear
dependencies of consumption on price or some predetermined consumption volumes
Qpr,j, Qcr,j, j ∈ GT.

3.1.1. Modeling Generation Facilities of the CS

The cost functions of centralized generation facilities and distributed generation
facilities run by prosumers have a similar functional form. TCi

k,j(Q), j ∈ GT, k ∈ SD, i ∈ I

is a cost function with non-decreasing marginal costs MCi
k,j(Q): for TCi

k,j(0) = 0, it is

increasing MCi
k,j(Q) ≥ 0, and convex

(
MCi

k,j(Q)
)′

≥ 0, MCi
k,j(Q) → ∞ given Q → ∞ .

Generation capacity constraints:

Qi
k,j≤ Qi

k,j ≤ Qi
k,j, j ∈ GT, k ∈ SD, i ∈ I. (1)
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The energy supply function for the CS depends on each generation facility, its costs
TCi

cs,j(Q), and it is a monotonically increasing function of SPi
cs,j
(

p0). The producer shapes
its supply function by maximizing the profit:

SPi
cs,j

(
p0

j

)
= ArgmaxQ

(
p0

j · Q − TCj(Q)
)

, j ∈ GT, i ∈ I. (2)

Problem (1) is a convex optimization problem. Optimal generation is determined by
the equation of the first order conditions of the problem (1), (2)

MCi
cs,j(Q) = p0

j , i f Q ∈
[

Qi
k,j, Qi

k,j

]
, j ∈ GT, i ∈ I. (3)

3.1.2. Modeling of Actions of Energy Consumers That Have No Generation of Their Own

The system has a network structure; the nodes of the system contain ordinary con-
sumers and prosumers with demand functions Qn

tr,j

(
pn

j

)
, where n ∈ [1, N] are the nodes

of the system, and pn
j is the energy prices at the nodes of the system, j ∈ GT, tr ∈ {cr, pr},

cr ∈ Dcr, pr ∈ Dpr. Demand functions are decreasing functions with the following

properties: Qn
tr,j

(
pn

j

)
→ 0 given pn

j → 0 .
To build the model, we estimate the consumers’ payoff (consumer’s utility), which

is formed on the basis of the inverse demand function pn
tr(Q) = Qn

tr,j
−1(Q). The utility

function is as follows:

Un
tr,j(Q) =

∫ Q
pn

tr,j(θ)dθ + γ, j ∈ GT, tr ∈ {cr, pr}, n ∈ [1, N].

In the above case, the utility function has properties common to the utility functions

used in microeconomics: its differentiable Un
tr,j(0) = 0, increasing MUn

tr,j =
(

Un
tr,j(Q)

)′
≥

0, concave
(

MUn
tr,j(Q)

)′
≤ 0, MUn

tr,j(Q) → ∞ given Q → ∞ , where MU(·) is the marginal
utility function. Utility functions can be of established conventional forms, e.g., quadratic,
or U(Q) = a + b · Q − c · Q2—such a function yields a linear demand function. We can use
the logarithmic relationship with the generated demand function as an inversely propor-
tional function, etc. Our example is limited to the quadratic case or a fixed value of demand
Q.

The payoff of the consumer who does not have its own generation sources:

vn
tr(Q

n
tr) = ∑

j∈GT

(
Un

tr,j

(
Qn

tr,j

)
− pn

j · Qn
tr,j

)
(4)

In the case of the ordinary consumer cr, the consumption equals the demand known
to the CS Qn

cr,j = Qn
cr,j. The main objective of the consumer is to maximize its own payoff

given the energy prices at the node where the consumer is located. This will determine its
demand:

Q̆n
tr = Argmaxvn

tr(Q
n
tr), (5)

Qn
tr,j ≤ Qn

tr,j ≤ Qn
tr,j, j ∈ GT, n ∈ [1, N], tr ∈ {cr, pr}. (6)

Problems (5) and (6) are convex optimization problems. The optimal consumption is
determined by the equation of the first order conditions (4) and (5):

MUn
tr,j

(
Qn

tr,j

)
= pn

j , j ∈ GT, n ∈ [1, N], tr ∈ {cr, pr}. (7)

3.1.3. Modeling Prosumer Actions

The behavioral strategy of the individual prosumer pr is determined by the utility of
energy consumption Qn

pr,j + qpr,j, j ∈ GT, n ∈ [1, N], pr ∈ Dpr, where qpr,j is the amount of
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generation of energy of the type j at its own generation equipment, and Qn
pr,j is the demand

for the energy supplied by the CS.
Marginal costs of sources located at prosumer nodes are assumed to have a single

level TCpr,j(q) = c f
pr,j + cpr,j · q, where c f

pr,j are fixed costs. Prosumer’s payoff function

vn
pr(p, Q) = ∑

j∈GT

(
Un

pr,j

(
Qn

pr,j + qpr,j

)
− pn

j · Qn
pr,j − TCpr,j

(
qpr,j

))
, n ∈ [1, N], pr ∈ Dpr (8)

The behavioral strategy will be determined from the modified problems (5) and (6),
where vn

tr(Q
n
tr) are determined by (8) with known prices pn

j offered by the CS and an
additional constraint on its own generation:

qpr,j < qpr,j, j ∈ GT, ∀pr ∈ Dpr. (9)

3.1.4. Modeling the Actions of a Coalition of Prosumers and Ordinary Consumers

Consider a subsystem with distributed generation where there are the set consumers T.
Each consumer i ∈ T (ordinary consumer cr ∈ T or prosumer pr ∈ T) within a distributed
subsystem can act by:

1. pursuing their own interests {i} ∈ T, obtaining the payoff (4) in the case of the
ordinary consumer cr or (8) in the case of the prosumer pr and forming its strategy in
line with the problems (5), (6) or (5), (6), (9), respectively;

2. joining a coalition with other participants Sk ⊆ T. Coalitions can be of different
sizes S = (S1, . . . , SK) ⊆ T, where SK∩Sl = ∅ given k ̸= l,

⋃
∀k Sk = T. In a coalition,

consumers can exchange energy within a distributed subsystem.

