
Citation: Tan, H.; Wu, J.; Guan, H.;

Zhang, Z.; Tao, L.; Zhao, Q.; Li, C. A

New Varying-Factor Finite-Time

Recurrent Neural Network to Solve

the Time-Varying Sylvester Equation

Online. Mathematics 2024, 12, 3891.

https://doi.org/10.3390/

math12243891

Academic Editor: Zhanybai T.

Zhusubaliyev

Received: 11 November 2024

Revised: 4 December 2024

Accepted: 5 December 2024

Published: 10 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Varying-Factor Finite-Time Recurrent Neural Network to
Solve the Time-Varying Sylvester Equation Online
Haoming Tan 1, Junyun Wu 2,3,*, Hongjie Guan 4, Zhijun Zhang 5, Ling Tao 3,4, Qingmin Zhao 3,4 and Chunquan Li 3,4

1 School of Electric and Electronic Enginnering, Shanghai University of Engineering Science,
Shanghai 201620, China; m320122407@sues.edu.cn

2 School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031, China
3 Jiangxi Provincial Key Laboratory of Intelligent Systems and Human-Machine Interaction,

Nanchang 330031, China; taoling@ncu.edu.cn (L.T.); zhaoqm@ncu.edu.cn (Q.Z.);
lichunquan@ncu.edu.cn (C.L.)

4 School of Information Engineering, Nanchang University, Nanchang 330031, China;
411016620039@email.ncu.edu.cn

5 School of Automation Science and Engineering, South China University of Technology,
Guangzhou 510640, China; auzjzhang@scut.cn

* Correspondence: wujunyun@ncu.edu.cn

Abstract: This paper presents a varying-parameter finite-time recurrent neural network, called a
varying-factor finite-time recurrent neural network (VFFTRNN), which is able to solve the solution
of the time-varying Sylvester equation online. The proposed neural network makes the matrix coeffi-
cients vary with time and can achieve convergence in a finite time. Apart from this, the performance
of the network is better than traditional networks in terms of robustness. It is theoretically proved that
the proposed neural network has super-exponential convergence performance. Simulation results
demonstrate that this neural network has faster convergence speed and better robustness than the
return to zero neural networks and can track the theoretical solution of the time-varying Sylvester
equation effectively.

Keywords: recurrent neural network (RNN); finite time; super-exponential convergence rate

MSC: 68T07; 68U01; 68U07

1. Introduction

As we all know, the Sylvester equation UP − PV + W = 0, as a kind of linear matrix
equation, plays a crucial role in many fields, especially linear algebra and matrix theory. For
some mathematics, dynamic control systems, and computer vision problems, the Sylvester
equation can be used as a solution, like designing a feedback control system by pole
assignment optimization, linear least-squares regression, image fusion [1], clustering [2,3],
and so on. In recent years, many methods have been proposed by other scholars to solve
real-time linear algebra problems [4–18]. Among these methods, several are efficient and
representative, like gradient-based neural network (GNN) methods and zeroing neural
network (ZNN) methods. It is notable that GNN and ZNN methods both use the idea to
force the time derivative of the error function decline and further to force the error function
gain toward zero. The proposal of GNNs, as emblematic recurrent neural networks, is very
representational for solving real-time linear algebra problems [19–21]. Generally speaking,
different GNNs are designed to solve different linear algebra problems. By itself, for solving
the Sylvester equation, the GNN method is roughly stated as follows:

(1) In the first step, the error function is defined as E = ||UP − PV + W||2/2. In order
to acquire the solution of the Sylvester equation, the error function should converge
to zero.

Mathematics 2024, 12, 3891. https://doi.org/10.3390/math12243891 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12243891
https://doi.org/10.3390/math12243891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12243891
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12243891?type=check_update&version=2

Mathematics 2024, 12, 3891 2 of 22

(2) In the next step, for the purpose of acquiring the minimum point of the error function,
GNN methods use a negative gradient descent direction. In addition to this, GNN
methods employ a constant scalar-type parameter, which accelerates the convergence
rate of the error function to solve the Sylvester equation efficiently.

However, when the task is time-varying, the traditional GNN method, which is
based on gradient-based optimization, has difficulty tracking the ideal solution of the

time-varying Sylvester equation. This is because the error, as defined by E = ||UP−PV+W||2
2 ,

cannot converge to zero in such cases, resulting in residual errors [22]. Therefore, a GNN
cannot solve the time-varying Sylvester function effectively. But in practice, time-varying
problems are everywhere, so we need a neural network to better track locus solutions to
time-varying issues in real-time. Under this background, many kinds of neural networks
have been proposed to solve this kind of time-varying algebraic problem. Among these
neural networks, the ZNN proposed by Zhang et al. proved to be efficient [12]. The ZNN
is a kind of implicit dynamic neural network that skillfully replaces the gradient dynamic
with an implicit dynamic, so that the computation error can achieve better convergence;
that is, with the increase in time, the solution of the network can approach the theoretical
solution in real time [23–31]. However, the ZNN also has some shortcomings, such as
its convergence speed not being fast enough, convergence parameters being difficult to
set, and other issues. Aiming to address the above shortcomings, Li et al. proposed a
finite-time ZNN [23]. The sign-bi-power activation function is used in this network, as
it effectively activates this network, makes the convergence speed much faster, and can
achieve finite-time convergence. In addition, Zhang et al. proposed a variable-parameter
convergence differential neural network (VP-CDNN) [32]. Different from the initial ZNN,
the convergence parameter of the VP-CDNN changes with time, which makes the network
hardware implementation much more reasonable than the ZNN, and the convergence
speed reaches the super-exponential convergence speed. But despite this, the VP-CDNN
cannot achieve finite-time convergence. Based on the above discussion, this paper proposes
a recurrent neural network (VFFTRNN) for solving the time-varying Sylvester equation.
The network not only has the speed of super-exponential convergence but also can achieve
finite-time convergence.

The rest of this paper is divided into four parts. The second section introduces
some tools needed to solve the Sylvester equation, and briefly describes the solution
steps of the ZNN. In the third section, the implicit dynamic equation of the proposed
VFFRTNN and the general steps of solving time-varying problems with the network
are given, and the convergence and robustness of VFFTRNN under different conditions
are analyzed theoretically. In the fourth section, the simulation results of MATLAB are
given and compared with the simulation results of the ZNN. In the last section, the thesis
is summarized.

Before concluding this section, some highlights of the paper are listed below:

(1) We propose a VFFTRNN algorithm for solving the Sylvester equation.
(2) Compared with VP-CDNN, this network can achieve finite-time convergence.
(3) We theoretically prove the convergence time of the network in the case of three

activation functions.
(4) In the situation considering the existence of disturbances, the robustness of VFFTRNN

is discussed.
(5) Data simulation results show that the proposed VFFTRNN has better convergence

and robustness than the traditional ZNN model under the same initial conditions.