The payoff of the coalition is formed based on individual players’ payoff functions.

vn
Sk
(p, Q) = ∑

j∈GT

(
∑

cr,pr∈Sk

(
Un

cr,j

(
Qn

cr,j

)
+ Un

pr,j

(
Qn

pr,j + qpr,j

))
− pn

j · Qn
Sk ,j − ∑

pr∈Sk

TCpr,j
(
qpr,j

))
, (10)

where Qn
Sk ,j is the amount of energy that the coalition buys from the CS at the price pn

j at
the node n ∈ [1, N]. The power balance for the coalition is as follows:

Qn
Sk ,j = ∑tr∈Sk

Qn
tr,j. (11)

The coalition solves the problems (5), (6), (9), and (11), with the joint payoff function
(10). Each player solves an additional problem, which is to ensure that by joining the
coalition Sk, it gains more than if it were to act on its own. This problem is modeled with
the use of cooperative game theory [12,32] and will be discussed in Section 3.

3.1.5. Transportation System Modeling

The IES transportation system consists of the following two parts: (1) a set of network
sections of the centralized part of the energy system; (2) a set of network sections of the
decentralized part of the power system. The model determines its availability solely by the
network configuration, i.e., (dis)connectedness of certain nodes, and transmission losses.
Transportation losses are modeled as the iceberg transport costs: part of the energy is lost
during transportation, i.e., more energy must be produced than consumed. Real-world
energy systems have non-linear transportation losses. Our model simplifies this aspect,
which is carried out in order to arrive at a problem statement that lends itself to convex
optimization methods. We denote this coefficient of losses by τ ≥ 1. When formalizing the
model, we assume that generation facilities of a certain type of energy j ∈ GT are located
at a single node (node 0), and consumers with demand Qn

tr,j(pn), n ∈ [1, N] are located at
several nodes.
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If the amount of energy Q is to be delivered to some node n, then the generation node
0 must produce τQ. The amount is Q0n

j , j ∈ GT, where the part of power grid 0n ∈ J of
energy will be transferred to node n from the generation node 0 as long as the following
property holds for the ratio of prices at the production and consumption nodes:

pn
j

p0
j
≥ τn

j , j ∈ GT, n ∈ [1, N]. (12)

The cost of transferring energy of type j from node 0 to node n is described by the
function TRn

j

(
Q0n

j , τn
j

)
, j ∈ GT, where Q0n

j is the amount of energy transferred. The path
0n may include intermediate sections of the transportation system ml, where m and l are
nodes of the network m, l ∈ [0, N]. Each section has constraints on energy transfer:

Qml
j ≤ Qml

j ≤ Qml
j , j ∈ GT, m, l ∈ [0, N], ml ∈ I. (13)

The energy transportation system cost function is an increasing, convex, and differ-
entiable function. The main objective of the transportation system is to minimize the cost
of energy transfer subject to the constraint (12) and transmission capacity (13). It is also a
convex optimization problem whose solution satisfies the conditions:

pn
j > τn

j · p0
j and Q0n

j = Q
n

tr,j
, j ∈ GT, 0n ∈ J. (14)

or
pn = τn

j · p0 and Q0n
j ≥ Q

n

tr,j
, j ∈ GT, 0n ∈ J. (15)

3.1.6. The Main Objective of the CS Is to Maximize Public Welfare

Since energy supply to consumers is a critical technology, the CS of energy supply
is regulated by the government and solves a public planner’s problem: the problem
of maximizing public welfare while balancing supply and demand at the nodes of the
system. Its solution will determine the prices at energy generation nodes and prices at the
purchase nodes. The welfare function W shows the difference between the total utility of
consumption and the total cost of energy production, storage, and delivery, taking into
account the capacity of the transmission lines.

The problem that the CS solves is the maximizing of public welfare W(p, Q):

W(p, Q) = ∑
j∈GT

(
∑

n∈N

(
∑
tr

Un
tr,j

(
Qn

tr,j

)
− pn

j · Qn
tr,j

)
+ ∑

i∈I

(
p0

j · Qi
j − TCi

j

(
Qi

j

))
− ∑

n∈N
∑

0n∈J
TRn

j

(
Q0n

j , τn
j

))
→ max,

Q,p0,pn
(16)

Given the energy balance and transportation losses (demand equals supply),

∑
n∈N

∑
tr

(
τn

j

)−1
· Qn

tr,j − ∑
i∈I

Qi
j = 0, j ∈ GT. (17)

where Qi
j is the amount of energy produced at the generation facility i ∈ I, and Qn

tr,j is the
demand at node n. This takes into account the energy balance in the transportation system:

∑
i∈I

Qi
j − ∑

n∈N
Q0n

j = 0, j ∈ GT. (18)

Furthermore, it can be shown that ∑I ∑N pn
j · Qn

tr,j = ∑I p0
j · Qi

j
by utilizing (12)

and (18).
In addition to the balance Equations (16) and (17), we take into account the constraints

on the generation of different types of energy (1), constraints on demand (6), constraints on
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flows over the transportation system (12), (13), and conditions for converting one type of
energy to another:

Ql = Qmδk
lm, l, m ∈ GT, k ∈ I, δk

lm ≥ 0, (19)

where δn
lm is the coefficient of conversion of one type of energy into another, which depends

on the type of the power generation system used for energy conversion. The efficiency of
the conversion is evaluated as part of solving the problem.

The problems (16)–(19), (1), (6), (12), and (13) are convex optimization problems and
their solutions correspond to the market equilibrium given by relations (3), (7), (14), (15).
The type of equilibrium follows from the general welfare theorem for a market under
perfect competition [33] and its derivation is based on the use of Lagrange’s theorem for
convex optimization problems [34].

The network we consider in the example is organized in a more complex way. The
balance equations for all types of energy are specified for each node in the system and
the prices at the nodes are determined on the basis of Lagrange multipliers on equality
constraints of type (17) specified for each node [34].

The solution determines generation (sales) and purchase volumes, as well as nodal
prices, taking into account transportation losses and transmission and generation con-
straints. The problem is solved by the CS agent, given the known demand on the part of
consumers. The resulting prices are price signals to consumers, in that they determine their
subsequent steps in generating demand and connecting their own sources.

3.2. Interactions Between the CS and Prosumers

When we deal with a system that includes prosumers, the problem statement changes
so as to accommodate the behavioral strategies of individual consumers (8) or coalitions of
consumers (10) driven by the goal of maximizing their payoffs. In this case, the payoff is
the consumer’s surplus and profits generated by their own energy production.