2. Problem Formulation and Knowledge Preparation

Let us observe the following Sylvester equation with smooth time-varying characteristics:

U(t)P(t)− P(t)V(t) + W(t) = 0, ∀t ∈ [0,+∞) (1)

Mathematics 2024, 12, 3891 3 of 22

where time is expressed as the variable t. The time-varying smooth coefficient matrices
are W(t) ∈ ℜm×n, V(t) ∈ ℜn×n, as well as U(t) ∈ ℜm×m. In addition, Ẇ(t) = dW(t)/dt,
V̇(t) = dV(t)/dt, and U̇(t) = dU(t)/dt are their time derivatives, respectively, assuming
these time derivatives are known or can be found exactly. Furthermore, P(t) ∈ ℜm×n is
uncharted but real, and our purpose is to find it to approach or even obtain the unique
ideal solution P∗(t) in finite time for the above Sylvester equation.

In order to facilitate the subsequent discussion and to solve Equation (1) more simply,
(1) is best to be transformed into a vector form. The following Theorem (1) is introduced.

Theorem 1. The Sylvester equation in matrix form (i.e., Equation (1)) can be transformed into
vector form as follows:(

In ⊗ U(t)− VT(t)⊗ Im

)
vec(P(t)) + vec(W(t)) = 0 (2)

where In and Im represent the n-dimensional and m-dimensional identity matrices, respectively.
Additionally, the symbol T represents the transpose of the matrix. The symbol ⊗ denotes the
Kronecker product. In other words, U ⊗V ∈ ℜmn×mn represents a large matrix, which is equivalent
to transforming the ith row and j−column position element uij in the matrix U into a matrix uijV.
The operation vec(P(t)) ∈ ℜmn represents a column vector obtained by stacking the columns of the
matrix P(t) ∈ ℜm×n in sequence.

Proof. See Section 2 and [12], Appendix.

Furthermore, if we want to obtain the unique solution of Equation (1), then it must
meet the regularity condition [12,33], which is described in the following Theorem (2).

Theorem 2. If the Sylvester Equation (1) satisfies the following regularity condition, then it has a
unique solution.

In ⊗
(

UT(t)U(t)
)
− VT(t)⊗ UT(t)− V(t)⊗ U(t)

+
(

V(t)VT(t)
)
⊗ Im ≥ αImn, ∃α > 0, ∀t ∈ [0,+∞) (3)

where Imn represents the mn-dimensional identity matrix.

Proof. See Section 2 and [12], Appendix.

With the continuous development of neural dynamics and the proposal of ZNNs,
the concept of ZNNs has been applied in many engineering and scientific fields to solve
time-varying problems. To clarify the details of this paper, we will next briefly introduce
how to solve the Sylvester Equation (1) using a typical ZNN method.

In the first step, an error function for Equation (1) is defined as follows:

E(t) := U(t)P(t)− P(t)V(t) + W(t) (4)

Next, since our goal is to obtain a unique solution to Equation (1), when we set the
error function to approach 0, the unique solution of Equation (1) will be obtained naturally.
In light of the design principles of neurodynamics, the following differential equations for
the error function E(t) can be designed:

dE(t)
dt

= Ė(t) = −µΦ(E(t)) (5)

where the scale-valued factor µ is a positive design constant (i.e., µ > 0), which can adjust
the convergence velocity of this network (5) by varying its value. Φ(·) : ℜm×n → ℜm×n is
an array consisting of the same activation functions. Φ(·) can represent different types of

Mathematics 2024, 12, 3891 4 of 22

activation functions, such as linear-type, bipolar-sigmoid-type, power-type, sign-bi-power-
type, and so on. When we use the activation function of the linear type, (5) becomes a
typical ZNN.

Based on (5), we can obtain the following implicit dynamic equation:

U(t)Ṗ(t)− Ṗ(t)V(t) + U̇(t)P(t)− P(t)V̇(t)

+Ẇ(t) = −µΦ(U(t)P(t)− P(t)V(t) + W(t)) (6)

where the starting value of P(t) is P(0) = P0 ∈ Rm×n. Additionally, the state matrix
P(t) is an approximate solution that will gradually approach the theoretical solution, and
it will converge to the unique solution of (1). In light of the following lemma [12], the
performance of the ZNNs in solving the Sylvester equation can be guaranteed to exhibit
exponential convergence.

Lemma 1. Considering the Sylvester Equation (1), with its time-varying coefficient matrices
U(t) ∈ ℜm×m, V(t) ∈ ℜn×n, and W(t) ∈ ℜm×n, and assuming that they satisfy inequality (3),
if the activation function of the implicit dynamic Equation (6) is chosen to be linear, then its state
matrix P(t) will exponentially converge from any initial state P0 to the time-varying ideal solution
P∗(t) of (1).

3. Varying-Factor Finite-Time Recurrent Neural Networks

ZNN can achieve better convergence performance by using different activation func-
tions or setting a larger constant factor [34], but its convergence still has room for im-
provement. Inspired by classic ZNN design principles, a novel recurrent neural network is
proposed in this paper. It can achieve a neural network with super-exponential convergence
within a limited time, and because the factor before its activation function changes with
time, it is called VFFTRNN. It can be expressed as

Ė(t) = −Γ(t)
(

Φ(E(t)) + Φ(Eλ(t))
)

= −(tα + α)
(

Φ(E(t)) + Φ(Eλ(t))
)

(7)

where Γ(t) is a function of t, and it can be set to different functions. For simplicity, we use
exponential time-varying parameters (tα + α), where α is a positive scalar-valued factor
(i.e., α > 0), and the positive scalar-valued factor λ = s

q ∈ (0, 1), where s and q are odd
numbers. In light of (7), we can reformulate its implicit dynamic equation as

U̇(t)P(t) + U(t)Ṗ(t)− Ṗ(t)V(t)− P(t)V̇(t) + Ẇ(t)

=− (tα + α)
(

Φ
(
U(t)P(t)− P(t)V(t) + W(t)

)
+ Φ

(
U(t)P(t)− P(t)V(t) + W(t)

)λ
)

(8)

In addition, in light of Theorem 1 and Equation (2) in Section 1, we are able to obtain
the vector form of the above implicit dynamic Equation (8):

N(t) ṗ(t) =− Ṅ(t)p(t)− vec
(
Ẇ(t)

)
− (tα + α)

(
Φ
(

N(t)p(t) + vec(W(t))
)

+ Φ
(

N(t)p(t) + vec(W(t))
)λ
)

(9)

where N(t) := In ⊗ U(t)− VT(t)⊗ Im ∈ ℜmn×mn is a matrix, p(t) := vec(P(t)) ∈ ℜmn

is a vector, and Φ(·) : ℜmn×1 → ℜmn×1 is an activation function array. It is noteworthy
that the transformation dimensions of Φ(·) in (9) are different from those in (5). The block
diagram of VFFTRNN can be drawn based on the implicit dynamic Equation (8). As shown

Mathematics 2024, 12, 3891 5 of 22

in Figure 1,
∫

and ∑ represent the integrator and accumulator, respectively. The symbols L
and R represent left and right matrix multiplication, respectively.