This is a bilevel hierarchical setting. At the upper level, the prosumers maximize their
payoff, and at the lower level, the CS solves the problem of maximizing public welfare
given the actions of the upper-level player. Ordinary consumers who do not enter coalitions
are not strategic players; their demand is predetermined by the payoff (demand) function
(4) and is known to the CS, and their payoff is accounted for in the public welfare function,
which is maximized by the CS.

Given perfect information, the solution to a bilevel Stackelberg game [35] would be
to find a Nash equilibrium. We consider a case of imperfect information: the CS cannot
have detailed information about distributed energy generation as well as the specifics of
interactions within a coalition. Therefore, we use an iterative approach to solve real-world
problems and the approach implements the best response model. Game dynamics models
are a well-established alternative to static problems with perfect information. At each step,
a player (the CS, a prosumer, or coalition of consumers) maximizes its own payoff under
the assumption that the other players do not change their strategies from the previous step.

Referring to game timing, the CS, guided by the initial information on energy con-
sumption, solves problems (16)–(19), (1), (6), (12), and (13), sets nodal energy prices per unit
on the basis of dual variables of balance constraints, and announces the price information
to the consumers located at the corresponding nodes. The consumers then respond to the
provided price information by changing their energy demand to maximize their payoff,
solving problems (5) and (6) with functions (8) and constraints (9), in the case of no coali-
tion, and with functions (10) and constraints (9) and (11) in the case where they do form a
coalition. In all cases, the solution is the best response to the actions of the other entities.
The stopping criterion is the crossing of a certain threshold of fluctuations in demand and
nodal prices between consecutive iterations.

It should be noted that the uniqueness of the Nash equilibrium is not essential to
solving the problem of finding an equilibrium. We argue that the energy system can
adopt one alternative set of optimized outcomes: energy price and consumption that
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can maximize the gains of the energy system, consisting of the CS and consumers, while
satisfying the respective constraints.

3.3. Mathematical Statement of the Problem of Interactions Within a Coalition of Consumers

The second key part of the described system is the model of interactions within a
coalition of consumers and the choices we make with respect to its configuration, payoffs,
and imputation. This section provides a concise overview of concepts from cooperative
game theory that we used to describe the principles of consumer interactions within
a coalition.

The goal is for each participant to gain more by joining the coalition Sk than if it
were to act on its own. (T, S, η) is a coalition game in its characteristic form [21,36] with
coalitions Sk, which are partitions of the grand coalition T, and have the characteristic
function of payoffs η based on the absolute values of consumers’ payoffs (4), (8), or (10).
Let us define coalition members i ∈ Sk, k = 1, K, where K is the number of coalitions; then,
the characteristic function of the game payoff is (T, S, η):

η(Sk) =
vSk − ∑i∈Sk

vtr,i

vT − ∑i∈T vtr,i
, tr ∈ (cr, pr), k = 1, K. (20)

The payoff of a coalition is normalized relative to the sum of the payoffs of the members
available to it, without joining the coalition, and the payoff of the grand coalition. Thus,
η(Sk) ∈ [0, 1]. Below we provide the definitions needed to formalize the solutions of a
cooperative game.

Definition 1 [12]. The set of feasible payoff vectors in the game (T, S, η), as the set:

X(T, η) =
{

x ∈ RT : ∑i∈T xi ≤ η(T)
}

Definition 2 [12]. The set of Pareto-efficient payoffs in the game (T, S, η) is the set:

X0(T, η) =
{

x ∈ RT : ∑i∈T xi = η(T)
}

Definition 3 [12]. The set of imputations in the game (T, S, η) is the set of payoffs satisfying the
property of individual rationality:

I(T, η) =
{

x ∈ RT : xi ≥ η({i}), i ∈ Sk, k = 1, K.
}

Definition 4 [12]. The core of a game (T, S, η), denoted as C(T, η), is defined by:

C(T, η) =
{

x ∈ X(T, η) : ∑i∈Sk
xi ≥ η(Sk) f or Sk ⊆ T, k = 1, K

}
The non-emptiness of the core confirms the players’ interest in forming a coalition. At

the same time, there is the problem of choosing a specific solution belonging to the C-core,
and in the case that it is empty, the problem of choosing a solution among the set of feasible
solutions. There are several solution concepts in cooperative game theory [12,32,36,37].
Each of the solutions is defined differently depending on how one construes efficiency,
rationality, and fairness in the allocation of the total payoff.

3.3.1. Definitions of Possible Solutions to a Cooperative Game

This study uses the following solution concepts: the PreNucleolus, Modiclus, and
Shapley value. The following definitions are needed to formalize point-valued solutions
(imputations).
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Definition 5 [12]. A dual game to the game (T, S, η) is the game (T, S, η∗), defined by:

η∗(Sk) = η(T)− η(T\Sk) f or every Sk ⊆ T.

Definition 6 [12]. The excess of the cooperative game (T, S, η) of any coalition Sk ⊆ T for any
x ∈ X0(T, η), is:

e(x, η, Sk) = η(Sk)− ∑i∈Sk
xi. (21)

It is a measure of the dissatisfaction of the coalition Sk members with the payoff η(Sk).

Definition 7 [12]. The excess of the dual game (T, S, η∗) of any coalition Sk ⊆ T is e(x, η∗, Sk).
The excess of the dual game characterizes the veto power of the coalition.

Definition 8 [12]. The excess of the sum for the game (T, S, η) and its dual game (T, S, η∗) is
defined as:

e(x, η, Sk) =
1
2
(e(x, η, Sk) + e(x, η∗, Sk)).

In what follows, we define the concepts of coalition payoff allocations considered in
this paper: the PreNucleolus, Modiclus, and Shapley value.

Definition 9 [12,38]. The PreNucleolus of the game (T, S, η) is the set of payoffs x ∈ X0(T, η)
such that:

θ(e(y, η, Sk)) ≥lex θ(e(x, η, Sk)), ∀y ∈ X0(T, η).

where θ(z) =
(

θ1(z), ..., θd(z)
)

be the vector in Rd, the Euclidean space of dimension d, whose
components are the numbers (hi(x))i∈D arranged in non-increasing order, that is,

θs(z) = max
Sk⊑T, |Sk |=s

min
i∈Sk

(hi(z)), f or all s = 1, . . . , d.

Let ≥lex denote the lexicographical ordering.

Definition 10 [39]. The modified Nucleolus (Modiclus, or SM-core) of the game (T, S, η) is the set
of vectors x ∈ X0(T, η) such that:

θ(e(y, η, Sk)) ≥lex θ(e(x, η, Sk)), ∀y ∈ X0(T, η).

Definition 11 [40]. The Shapley value for the payoff allocation η(T) of the game (T, S, η) for
Sk ⊆ T is the vector whose entries are:

φi = ∑ Sk∈T
(k − 1)!(t − k)!

t!
(η(Sk)− η(Sk\{i})), i ∈ T, k = |Sk|, t = |T|

where |Sk| is the power of the coalition Sk.

3.3.2. Properties of Cooperative Games

In order to apply solution concepts for cooperative games such as the PreNucleolus
and Modiclus, a cooperative game must exhibit certain properties. This paragraph lists
the properties of cooperative games that guarantee the existence of the core, and it also
states the theorems that underpin our choice of solution concepts for the investigated
practical problem.
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Definition 12 [12]. A game (T, S, η) is superadditive if Sk, Sj ⊆ N, Sk ∩ Sj = ∅:

η
(
Sk ∪ Sj

)
≤ η(Sk) + η

(
Sj
)
, k, j = 1, K.

Definition 13 [41]. A game (T, S, η) is balanced if there is a mapping δ : 2T\{∅} → R+ ,
∑Sk∈2T\{∅},k=1,K δ(Sk) = 1 such that:

∑
Sk∈2T\{∅},k=1,K

δ(Sk)η(Sk) ≤η(T). (22)

Definition 14 [12]. The game is convex if:

η
(
Sk ∪ Sj

)
− η

(
Sk ∩ Sj

)
≤ η(Sk) + η

(
Sj
)
, k, j = 1, K. (23)

Convexity is a relaxed requirement for superadditivity.
The following theorems define properties of cooperative games in which there exists

the core. This also includes the theorem stipulating that the PreNucleolus and Modiclus
are point-valued.

Theorem 1 (The Bondareva–Shapley Theorem) [36]. The core of the game (T, S, η) is not empty
if and only if the game is a balanced game.

The balance is, in general, quite difficult to check for, which warrants construction of
sufficient conditions for non-emptiness of the core to define classes of games for which the
C-core is guaranteed to be non-empty. Here, we will rely on the property of convex games,
which was formulated in [12]:

Property [12]. A convex game is totally balanced.

It follows that if the game is convex, then the core is non-empty. Let us state the
theorems on point-valued PreNucleolus and Modiclus solutions.

The existence and uniqueness of the PreNucleolus follows from Schmeidler’s theorem,
although he considered the set of individually rational vectors I(T, η).

Theorem 2 [38]. The PreNucleolus consists of a unique point.

A similar theorem holds true for the Modiclus.

Theorem 3 [39]. The Modiclus consists of a unique point.

Thus, after a cooperative game is formed, we can evaluate its properties and determine
whether a coalition will be formed and whether the cooperative game is solvable. To that
end, several properties need to be checked. In our modeling, we start with the easier task
of checking for the convexity condition of a cooperative game. If it is satisfied, then we
can compute solutions to the cooperative game (allocations). If the game is not convex,
then we proceed to check for the balance of the game, which guarantees the existence of
the core, and hence the possibility of computing the above point-valued solutions: the
PreNucleolus, Modiclus, and Shapley value. In the examples considered below, the games
prove non-convex, but at the same time are monotonous.

3.3.3. Criteria for Selecting the Best Solution to a Cooperative Game

In order to select a single solution, i.e., a payoff allocation between players, we need to
introduce selection criteria. It is impossible to arrive at a solution that is both fair in the
sense of each player’s contributions and stable in the sense of providing no incentive to
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split off while accounting for players’ veto power. Ref. [42] discussed several criteria that
can be used to determine the “quality” of the obtained solution. We have developed the
following system of criteria to choose a solution from the set:

Satisfaction index: The first “solution quality” criterion is based on the definition of
the excess (20). Excess shows the benefits for players acting as part of a coalition, compared
to their independent operation, and represents the amount of cost savings (payoff) that
the coalition Sk can realize by cooperating in accordance with imputation x. The larger the
value e(x, η, Sk), the greater the amount of cost savings for the coalition S players. Moreover,
the larger the payoff available to each player, the higher the satisfaction of the members
that are parties to the imputation x.

w1 = 1 − min
Sk

e(x, η, Sk) → min . (24)

It can be seen that the PreNucleolus and Nucleolus solutions will be the best for this
criterion. Moreover, the best imputation with respect to the criterion w1 will have the
minimum value of this coefficient.

Fairness index: This criterion shows the deviation of the resulting imputation x
from the allocation of the payoff when players are paid equal shares. Moreover, the best
imputation with respect to the criterion w1 will have the minimum value of this coefficient:

w2 = max
i∈T

xi − min
i∈T

xi → min, (25)

Attractiveness index: This criterion shows the ratio of the sum of the losses of the
player who left the coalition to what the coalition itself loses. The more a player loses, the
more attractive it is for the player to join/not to leave a coalition. It is designated as w3.
The smaller the value w3, the more attractive joining the coalition is for the player i.

w3 = max
i∈T

{
1 +

1 − ηT\{i}
xi

}
→ min. (26)

Aggregate criterion for selecting the best solution. Based on the above indices w, we
calculate the aggregate index of the “quality” of the obtained solution.

ω = w1 · w2 · w3. (27)

We assume that the smaller the ω value, the better the proposed allocation of the
coalition’s payoff.

The considered solutions (allocations), such as the PreNucleolus, Modiclus, and Shap-
ley value, are guaranteed to yield rational solutions only for the class of convex games.
However, technical limitations of power systems can lead to non-convex cooperative games.
In such a case, the contribution of individual players in a sub-coalition may be greater
than in the grand coalition. Thus, it may be warranted to develop algorithms that avoid
the formation of non-convex cooperative games, including through the identification of
cooperation bottlenecks and the introduction of mechanisms that eliminate them.