ò

å

å

å

å

å

å

()F ·()lF · ()U t

()V t

()W t

a

t
a ()U t

()V t

I

P

()U t

·

()V t

·

()W t

·

P

·

Figure 1. Block diagram of VFFTRNN model (8) for solving the Sylvester equation.

3.1. Convergence Analysis

The following theorem will lay the foundation for later reference when discussing the
global convergence of VFFTRNN.

Theorem 3. For the time-varying Sylvester Equation (1), its coefficient matrices U(t) ∈ ℜm×m,
V(t) ∈ ℜn×n, and W(t) ∈ ℜm×n are given. If Equation (1) satisfies inequality (3), and the
activation function sequence is chosen to be strictly increasing, then the state matrix P(t) of the
VFFTRNN model (8) will globally converge from any initial state P0 to the time-varying ideal
solution P∗(t) of the Sylvester Equation (1).

Proof. First, we can convert the VFFTRNN system (7) into scalar form as follows:

ėij(t) = −(tα + α)
(

ϕ
(
eij(t)

)
+ ϕ

(
eλ

ij(t)
))

∀i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n} (10)

where eij(t) represents the ith row and j− column position element of E(t). In addition,
ϕ(·) represents the activation subfunction for the matrix elements.

Next, we will prove its global convergence. Let us define a Lyapunov function as
shown below:

vij(t) =
1
2

e2
ij(t), ∀i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n} (11)

According to the above, we can calculate its time derivative as follows:

v̇ij(t) = eij(t)ėij(t)

= −(tα + α)eij

(
ϕ
(
eij(t)

)
+ ϕ

(
eλ

ij(t)
))

It can be seen from the previous definition that α > 0 and ϕ(·) is monotonic and
strictly increasing. Thus, for any t ≥ 0 and eij(t), we have

v̇ij(t)

{
= 0 eij(t) = 0
≤ 0 eij(t) ̸= 0.

In light of Lyapunov stability theory, the error function (10) is globally asymptotically
convergent. Therefore, for any i and j in the domain, the error function eij(t) in scalar

Mathematics 2024, 12, 3891 6 of 22

form will asymptotically converge to zero. In other words, the online solution P(t) using
VFFTRNN will approach its theoretical solution P∗(t) when t → +∞.

In conclusion, the proof of Theorem 3 has been completed. That is, VFFTRNN exhibits
global asymptotic convergence.

In the next step, we will demonstrate the finite-time convergence of VFFTRNN under
various activation functions (i.e., linear, bipolar-sigmoid, and power functions). See the
following theorem for the specific convergence time.

Theorem 4. For the time-varying Sylvester Equation (1), the coefficient matrices U(t) ∈ ℜm×m,
V(t) ∈ ℜn×n and W(t) ∈ ℜm×n have been given. If Equation (1) satisfies the regularity condition
(3) and the activation function sequence is monotonic and strictly increasing, then the VFFTRNN
system (8) can converge to the theoretical solution P∗(t) of Equation (1) in finite time from any
arbitrary initial state. In addition, the specific convergence time of the neural system (7) in the cases
of different activation functions is as follows:

(1) When we choose the linear activation function (i.e., ϕ(x) = x), the convergence time of
VFFTRNN tc < tL.

(2) When we choose the bipolar-sigmoid activation function (i.e., ϕ(x) = (1 − exp(−ξx))/(1 +
exp(−ξx)), ξ > 0), the convergence time of VFFTRNN tc < tB.

(3) When we choose the power activation function (i.e., ϕ(x) = xs, λs < 1 and s is an odd
number), the convergence time of VFFTRNN tc < tP.

The above tL, tB and tP are, respectively,

tL = α+1

√
α + 1
1 − λ

ln(χ1−λ
1 + 1)

tB =


α+1
√

α+1
ω(1−λ)

ln(χ1−λ
1 + 1) if χ1 ≤ 1

α+1
√

α+1
ω(1−λ)

ln(2) + (α+1)(χ1−1)
ω otherwise.

tP =


α+1
√

α+1
2(1−λs)χ1−λs

1 if χ1 ≤ 1

α+1

√
α+1

2(1−λs) +
(α+1)(χ1−s

1 −1)
2(1−s) otherwise.

where χ1 represents max(|eij(0)|).

Proof. In the following, we will prove the convergence time of the VFFTRNN system
under three different activation functions, one by one.

(1) Linear-type: For the linear-type case, the following equation can be obtained from (10).

ėij(t) = −(tα + α)
(

eij(t) + eλ
ij(t)

)
(12)

In light of differential equation theory [34], we can obtain the solution of (12).

eij(t) =
(
(e1−λ

0 + 1)exp
(
(λ − 1)(αt +

tα+1

α + 1
)
)
− 1
) 1

1−λ (13)

where e0 = eij(0). Let eij(t) in (13) be equal to zero, and we can obtain the following:

αt +
tα+1

α + 1
=

ln(e1−λ
0 + 1)
1 − λ

≥ tα+1

α + 1

then we can easily find t ≤ α+1
√

α+1
1−λ ln(e1−λ

0 + 1). In other words, for any i and j in

the definitional domain, we have that as t → α+1
√

α+1
1−λ ln(e1−λ

0 + 1), the scalar value
eij(t) → 0. Note that by the definition of eij(t) above, at this time, the error function

Mathematics 2024, 12, 3891 7 of 22

E(t) in matrix form will also approach zero, which guarantees that the state matrix
P(t) → P∗(t).
To sum up, we can obtain the convergence time when the VFFTRNN system uses the
linear-type function as follows:

tL = α+1

√
α + 1
1 − λ

ln(χ1−λ
1 + 1) (14)

where χ1 = max(|eij(0)|). This shows that in the case where the activation function
is linear, the VFFTRNN method can achieve finite-time convergence in solving the
Sylvester equation.

(2) Bipolar-Sigmoid-Type: In this case, we can easily see that the activation function is
ϕ(x) = (1 − exp(−ξx))/(1 + exp(−ξx)), where ϕ ≥ 1 and x ∈ R are scalar factors.
The following equation can be obtained from (10).

ėij(t) = −(tα + α)(R(t) + Q(t)) =

− (tα + α)

(
1 − exp(−ξeij(t))
1 + exp(−ξeij(t))

+
1 − exp(−ξeλ

ij(t))

1 + exp(−ξeλ
ij(t))

)
(15)

where R
(
eij(t)

)
=

1−exp(−ξeij(t))
1+exp(−ξeij(t))

, Q
(
eij(t)

)
=

1−exp(−ξeλ
ij(t))

1+exp(−ξeλ
ij(t))

. In light of the relevant

theory of differential equations, we can rewrite (15) as follows:

dy
dt

= −(tα + α)
(

R(y) + Q(y)
)

where y = eij(t). According to the Lyapunov function of this system, we know that
eij(t) either increases or decreases monotonically as t increases. For simplicity, we will
next discuss the case where eij(0) = y0 ≥ 0. In this case, we can derive the following:

∫ t

0
(tα + α)dt = −

∫ 0

y0

1
R(y) + Q(y)

dy (16)

At this point, we consider the following two situations.