4. Agent-Based Modeling of Interaction Between the CS and Consumers

We have designed the architecture of a multi-agent system (MAS) to leverage the
multi-agent approach to the above-stated problems. The architecture is made up of three
main levels of agent interaction (see Figure 1): the CS; aggregators; and distributed systems.
Each level is represented by its own set of agents, which correspond to the energy facilities
of that level and capture their behavior and characteristics. All agents can be divided into
two main groups: agents that represent IES facilities and agents that control and coordinate
IES facilities. The first group of agents includes agents of centralized energy sources (ACES);
agents of network sections (ANS); agents of ordinary consumers (AOC); and agents of
prosumers (AP). The second group of agents includes the network agent of the CS, and
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aggregator agents whose functions are control and coordination. These agents do not act
strategically, so we do not describe them in detail here.
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The task of organizing the interactions between the centralized part of the power
system and prosumers when they form coalitions in the IES is solved on the basis of an
original multi-agent system. A description of the agents’ algorithms was detailed elsewhere
in [27,43]. In what follows, we provide a concise statement of the step-by-step algorithm of
actions of the CS, prosumer, and ordinary consumer agents, as well as those of possible
coalitions of consumers.

Step 1 Begin. Initialize variables, model coefficients, and the algorithm’s stopping
parameter ε. Determine the iteration number t = t + 1.

Step 2 Actions of the CS agent: the CS solves the public welfare maximization prob-
lems (16)–(19), (1), (6), (12), and (13) as informed by predicted demand volumes
(received from consumers). Result: planned volumes of energy generation(

Qi
j

)t
, volumes of energy consumption

(
Qn

tr,j

)t
, volumes of energy transmis-

sion through the transportation system
(

Q0n
j

)t
, nodal prices of generation

(
p0

j

)t
,

and consumption
(

pn
j

)t
, j ∈ GT, i ∈ I, tr ∈ [cr, pr], n ∈ [1, N].

Step 3 Comparison of prices
(

pn
j

)t
and

(
pn

j

)t+1
. If the prices differ by ε (the stopping

parameter specified in advance), then go to Step 8.
Step 4 Otherwise:

Actions of consumer agents: receive a signal about nodal energy prices
(

pn
j

)t
,

j ∈ GT from the CS.
Step 5 Demand optimization by consumer agents for two cases:

a. as individual actions of consumers, taking into account their own energy
generation, available to them without forming coalitions, as the solution
to problems (5)–(6), (8), (9);

b. as actions of consumers forming a coalition when distributed generation
is interconnected. Solution to problem (5), and (6), (9), (10), and (11).
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c. Consider all technically possible coalitions. Choose the most efficient one
with the highest payoff v.

d. Calculate possible payoff allocations among coalition members:

i. represent the game in its reduced form (20);
ii. If the game is convex (23) then go to Step 5d(iv)
iii. Else

(a) If the game is balanced (22), then go to Step 5d(iv),
(b) Else go to Step 5d(v);

iv. Calculate payoff allocations for the PreNucleolus, Modiclus, Shap-
ley value. Go to Step 5e;

v. Calculate payoff divisions for the PreNucleolus, Modiclus, Shapley
value. Go to Step 5f;

e. For each division, find the vector of the “quality” of the solution in accor-
dance with (24)–(26) and calculate the aggregate vector (27), characterizing
the properties of the solution of the game. Choose the best one.

f. Consumer agents choose the most profitable option for loading their
sources or consuming energy from the CS from a. and b., i.e., optimizing
individual consumption or consumption as part of interactions within
a coalition.

Step 6 The obtained results are sent by consumer agents to the next level
(see Figure 1). The level of aggregator agents searches for a solution for in-
terconnected consumer networks, subject to the constraints of the CS (13).

Step 7 Aggregator agents send the obtained results to the next level, i.e., the demand
for energy from the CS, taking into account the capacity of the transportation
network.

Step 8 Go to Step 1.
Step 9 End.

5. Example
5.1. System Description

Figure 2 shows the test architecture of the investigated IES. The system includes
electricity, heating, gas, and cooling (chiller units with no pipeline networks) systems. In
terms of its structure, the IES is divided into centralized and distributed systems.

The CS uses a condensing power plant (CPP) to generate electricity. The CPP is con-
nected to the distributed system via power transmission line (PTL) No. 1. The distributed
system is connected to switchgear (SG) No. 1. The boiler plant is used to generate heat. The
boiler plant is connected to the distributed system via heat mains (HM) No. 1, which are
in turn connected to central heating station (CHS) No. 1. A gas pressure reducing station
(GPRS) regulates the gas flow to desired parameters and distributes it throughout the sys-
tem. The GPRS is connected to the distributed system via gas main (GM) No. 1, which is in
turn connected to gas control cabinet (GCC) No.1. The CS also includes GM No. 4 and GM
No. 13, which are used to supply gas to the CPP and boiler plant. The distribution system
includes five prosumers that have their own sources of electricity (photovoltaic systems)
and heat sources (heat pumps), cold sources (chillers). The system also includes three
ordinary consumers that do not have their own energy sources. Electricity is transmitted
to consumers in the distributed system over 10 transmission lines, heat is delivered over
10 HMs, and gas for consumers’ auxiliary needs is delivered over 11 GMs. Network sections
are dynamically distributed between centralized and decentralized systems depending
on the coalition of prosumers under consideration. The calculations made for prosumers
assume the possibility of converting electricity into thermal energy by heat pumps.
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5.2. Special Considerations in Cost Calculations

The proposed test IES layout (see Figure 2) served as the basis for the 27 cases of
different coalitions with prosumer interactions, which took into account their interests and
capabilities of energy generation and conversion. The number of coalitions is limited by
topological features of the structure and engineering constraints, since not all connections
between consumers can be provided; e.g., a direct electrical connection between Prosumer
1 and Prosumer 5 is not possible, but it can be achieved by involving several intermediate
nodes (SW 1, SW 2, Prosumer 3). These constraints hold for both the electrical system
and heating system. Furthermore, we assumed that only one coalition is formed in the
distributed network, whereas more complex cases where multiple coalitions may form
on a set of consumers were not considered in this paper. These are the rules proposed
by the aggregators. Table 1 summarizes some of the coalitions formed in line with the
constraints stated above. The full list of coalitions for four and five prosumers is provided
in Appendix A.
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Table 1. List of coalitions for prosumer interactions.

No Coalition-Forming Scenario Description

1 η({i}), i ∈ [1, 5] No cooperation. No prosumers interact with each other (Coalition 1).

2 η(1, 2, 3, 4, 5) Grand coalition. All prosumers interact with each other (Coalition 2).

3 η(1, 2, 3, 5), η({4}) Partial cooperation. Prosumer 4 is not in the coalition (Coalition 6).

4 η(2, 3, 5), η({1}), η({5}) Partial cooperation. Prosumers 2, 3, and 4 join the coalition. Prosumer 1 is not
in the coalition. Prosumer 5 is not in the coalition (Coalition 14).

5 η(2, 4), η({1}), η({3}), η({5})
Partial cooperation. Prosumers 2 and 4 join the coalition. Prosumer 1 is not in

the coalition. Prosumer 3 is not in the coalition. Prosumer 5 is not in the
coalition (Coalition 23).

5.3. Calculations for Different Cases of the Generation Capacity Available to Prosumers and the CS
5.3.1. Calculation for the Case of Five Prosumers

We relied on the test structure of the system presented in Figure 2 to assess the
performance of the model and investigate the interaction of prosumers in the IES. We
evaluated optimal power supply routes for all 27 possible coalition-forming scenarios. The
calculation was performed simultaneously for electrical, heating, cooling, and gas supply
systems and aimed at reducing the total cost for prosumers when they cooperate in the IES.
The input data for the simulation are given in Appendix B.

Figure 3 shows an example model, and the results obtained for the first simulation
setup with full cooperation. Each entity of the structure is represented by its agent; agents in
the model are highlighted in red. The agents, while interacting with each other, performed
the search for the most economically advantageous solution based on the capabilities and
interests of consumers (5)–(6), (9), (10), (11), and the CS (16)–(19), (1), (6), (12), (13), subject
to technical constraints.
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A batch of calculations was performed in the AnyLogic program environment based
on the above simulations. Table 2 presents the total cost of supplying energy to prosumers
for the cases of full cooperation and no cooperation, as well as the results of distributing
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the payoff of full cooperation (fair cost sharing) among prosumers as induced by different
solution concepts:

Table 2. Total cost of power supply to five prosumers.

Simulation Setup Prosumer 1,
USD

Prosumer 2,
USD

Prosumer 3,
USD

Prosumer 4,
USD

Prosumer 5,
USD

Total Cost,
USD

η({i}), i ∈ [1, 5] 586.3 765.2 362.2 385.8 580.6 2680.1

η(1, 2, 3, 4, 5) ≡ η(T) 2368.1

Shapley value 557.2 707.5 192.5 354.5 556.3 2368.1

Modiclus 550.4 688.8 226.5 345.2 557.2 2368.1

PreNucleolus 564.5 710.6 165.6 362.4 565.0 2368.1

Checking for the convexity (23) and balance (22) of the game proved the game to be
non-convex and balanced. The PreNucleolus, Shapley value, and Modiclus point-valued
solutions were calculated.

The total cost (compared to the simulation setup with no cooperation) changed as
follows: for Prosumer 1, the costs decreased by 4.96%; for Prosumer 2, the costs decreased
by 7.54%; and for Prosumers 3, 4, and 5, the costs decreased by 46.86%, 8.09%, and 4.18%,
respectively. The case of Prosumer 1 shows that cooperation and the use of its own, cheaper
energy sources notably decreased its total energy supply from USD 362.23 to USD 165.63,
which was also due to the sale of its generated energy to other consumers. In general,
there is a reduction in the total cost of energy supply to prosumers, while the CS serves a
lesser percentage of prosumer’s loads, and prosumers substitute its energy with cheaper
energy from their own sources generated within the coalition. The total cost of energy
supply to prosumers when they form any of the 27 coalitions are shown in Appendix C.
Figure 4a,b shows the total electricity and heat generation by centralized and distributed
energy sources for the seven coalitions. Appendix C provides the data for 27 coalitions.
The difference in total electricity generation for different coalitions is due to the presence of
nodes of heat-to-electricity conversion by heat pumps.
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5.3.2. Calculation for Four Prosumers

The second simulation setup for the above test structure (Figure 2) differs in the
number of prosumers that can join the coalition (there are four of them) as well as in the
ratio of available energy sources at the distributed and centralized systems. In this case, the
prosumers can produce significantly less energy at their sources. Similarly to the previous
case, 12 coalition options are formed, including complete cooperation v(1, 2, 3, 4) ≡ v(T).
Appendix D shows the total cost of energy supply to prosumers for a selection of coalitions
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they may form, as well as total power generation by centralized and distributed energy
sources for the electricity and heating system.

The simulations yielded fair cost allocation among prosumers involved in cooperation.
The reduced payoff matrix (reduced game) for several coalitions is shown in Table 3.
Players who do not join the coalition have a zero payoff: v({i}) = 0, i /∈ Sk. The properties
of this game are similar to those of the five-player game: the game proved non-convex
but balanced. Table 3 lists the resulting payoff allocations according to different solution
concepts: the Shapley value, Modiclus, and PreNucleolus.

Table 3. Reduced payoff matrix and payoff allocation for the coalitional game of four prosumers.

Simulation Setup Prosumer 1 Prosumer 2 Prosumer 3 Prosumer 4 Sum

η({i}), i ∈ [1, 4] 0.00 0.00 0.00 0.00 0.00

η(1, 2, 3, 4) ≡ η(T) 1.00 1.00

η(2, 3, 4), η({1}) 0.00 0.86 0.86

η(1, 3, 4), η({2}) η(1, 3, 4) = 0.69, η({2}) = 0.00 0.69

η(1, 2, 4), η({3}) η(1, 2, 4) = 0.30, η({3}) = 0.00 0.30

η(1, 2, 3), η({4}) 0.69 0.00 0.69

η(1, 2), η({3}), η({4}) 0.00 0.00 0.00 0.00

η(1, 3), η({2}), η({4}) η(1, 3) = 0.47, η({2}) = 0.0, η({4}) = 0.0 0.47

η(1, 4), η({2}), η({3}) η(1, 4) = 0.20, η({2}) = 0.0, η({3}) = 0.0 0.20

η(2, 3), η({1}), η({4}) 0.00 0.59 0.00 0.59

η(2, 4), η({1}), η({3}) η(2, 4) = 0.25, η({1}) = 0.0, η({3}) = 0.0 0.25

η(3, 4), η({1}), η({2}) 0.00 0.00 0.54 0.54

Shapley value 0.116 0.201 0.456 0.226 1.00

Modiclus 0.117 0.236 0.354 0.293 1.00

PreNucleolus 0.070 0.170 0.540 0.220 1.00

5.4. Choosing the “Best” Solution (Allocation of the Total Payoff) for the Coalition Game

As noted earlier, the solution concepts investigated in this study yield different results.
What is important is how much each player’s contribution will be taken into account and
how stable the resulting coalition will be. Figure 5 plots the size of the payoff increase,
relative to the case of no cooperation, for the two members 2 and 3 of a coalition of
five players.