a. When y0 ≤ 1, noticing that R(y) and Q(y) are convex, solving (16) gives

αt +
tα+1

α + 1
=
∫ y0

0

1
R(y) + Q(y)

dy

≤ 1
ω

∫ y0

0

1
y + yλ

dy

=
1

ω(1 − λ)
ln(y1−λ

0 + 1) (17)

where ω = R(1) = Q(1) = (1 − exp(−ξ))/(1 + exp(−ξ)) is a constant, deter-
mined by the scalar factor ξ. Similar to linear-type, solving for (17), we obtain

t ≤ α+1

√
α + 1

ω(1 − λ)
ln(y1−λ

0 + 1) (18)

b. When y0 > 1, based on Equations (16) and (17), Equation (19) be derived:

Mathematics 2024, 12, 3891 8 of 22

αt +
tα+1

α + 1

=
∫ 1

0

1
R(y) + Q(y)

dy +
∫ y0

1

1
R(y) + Q(y)

dy

≤ 1
ω(1 − λ)

ln2 +
∫ y0

1

1
R(y) + Q(y)

dy (19)

Notice that R(y) and Q(y) are monotonically increasing over the interval y > 0,
so for y > 1, R(y) > R(1) > ω and Q(y) > Q(1) > ω. Therefore, we have∫ y0

1

1
R(y) + Q(y)

dy ≤
∫ y0

1

1
ω

dy =
y0 − 1

ω
(20)

Substituting (20) into (19) and solving, we obtain

t ≤ α+1

√
α + 1

ω(1 − λ)
ln2 +

(α + 1)(y0 − 1)
ω

(21)

In light of the results (18) and (21) from the two situations, it can be concluded that

when t → α+1
√

α+1
ω(1−λ)

ln(y1−λ
0 + 1) or t → α+1

√
α+1

ω(1−λ)
ln2 + (α+1)(y0−1)

ω , the scalar

value eij(t) → 0 for any i and j in the defined domain. This means that the con-
vergence of the state matrix P(t) → P∗(t) is guaranteed. Thus, the convergence
time for the bipolar-sigmoid-type activation function can be expressed as

t <


α+1
√

α+1
ω(1−λ)

ln(χ1−λ
1 + 1) if χ1 ≤ 1

α+1
√

α+1
ω(1−λ)

ln2 + (α+1)(χ1−1)
ω if otherwise.

= tB (22)

(3) Power-Type: For the power-type case, the activation function is defined as ϕ(x) = xs,
where s is an odd number and λs < 1. In this case, the following equation can be
derived from (10).

ėij(t) = −(tα + α)
(

es
ij(t) + eλs

ij (t)
)

(23)

Similar to (16), we have

tα+1

α + 1
+ αt =

∫ y0

0

1
ys + yλs dy (24)

The discussion is divided into the following two situations:

a. When y0 ≤ 1, it can be found that 1 > λs > s, so ys > yλs. In light of (24), we can
obtain

tα+1

α + 1
+ αt ≤

∫ y0

0

1
2yλs dy =

1
2(1 − λs)

y1−λs
0

Then, the result (25) can be obtained:

t < α+1

√
α + 1

2(1 − λs)
y1−λs

0 (25)

Mathematics 2024, 12, 3891 9 of 22

b. When y0 > 1, we know that for all y > 1, we have yp < yλs. So similarly,

tα+1

α + 1
+ αt ≤

∫ 1

0

1
2yλs dy +

∫ y0

1

1
2ys dy

=
1

2(1 − λs)
+

y1−s
0 − 1

2(1 − s)

Then, the following result (26) can be obtained:

t < α+1

√
α + 1

2(1 − λs)
+

(α + 1)(y1−s
0 − 1)

2(1 − s)
(26)

In conclusion, when t → α+1
√

α+1
2(1−λs)y1−λs

0 or t → α+1

√
α+1

2(1−λs) +
(α+1)(y1−s

0 −1)
2(1−s) , the

scalar value e(ij(t) → 0 for any i and j on the definitional domain. This means that the
convergence of state matrix P(t) → P∗(t) is guaranteed. The convergence time for the
power-type activation function can be represented as

t <


α+1
√

α+1
2(1−λs)χ1−λs

1 if χ1 ≤ 1

α+1

√
α+1

2(1−λs) +
(α+1)(χ1−s

1 −1)
2(1−s) if otherwise.

= tP (27)

In light of the above analysis, it can be concluded that VFFTRNN achieves finite-time
convergence in solving the Sylvester Equation (1), regardless of the choice of activation
function. Therefore, the proof of Theorem 4 on finite-time convergence is completed.

Remark 1. Regardless of the chosen activation function, the convergence time of VFFTRNN is
determined by the initial error E(0) (i.e., E(0) = U(0)P(0) + P(0)V(0)− W(0)) and the design
factors α and λ.

Next, we will analyze the influence of the factors α and λ on the convergence time for
different activation functions.

(1) Linear-Type:

a. For α, in light of (14), tL can be rewritten as

tL = (χ2α1)
1

α1 (28)

where χ2 =
ln(χ1−λ

1 +1)
1−λ > 0 and α1 = α + 1 > 1. Then, let us take the partial

derivative with respect to α1.

∂tL
∂α1

= (χ2α1)
1

α1
1 − ln(χ2α1)

α2
1

(29)

We know that if α1 is large enough, 1 − ln(χ2α1) will become less than zero.
Therefore, for ∂tL

∂α1
, there are two possible situations:{

∂tL
∂α1

< 0 ∀α1 > 1
∂tL
∂α1

> 0 ∃α1 > 1

In the first situation, tL decreases as α1 increases. In other words, as α increases, tL
decreases simultaneously. Similarly, in the second situation, tL will first increase

Mathematics 2024, 12, 3891 10 of 22

and then decrease as α increases. This means that when α reaches a specific value,
determined by the initial error E(0), tL will attain its maximum.

b. For λ, in light of (14), it can easily be seen that we only need to analyze ln(χ1−λ
1 +1)

1−λ .
Next, take the partial derivative of this expression:

∂η

∂λ1
=

λ1χλ1
1 ln χ1 − (χλ1

1 + 1) ln(χλ1
1 + 1)

λ2
1

(30)

where η =
ln(χ1−λ

1 +1)
1−λ and λ1 = 1 − λ ∈ (0, 1). Since the denominator of (30) is

always positive, we only need to analyze the numerator:

λ1χλ1
1 ln χ1 − (χλ1

1 + 1) ln(χλ1
1 + 1) (31)

If χ1 ≤ 1, then λ1χλ1
1 ln χ1 ≤ 0, and λ1χλ1

1 ln χ1 − (χλ1
1 + 1) ln(χλ1

1 + 1) < 0.
Therefore, the value of (30) is always less than zero. If χ1 > 1, let χλ1

1 = λ2 > 1,
then λ1 = ln λ2

ln χ1
. The numerator can be rewritten as follows:

λ1χλ1
1 ln χ1 − (χλ1

1 + 1) ln(χλ1
1 + 1)

= λ2 ln λ2 − (λ2 + 1) ln(λ2 + 1) (32)

Note that the function f (x) = x ln x is monotonically increasing when x > 1.
Therefore, the value of Equation (32) is always less than zero. In other words, the
value of Equation (30) is always less than zero.
Based on the above discussion, we can conclude that for any λ1, it is always true
that ∂η

∂λ1
< 0. Considering the relationship between λ1 and λ, we can conclude

that when λ is larger, tL is smaller.