In order to assess the quality of the obtained imputations, Section 3.3.3 proposes a set
of properties to test the solutions (24)–(27). Table 4 shows the properties w1, w2, w3 and
the generalized property ω, characterizing the Shapley value, Modiclus and PreNucleolus
solutions obtained for the two considered cases. Figure 6 shows the generalized property ω:
it is assumed that the smaller the value of ω, the better the imputation. We see that in the
first case, where a coalition of five players and distributed generation account for a large
share of the overall energy system, the Modiclus (indicated in bright green in the figure)
is considered the “best” in the sense of allocation fairness and, to some extent, stability.
The PreNucleolus allocation (shown in light red) proved best in the case of a four-player
coalition and limited distributed generation capacity.
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Table 4. Characteristics of the solutions to the coalition game as obtained for different solution
concepts.

Property Shapley Value Modiclus PreNucleolus

Game for a coalition of five players

w1 0.976 1 0.93

w2 0.341 0.237 0.47

w3 4.48 3.97 5.43

ω 1.49 0.94 2.37
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Table 4. Cont.

Property Shapley Value Modiclus PreNucleolus

Game for a coalition of four players

w1 0.98 1 0.95

w2 0.33 0.44 0.24

w3 2.7 2.87 3.06

ω 0.87 1.26 0.7

6. Discussion and Conclusions

Transformation of energy systems strengthens the interaction between different types
of energy supply systems and forms IESs. It also creates new opportunities for energy
consumers, including those with their own energy sources installed. These changes in
energy systems raise the pressing issue of organizing interaction between different entities
involved in the energy supply processes, especially those with generation facilities (cen-
tralized and decentralized energy sources). To solve the above problem, one is advised
to properly consider its inherently unique features: the hierarchical principle underlying
the IES architecture; multiple decision-makers with conflicting interests acting in the IES;
imperfect information available to all participants of the interaction; possible coalitions
of prosumers.

It is common to model the relationship between the CS and prosumers by a general
statement of the public welfare maximization problem. In general, when cost functions of
energy sources are convex and utility functions of consumers are concave, this problem is a
convex optimization problem and has a solution. This takes into account the network struc-
ture of the location of generation facilities and consumers by imposing constraints on flows
and supply and demand balances at the nodes of the system. Prices are determined by the
Lagrange multiplier method and are essentially price signals for market participants: this
implies that at generation nodes they will be equal to marginal costs, while at consumption
nodes they are adjusted by adding transport costs (losses, network constraints) to them.

The problem becomes, at once, more difficult if consumers have their own goals and
form behavioral strategies based on maximizing their own payoff. In this case, one could
solve the problem by finding the equilibrium in the Stackelberg model. Energy sector stud-
ies consider possible ways of finding such equilibria in the form of a mathematical program
with equilibrium constraints (MPEC, EPEC [9,10]), where the equilibrium constraints are
first-order conditions for the problem of finding the maximum payoff of individual players.
These are complex problem statements: the problems are non-convex and difficult to solve.
In this study, we avoid this complexity by solving the problem with agent-based modeling
tools, while simplifying the requirements for the knowledge of the system available to the
players. The above means that there is no requirement for all participants involved in the
interaction to have perfect information. Agents exchange signals and the problem is solved
iteratively by applying the best response dynamics procedure in its discrete form; i.e., we
use a distributed approach to solving the problem by breaking down a complex problem
statement into a set of problems of smaller dimensionality.

This approach allows for further consideration of coalitional interactions among
consumers. This study models consumer cooperation, subject to technical constraints, and
considers a set of possible coalitions from which consumers choose the most advantageous
one. The outcome is the redistribution of power generation between the centralized and
distributed system in the most efficient way.

Another critical element of our system is the built-in module for allocating the payoff
of a coalition of consumers. This study considered a wider range of cooperative game
solution concepts for coalitions within energy systems than reported elsewhere in the
literature. The paper proposed a model for choosing an efficient allocation of the coalition’s
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payoff according to several criteria that determine how attractive a coalition will be for the
players compared to operating on their own.

The paper detailed an original multi-agent system that implements the proposed
model. The model was tested on a provisional structure of the IES by running multiple
simulations. The findings of the simulations demonstrated that it was possible to ensure
optimal interaction between the entities of the energy supply process in the IES. This was
informed by their interests, which drove such entities to form coalitions of prosumers.

Admittedly, we resort to a number of simplifications in order to solve the investigated
problem. Among other things, we assume that we are dealing with quadratic or linear costs
for generating sources and convex or linear utility functions of consumers, which yield
convex optimization problems with well-established solutions [34]. However, real-world
energy systems often exhibit non-convexities (economies of scale, startup costs, start-up
and shutdown costs for generating sources, non-linear transportation losses, etc.). This
issue can be addressed by applying linearization methods when building the model, as
well as by employing metaheuristics [44].

There are many open issues that warrant further development of our approach:
1. The conditions for finding a stable equilibrium should be elaborated further when
solving the problem with the best response dynamics procedure as part of the agent-based
model. Additional verification of the criteria for reaching equilibrium should be introduced.
2. This study considered a simplified version of coalitions, where it is possible to join only
one coalition without considering the possibility of forming several ones on the same set
of consumers. 3. It is possible to expand the number of criteria to assess the quality of
the allocation of consumers’ payoffs that result from forming a coalition. 4. We need to
investigate the setups where a coalition may be beneficial to the energy system as a whole,
i.e., yield extra profits to those who do not join the coalition but are part of the system.
5. There are computational issues that will have to be faced when scaling up the system.
In the case of large coalitions, the time to compute all outcomes of the cooperative game
and determine the equilibrium grows exponentially. In such cases, a possible solution may
be to use specialized algorithms that reduce the number of computations. 6. It also makes
sense to explore the possibilities of manipulation behaviors by participants, which often
arise due to imperfect information. The above list is by no means exhaustive.
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Appendix A. List of Coalitions and Payoffs in the Reduced Form

Table A1. Reduced payoffs for five prosumers.