(2) Bipolar-Sigmoid-Type:

a. For α, in light of (22), tB can be rewritten as

tB = (χ3α1)
1

α1 (33)

where χ3 =


ln(χ1−λ

1 +1)
ω(1−λ)

> 0 , χ1 ≤ 1
ln 2

ω(1−λ)
+ χ1−1

ω > 0, χ1 > 1
. Similar to the analysis of the linear-

type above, there are two situations:{
∂tB
∂α1

< 0 ∀α1 > 1
∂tB
∂α1

> 0 ∃α1 > 1

For the first situation, when α increases, tB decreases. For the second situation,
there exists a specific value where tB is maximized.

b. For λ, by analyzing the structure of Equation (22), we focus on ln(χ1−λ
1 +1)

1−λ when
χ1 ≤ 1 and ln 2

1−λ when χ1 > 1. As λ increases, the value of ln 2
1−λ increases, Based

on the derivation in Section 1), it is evident that for any λ ∈ (0, 1), as λ increases,
tB also increases.

In addition, consider the influence of the factor ξ on the convergence time tB. We
know that ω = 1−e−ξ

1+e−ξ , and as ξ increases, ω also increases. Furthermore, according to
Equation (22), the larger ω is, the smaller tB becomes.

Mathematics 2024, 12, 3891 11 of 22

(3) Power-Type:

a. For α, let χ4 =


χ1−λs

1
2(1−λs) > 0 , χ1 ≤ 1

1
2(1−λs) +

1−χs−1
1

2(s−1) > 0, χ1 > 1
, then we have

tP = (χ4α1)
1

α1 (34)

Similar to the analysis of the linear-type case above, there are two possible situa-
tions: {

∂tP
∂α1

< 0 ∀α1 > 1
∂tP
∂α1

> 0 ∃α1 > 1

For the first situation, when α increases, tP decreases. For the second situation,
there exists a certain value where tP is maximized.

b. For λ, according to (27), we can conclude that the larger λ is, the larger tP becomes,
especially when χ1 > 0. In addition, when χ1 ≤ 1, we only need to consider
χ1−λs

1−λs . Let λ3 = 1 − λs ∈ (0, 1), then

∂

∂λ3

(
χλ3

1
λ3

)
=

χλ3
1 (λ3 ln χ1 − 1)

λ2
3

< 0 (35)

So in conclusion, it is clear that for ∀λ ∈ (0, 1), as λ increases, tP increases.

In light of the above derivation, the following conclusions can be drawn:

(1) For α, its relationship to the convergence time can always be divided into two cases.
In the first case, as α increases, the convergence time decreases. In the second case, the
convergence time first increases and then decreases. It is worth noting that even when
α = 0, the VFFTRNN system will still converge in finite time.

(2) For λ, the convergence time always increases with the increase in λ, regardless of the
chosen activation function. Clearly, the factor λ accelerates the convergence process
of the proposed VFFTRNN. If λ = 1, the proposed VFFTRNN becomes VP-CDNN.
Furthermore, if the factor α = 0, the proposed VFFTRNN reduces to ZNN.

3.2. Robustness Analysis

As we all know, in practical applications, circumstances are rarely perfect. Due to
various reasons, such as errors in digital implementations or higher-order residues from
circuit elements (e.g., diodes) in hardware implementations, many factors continuously
interfere with the VFFTRNN model. Among these, three common negative factors include
coefficient matrix disturbances, differentiation errors, and model implementation errors.
Next, we will discuss the robustness of the VFFTRNN model in the presence of these
negative factors.

(1) Coefficient Matrix Perturbation:

Theorem 5. If uncharted, smooth coefficient matrix perturbations ∆U(t) ∈ ℜm×m,
∆V(t) ∈ ℜn×n and ∆W(t) ∈ ℜm×n exist in the VFFTRNN model, and if they satisfy
the following conditions:

||N−1(t)||F ≤ υ1, ||N̂−1(t)||F ≤ υ2

||W(t)||F ≤ ι1, ||∆W(t)||F ≤ ι2, ∀t ∈ [0,+∞)

Mathematics 2024, 12, 3891 12 of 22

where the mass matrices are defined as N−1(t) :=
(

In ⊗U(t)− V(t)T ⊗ Im
)−1, N̂−1(t) :=(

In ⊗ (U(t) + ∆U(t)) − (V(t) + ∆V(t))T ⊗ Im
)−1. Therefore, the calculation error

|| ˆ̃P(t)||F = ||P̂(t)− P∗(t)||F is bounded.

Proof. The following proof uses the linear activation function as an example. First,
we define a variable P̃(t) = P(t)− P∗(t) which represents the error in the state matrix
P(t) → P∗(t). Then, its Frobenius norm can be written as

||P̃(t)||F =

√√√√ m

∑
i=1

n

∑
j=1

p̃2
ij(t) = || p̃(t)||2

where p̃(t) := vec
(

P̃(t)
)
∈ ℜmn×1. Furthermore, in light of (1), we can obtain an

expression of W:
W(t) = −U(t)P∗(t) + P∗(t)V(t) (36)

Substitute (36) into (4):
E(t) = U(t)P̃(t)− P̃(t)V(t)

In light of Theorem 1, we can acquire its vector form:

e(t) = N(t) p̃(t) = N(t)
(

p(t)− p∗(t)
)

(37)

where e(t) := vec(E(t)) and p∗(t) := vec(P∗(t)). From Theorem 2 and inequality (3),
it is clear that the matrix N(t) is invertible. Therefore, we conclude that

||P̃(t)||F = || p̃(t)||2 ≤ ||N−1(t)||F||e(t)||2

≤ υ1

√√√√ m

∑
i=1

n

∑
j=1

e2
ij(t) (38)

Substituting (13) into (38), we can obtain

||P̃(t)||F

≤ υ1

√√√√ m

∑
i=1

n

∑
j=1

((e1−λ
ij (0) + 1)e(λ−1)(αt+ tα+1

α+1) − 1)
2

1−λ

≤ υ1
√

mn((χ1−λ
1 + 1)e(λ−1)(αt+ tα+1

α+1) − 1)
1

1−λ

≤ υ1τ1e−(αt+ tα+1
α+1) (39)

where τ1 =
√

mn(χ1−λ
1 + 1)

1
1−λ > 0. The results demonstrate that the VFFTRNN

model exhibits super-exponential convergence in solving the Sylvester equation when
employing a linear-type activation function.
Next, we consider the case where perturbations in the coefficient matrices exist. Based
on Equation (8), it is straightforward to derive the implicit dynamic equation of the
VFFTRNN system under the influence of these perturbations.

˙̂U(t)P̂(t) + Û(t) ˙̂P(t)− ˙̂P(t)V̂(t)− P̂(t) ˙̂V(t) + ˙̂W(t)

=− (tα + α)(Φ(Û(t)P̂(t)− P̂(t)V̂(t) + Ŵ(t))

+ Φ(Û(t)P̂(t)− P̂(t)V̂(t) + Ŵ(t))λ) (40)

where Û(t) = U(t) + ∆U(t), V̂(t) = V(t) + ∆V(t) and Ŵ(t) = W(t) + ∆W(t). P̂(t)
denotes the solution to the VFFTRNN system with perturbation.

Mathematics 2024, 12, 3891 13 of 22

Furthermore, in light of (36), its vector form can be written as

w(t) = −N(t)p∗(t)

where w(t) := vec(W(t)). Then, we can acquire

p∗(t) = −N−1(t)w(t)

Therefore, we can derive the inequality for the theoretical solution P∗(t).

||P∗(t)||F = ||p∗(t)||2 = ||N−1(t)w(t)||2
≤ ||N−1(t)||F||w(t)||F ≤ υ1ι1 (41)

Let us assume that the theoretical solution of the VFFTRNN system with perturbation
is P̂∗(t). Similar to (40), we can easily deduce that

||P̂∗(t)||F ≤ ||N̂−1(t)||F||Ŵ(t)||F
≤ υ2(||W(t)||F + ||∆W(t)||F) ≤ υ2(ι1 + ι2) (42)

In addition, similar to (39), we can obtain

||P̂(t)− P̂∗(t)||F ≤ υ2τ2e−(αt+ tα+1
α+1) (43)

where τ2 =
√

mn(χ1−λ
5 + 1)

1
1−λ and χ5 = max |(Û(0)P̂(0)− P̂(0)V̂(0) + Ŵ(0))ij|.

Then, based on (41), (42) and (43), we can derive an upper bound for the computation
error || ˆ̃P(t)||F.

|| ˆ̃P(t)||F = ||P̂(t)− P∗(t)||F
≤ ||P̂(t)− P̂∗(t)||F + ||P̂∗(t)− P∗(t)||F

≤ υ2τ2e−(αt+ tα+1
α+1) + ||P̂∗(t)||F + ||P∗(t)||F

≤ υ2τ2e−(αt+ tα+1
α+1) + υ1ι1 + υ2(ι1 + ι2) (44)

In light of the above analysis, we conclude that when using a linear-type activation
function, the computation error || ˆ̃P(t)||F of the VFFTRNN system with perturbation
is bounded. Additionally, it is worth mentioning that the solution process exhibits a
super-exponential convergence rate.
Similarly, for sigmoid or power activation functions, it is not difficult to prove that the
computation error of the VFFTRNN system with perturbation is bounded. Due to the
limited space of this paper, the analysis for these two activation functions will not be
presented here.
Thus, the proof of the robustness of Theorem 5 regarding matrix perturbation is
complete.

(2) Differentiation and Model Implementation Errors:
In the process of hardware implementation, dynamics implementation errors and
differential errors related to U(t), V(t) and W(t) are inevitable. These errors are
collectively referred to as model implementation errors [35]. In this section, we
analyze the robustness of the VFFTRNN system in the presence of these errors. Let us
assume that the differential errors for the time derivatives of the matrices U̇(t) and
V̇(t) are Λ(t) ∈ ℜm×m and Ω(t) ∈ ℜn×n, respectively, and the model implementation

Mathematics 2024, 12, 3891 14 of 22

error is denoted as ∆(t) ∈ Rm×n. Then, based on Equation (8), the implicit dynamic
equation for the VFFTRNN system with these errors can be written as

U(t)Ṗ(t) + (U̇(t) + Λ(t))P(t)− Ṗ(t)V(t)

− P(t)(V̇(t) + Ω(t)) + Ẇ(t)− ∆(t)

= −(tα + α)
(

Φ(U(t)P(t)− P(t)V(t) + W(t))

+ Φ
(
(U(t)P(t)− P(t)V(t) + W(t))λ

))
(45)

Theorem 6. If there exist unknown smooth differentiation errors Λ(t), Ω(t) and a model
implementation error ∆(t) in the VFFTRNN model, which satisfy the following conditions:

||Λ(t)||F ≤ ε1 ||Ω(t)||F ≤ ε2 ||∆(t)||F ≤ ε3

||N−1(t)||F ≤ υ1 ||W(t)||F ≤ ι1, ∀t ∈ [0,+∞)

then its computation error ||P(t)− P∗(t)||F is bounded.

Proof. Let us rewrite (45) from matrix form to vector form for easier analysis.

N(t) ṗ(t) =− (Ṅ(t) + Ψ(t))p(t)− ẇ(t) + δ(t)

− (tα + α)
(

Φ(N(t)p(t) + w(t))

+ Φ
(
(N(t)p(t) + w(t))λ

))
(46)

where Ψ(t) := In ⊗ Λ(t) − ΩT(t) ⊗ Im and δ(t) := vec(∆(t)). In addition, we
can easily observe that e(t) = N(t)p(t) + w(t), and its time derivative is given by
ė(t) = Ṅ(t)p(t) + N(t) ṗ(t) + ẇ(t). Therefore, Equation (46) can be rewritten as

ė(t) = −(tα + α)
(

Φ(e(t)) + Φ(eλ(t))
)
+ δ(t)− Ψ(t)p(t) (47)

In light of (37), we can acquire

x(t) = N−1(t)e(t) + p∗(t) (48)

Substituting (47) into (48), we have

ė(t) =− (tα + α)
(

Φ(e(t)) + Φ(eλ(t))
)

+ H(t)e(t) + K(t) (49)

where H(t) = −Ψ(t)N−1(t) ∈ ℜmn×mn, as well as K(t) = δ(t)− Ψ(t)p∗(t) ∈ ℜmn×1.
Next, we construct a Lyapunov function candidate in the form v := 1

2 eT(t)e(t), and its
time derivative can be computed as follows:

v̇ = eT(t)ė(t) =− (tα + α)eT(t)
(

Φ(e(t)) + Φ(eλ(t))
)

+ eT(t)H(t)e(t) + eT(t)K(t) (50)

Mathematics 2024, 12, 3891 15 of 22

By observing the composition of (50) and (41), we can derive the following:

eT(t)H(t)e(t)

≤ ||eT(t)||2||H(t)||F||e(t)||2 ≤ eT(t)e(t)||H(t)||F
≤ ||Ψ(t)||F||M−1(t)||FeT(t)e(t)

≤ υ1(||In ⊗ Λ(t)||F + ||ΩT(t)⊗ Im||F)eT(t)e(t)

≤ υ1(ε1
√

n + ε2
√

m)
m

∑
i=1

n

∑
j=1

e2
ij(t)

and

eT(t)K(t) ≤ ||eT(t)||2||K(t)||F
≤ ||eT(t)||2(||∆(t)||F + ||Ψ(t)||F||P∗(t)||F)

≤
(
ε3 + (ε1

√
n + ε2

√
m)υ1ι1

)√√√√ m

∑
i=1

n

∑
j=1

e2
ij(t)