Coalition-Forming Scenarios Coalition No. Coalition’s Payoff

1. No cooperation No. 1 : η({i}), i ∈ [1, 5] 0.00

2. Complete cooperation No. 2 : η(1, 2, 3, 4, 5) ≡ η(T) 1.00

3. Partial coalitions of four players each

No. 3 : η(2, 3, 4, 5), η({1}) 0.86

No. 4 : η(1, 3, 4, 5), η({2}) 0.69

No. 5 : η(1, 2, 4, 5), η({3}) 0.19

No. 6 : η(1, 2, 3, 5), η({4}) 0.87

No. 7 : η(1, 2, 3, 4), η({5}) 0.90
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Table A1. Cont.

Coalition-Forming Scenarios Coalition No. Coalition’s Payoff

4. Partial coalitions of three players each

No. 8 : η(1, 2, 3), η({4}), η({5}) 0.79

No. 9 : η(1, 2, 4), η({3}), η({5}) 0.16

No. 10 : η(1, 2, 5), η({3}), η({4}) 0.00

No. 11 : η(1, 3, 4), η({2}), η({5}) 0.58

No. 12 : η(1, 3, 5), η({2}), η({4}) 0.62

No. 13 : η(1, 4, 5), η({2}), η({3}) 0.11

No. 14 : η(2, 3, 4), η({1}), η({5}) 0.76

No. 15 : η(2, 3, 5), η({1}), η({4}) 0.75

No. 16 : η(3, 4, 5), η({1}), η({2}) 0.55

No. 17 : η(2, 4, 5), η({1}), η({3}) 0.15

5. Partial coalitions of two players each

No. 18 : η(1, 2), η({3}), η({4}), η({5}) 0.00

No. 19 : η(1, 3), η({2}), η({4}), η({5}) 0.54

No. 20 : η(1, 4), η({2}), η({3}), η({5}) 0.00

No. 21 : η(1, 5), η({2}), η({3}), η({4}) 0.00

No. 22 : η(2, 3), η({1}), η({4}), η({5}) 0.67

No. 23 : η(2, 4), η({1}), η({3}), η({5}) 0.12

No. 24 : η(2, 5), η({1}), η({3}), η({4}) 0.00

No. 25 : η(3, 4), η({1}), η({2}), η({5}) 0.45

No. 26 : η(3, 5), η({1}), η({2}), η({4}) 0.50

No. 27 : η(4, 5), η({1}), η({2}), η({3}) 0.07

Table A2. Reduced payoffs for four prosumers.

Coalition-Forming Scenarios Coalition No. Coalition’s Payoff

1. No cooperation No. 1 : η({i}), i ∈ [1, 4] 1.00

2. Complete cooperation No. 2 : η(1, 2, 3, 4) ≡ η(T) 0.00

3. Partial coalitions of three players each

No. 3 : η(2, 3, 4), η({1}) 0.86

No. 4 : η(1, 3, 4), η({2}) 0.69

No. 5 : η(1, 2, 4), η({3}) 0.30

No. 6 : η(1, 2, 3), η({4}) 0.69

4. Partial coalitions of two players each

No. 7 : η(1, 2), η({3}), η({4}) 0.00

No. 8 : η(1, 3), η({2}), η({4}) 0.47

No. 9 : η(1, 4), η({2}), η({3}) 0.20

No. 10 : η(2, 3), η({1}), η({4}) 0.59

No. 11 : η(2, 4), η({1}), η({3}) 0.25

No. 12 : η(3, 4), η({1}), η({2}) 0.54
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Appendix B. Technical and Economic Performance of Generation Facilities of the CS
and Prosumers

Table A3. Initial values for centralized sources.

Name Q
i
k,h,

Gcal/h
Qi

k,h,
Gcal/h Q

i
k,e, MW Qi

k,e, MW Q
i
k,g, m3/h Qi

k,g, m3/h p0
h, USD p0

e , USD p0
g, USD

CPP - - 150 50 - - - 12.63 -

Boiler plant 240 60 - - - - 13.68 - -

GPRS - - - - 150,000 0 - - 0.03

Table A4. Initial values for prosumers.

Name Qpr,h,
Gcal/h

Qpr,e,
MW

Qpr,c,
MW

Qpr,g,
m3/h

Q
i
k,c,

MW
Q

i
k,h,

Gcal/h
Qi

k,h,
Gcal/h

p0
h, USD Q

i
k,e,

MW
Qi

k,e, MW p0
e , USD

Prosumer 1 21 17 9 2000 9 20 0 13.05 14 0 13.47

Prosumer 2 25 20 12 2200 12 15 0 12.63 30 0 11.79

Prosumer 3 18 15 6 1600 6 43 0 11.37 15 0 12.42

Prosumer 4 16 12 3 1800 3 25 0 10.53 18 0 13.47

Prosumer 5 28 24 12 2500 12 35 0 14.74 40 0 10.53

Table A5. Results for the case of full cooperation of centralized sources

Name Qi
k,h, Gcal/h Qi

k,e, MW Qi
k,g, m3/h p0

h, USD p0
e , USD p0

g, USD

CPP - 66.2 - - 13.93 -

Boiler plant 75.2 - - 11.86 - -

GPRS - - 30187.0 - - 0.02

Table A6. Results for the case of full cooperation of prosumers

Name TCpr,h, USD TCpr,e, USD TCpr,g, USD TCpr,j, USD Qi
k,h, Gcal/h Qi

k,e

Prosumer 1 288.6 214.8 38.5 542.0 20 14

Prosumer 2 297.1 330.9 42.4 670.4 15 30

Prosumer 3 245.2 −42.1 30.8 233.8 43 15

Prosumer 4 286.3 51.2 34.7 372.2 25 18

Prosumer 5 309.5 192.1 48.1 549.7 35 40
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