≤
(
ε3 + (ε1

√
n + ε2

√
m)υ1ι1

) m

∑
i=1

n

∑
j=1

|eij(t)|

By substituting the above two equations into (50), we can obtain the following:

v̇ ≤ −
m

∑
i=1

n

∑
j=1

|eij(t)|
(
(tα + α)

(
ϕ(|eij(t)|) + ϕ(|eλ

ij(t)|)
)

− ζ1υ1|eij(t)| − ζ2

)
= Υ(t) (51)

where ζ1 = ε1
√

n + ε2
√

m and ζ2 = ε3 + ζ1υ1ι1.
We know that ϕ(|eij(t)|) ≥ |eij(t)| for any t, and that tα + α increases as t increases.
Therefore, there always exists a value t0, such that for all t > t0, (tα + α)

(
ϕ(|eij(t)|) +

ϕ(|eλ
ij(t)|)

)
− ζ1υ1|eij(t)| − ζ2

)
> 0. Thus, for Equation (51), we need to consider the

following two cases:
α(ϕ(|eij(0)|) + ϕ(|eλ

ij(0)|))− ζ1υ1|eij(0)| − ζ2 ≥ 0
∀i ∈ {1, ..., m}, j ∈ {1, ..., n}

α(ϕ(|eij(0)|) + ϕ(|eλ
ij(0)|))− ζ1υ1|eij(0)| − ζ2 < 0
∃i ∈ {1, ..., m}, j ∈ {1, ..., n}

(52)

(1) For the first situation, it is easy to see that Υ(t) < 0, i.e., v̇ ≤ 0. Therefore, the
error e(t) will decrease monotonically as time t increases, which indicates that
P(t) will eventually converge to P∗(t) as time increases, i.e., ||P(t)− P∗(t)||F will
approach 0.

(2) For the second situation, due to the uncertainty of the sign of Υ(0), we need to
further subdivide it into two cases. If Υ(0) ≤ 0, then the analysis follows the
same reasoning as in case 1. Moreover, if Υ(0) > 0, there exists a time t0 such
that Υ(t) ≤ 0 for all t > t0. This indicates that the error e(t) will initially increase
and then decrease. Based on the results in [36], we can obtain the upper bound of
||P̃(t)||F = ||P(t)− P∗(t)||F when using a linear activation function:

||P̃(t)||F ≤ υ1ζ2(mn +
√

mn)
2(ρ(tα + α)− υ1ζ1)

(53)

Mathematics 2024, 12, 3891 16 of 22

Since ζ2 > 0 and (mn +
√

mn) > 0, it is guaranteed that (52) holds true. The
design factor ρ should be set greater than υ1ζ2

α in order for the denominator of
the fraction to be positive. Therefore, as t → +∞, the computation error ||P̃(t)||F
will approach 0.

Summing up the above, as time increases, the computation error ||P̃(t)||F tends to
zero in both cases. The difference is that in the first situation, the computation error
||P̃(t)||F continuously decreases, whereas in the second situation, the computation
error ||P̃(t)||F first increases and then decreases. Additionally, there exists an upper
bound given by υ1ζ2(mn+

√
mn)

2(ρ(tα+α)−υ1ζ1)
.

4. Illustrative Example

This section presents simulations using MATLAB 2021b for solving the Sylvester
equation with the proposed VFFTRNN. All experiments are conducted on a personal com-
puter equipped with a 64-bit operating system, 16.00 GB RAM, and an Intel(R) Core(TM)
i5-12600KF Processor (20M Cache, up to 4.90 GHz).

We will verify the performance of the proposed VFFTRNN and compare it with ZNN
by providing a specific example. The coefficients of the time-varying Sylvester Equation (1)
are set as follows:

U(t) =
[sin t

10
cos t

10
−cos t

10
sin t
10

]
, V(t) =

[sin t
100 0
0 cos t

50

]
W(t) =

[
sin2t

10 − 1 − cos2t
5

sin tcos t
10

sin tcos t
5 − 1

]
.

Then, its theoretical solution P∗(t) can be easily obtained:

P∗(t) =
[

10sin t −10cos t
10cos t 10sin t

]
.

In addition, we write P(t) solved by the VFFTRNN in the following form:

P(t) =
[

p11 p12
p21 p22

]
where pij denotes the ith row and j− column element of P(t). For the sake of discussion,
let us set the initial state P0 as follows:

P0 =

[
pa pb
pc pd

]
where pa, pb, pc and pd are numbers generated by MATLAB which lie within the range
[−25, 25].

Generally, the system is considered to have converged in solving the Sylvester
Equation (1) when the computation error ||P(t)− P∗(t)||F is less than 0.1% of the range
(i.e., ||P(t)− P∗(t)|| ≤ 50× 0.1% = 0.05). In other words, we only need to measure the time
when the calculation error ||P(t)− P∗(t)||F falls below 0.05, which allows us to determine
the convergence time.

4.1. Convergence Discussion

In this section, we will discuss the convergence performance of the VFFTRNN and
ZNN models in solving the Sylvester equation under various conditions.

Mathematics 2024, 12, 3891 17 of 22

First, we observe the effects of different factors on the convergence performance of
ZNN and VFFTRNN with the same activation function. Table 1 presents a comparison of
the convergence times of ZNN and VFFTRNN under various design factors.

Figures 2 and 3 show detailed simulation results of both models under different
conditions for α = µ = 0.1, α = µ = 1, and α = µ = 5. As seen, when µ is sufficiently
small (e.g., µ = 0.01), ZNN fails to converge. However, with µ = 0.1, the convergence
time of ZNN is 67.55 s. As the design factor µ increases, the convergence performance of
ZNN improves gradually. From Figure 2, we observe that when µ = 1, the computation
error ||P(t)− P∗(t)||F converges to zero in 6.98 s, nearly ten times faster than with µ = 0.1.
When µ = 5, the convergence time further decreases to just 1.37 s.

Next, we examine the convergence time of the computation error using VFFTRNN.
With α = 0.01 or α = 0.1, the computation error ||P(t)− P∗(t)||F converges to zero in just
2.39 or 2.35 s, which is significantly faster than ZNN.

Furthermore, the comparison results in Table 1 and Figures 2 and 3 clearly show that
the convergence performance of VFFTRNN is significantly better than that of ZNN. It is
worth noting that these simulation results use a linear-type activation function.

(a)

(b)

(c)

Figure 2. Solving Sylvester Equation (1) with given coefficients online with ZNN and its compu-
tational error ||P(t)− P∗(t)||F. Several red solid curves represent different initial states while the
unique black dotted curve represents the theoretical solution. (a) Solution to ZNN with µ = 0.1 and er-
ror ||P(t)− P∗(t)||F of ZNN with µ = 0.1. (b) Solution to ZNN with µ = 1 and error ||P(t)− P∗(t)||F
of ZNN with µ = 1. (c) Solution to ZNN with µ = 5 and error ||P(t)− P∗(t)||F of ZNN with µ = 5.

Mathematics 2024, 12, 3891 18 of 22

(a)

(b)

(c)

Figure 3. Solving Sylvester Equation (1) with given coefficients online with VFFTRNN and its
computational error ||P(t)− P∗(t)||F (λ = 5

7). Several red solid curves represent different initial states
while the unique black dotted curve represents the theoretical solution. (a) Solution to VFFTRNN
with α = 0.1 and error ||P(t)− P∗(t)||F of VFFTRNN with α = 0.1. (b) Solution to VFFTRNN with
α = 1 and error ||P(t)− P∗(t)||F of VFFTRNN with α = 1. (c) Solution to VFFTRNN with α = 5 and
error ||P(t)− P∗(t)||F of VFFTRNN with α = 5.

Table 1. Comparisons of convergence time of ZNN and VFFTRNN when solving Sylvester equation.

Parameter (α = µ) TZNN(s) TV FFTRNN(s)
0.01 Cannot converge 2.39
0.1 67.55 2.25
0.2 34.20 1.99
0.5 13.88 1.69
1 6.98 1.41
2 3.48 1.02
5 1.37 0.49

Second, we observed the effects of different activation functions on the convergence
performance of ZNN and VFFTRNN when the same factors were set.

Figures 4 and 5 show the computation error ||P(t)− P∗(t)||F curves for ZNN and
VFFTRNN under three activation functions (i.e., linear, bipolar-sigmoid, and power-type).

When using the linear activation function, it can be observed that ZNN takes 6.98 s
to converge to zero, whereas VFFTRNN converges in just 1.05 s. Similarly, when the

Mathematics 2024, 12, 3891 19 of 22

bipolar-sigmoid or power activation functions are used, the convergence time of VFFTRNN
is significantly shorter than that of ZNN.

This demonstrates the superior performance of the VFFTRNN system compared
to ZNN and also verifies its finite-time convergence property for solving the Sylvester
equation under different activation functions. It is worth noting that the factors were set to
µ = α = 1 and λ = 1

5 in the above simulation results.

(a) (b) (c)

Figure 4. The curves in the figure represent the convergence errors under different initial conditions.
When ZNN uses different activation functions without perturbation to solve Sylvester Equation (1),
its convergence error ||P(t)− P∗(t)||F is as shown above (µ = 1). (a) Linear. (b) Sigmoid. (c) Power
(s = 3).

(a) (b) (c)

Figure 5. The curves in the figure represent the convergence errors under different initial conditions.
WhenVFFTRNN uses different activation functions without perturbation to solve Sylvester Equation
(1), its convergence error ||P(t)− P∗(t)||F is as shown above (α = 1 and λ = 1

5). (a) Linear. (b) Sig-
moid. (c) Power (s = 3).

4.2. Robustness Discussion

In this section, we will verify the robustness of the VFFTRNN and compare it with the
ZNN. To ensure both generality and simplicity, we consider the effects of differentiation
and model implementation errors. For the simulation, we set the differentiation and model
implementation errors as follows:

Λ(t) = β1

[
cos 2t 0

0 sin 2t

]
, Ω(t) = β2

[
0 cos2t

sin2t 0

]
∆(t) = β3

[
sin2t 0

0 cos2t

]
.

where β1, β2 and β3 are adjustable factors that control the magnitude of these disturbances.
In this section, we will compare the robustness of VFFTRNN and ZNN using the

four cases shown in Figure 6. From Figure 6, it can be observed that when β1 = β2 = β3,
the disturbances are small, but the computation error ||P(t)− P∗(t)||F of ZNN does not
converge to zero. In contrast, for VFFTRNN, we can see that the computation error
converges within approximately 4 s.

Mathematics 2024, 12, 3891 20 of 22

Examining the other three cases, it is evident that the computation error of VFFTRNN
still converges to zero, even with much larger disturbances. Notably, the convergence time
of VFFTRNN decreases as the design factor α increases or λ decreases.

In conclusion, although the presence of disturbances can affect the convergence per-
formance of VFFTRNN, it still converges to zero in finite time, regardless of the size of the
disturbance, confirming the robustness of the model.

(a) (b)

(c) (d)

Figure 6. Robustness of ZNN and VFFTRNN with varying degrees of differential error and model
implementation error. The arrows point to the original location of the magnified detail in each figure.
(a) β1 = β2 = β3 = 0.05. (b) β1 = β2 = 0.05 and β3 = 0.15. (c) β1 = β3 = 0.05. and β2 = 0.15.
(d) β1 = 0.15 and β2 = β3 = 0.05.

5. Conclusions

In this paper, we propose a novel neural network called VFFTRNN and investigate its
finite-time convergence and robustness for solving the Sylvester equation under three dif-
ferent activation functions. Compared to the conventional ZNN, the proposed VFFTRNN
introduces a time-varying coefficient and a fractional power term, which accelerate the con-
vergence speed. More importantly, VFFTRNN not only guarantees finite-time convergence
but also achieves a super-exponential convergence rate. Simulation results demonstrate the
superior performance of the proposed neural network in solving the Sylvester equation.
Therefore, VFFTRNN offers significant advantages for real hardware implementation.

In the future, for hardware implementation, we will consider using FPGA to imple-
ment VFFTRNN networks. The flexibility and parallel processing capabilities of FPGA
make it highly suitable for real-time applications, enabling efficient computation of network
operations. This method will help achieve high performance and low power consumption,
making it a feasible solution for the practical deployment of VFFTRNN networks.

Author Contributions: Methodology, H.T.; conceptualization, J.W.; software, H.G.; validation, Z.Z.;
formal analysis, L.T.; investigation, Q.Z.; project administration, C.L. All authors have read and
agreed to published version of this manuscript.

Funding: This work was supported in part by the Jiangxi Provincial Key Laboratory of Intelligent
Systems and Human–Machine Interaction under grant 2024SSY03121, and in part by the Science and
Technology Department of Jiangxi Province of China under grants 20204ABC03A39, 20161ACB21007,
20171BBE50071, and 20171BAB202033.

Mathematics 2024, 12, 3891 21 of 22

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wei, Q.; Dobigeon, N.; Tourneret, J.Y.; Bioucas-Dias, J.; Godsill, S. R-FUSE: Robust fast fusion of multiband images based on

solving a Sylvester equation. IEEE Signal Process. Lett. 2016, 23, 1632–1636. [CrossRef]
2. Wang, L.; Li, D.; He, T.; Xue, Z. Manifold regularized multi-view subspace clustering for image representation. In Proceedings of

the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 283–288.

3. Hu, H.; Lin, Z.; Feng, J.; Zhou, J. Smooth representation clustering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3834–3841.

4. Jang, J.S.; Lee, S.Y.; Shin, S.Y. An optimization network for matrix inversion. In Neural Information Processing Systems; MIT Press:
Cambridge, MA, USA, 1987.

5. Fa-Long, L.; Zheng, B. Neural network approach to computing matrix inversion. Appl. Math. Comput. 1992, 47, 109–120.
[CrossRef]

6. Cichocki, A.; Unbehauen, R. Neural networks for solving systems of linear equations and related problems. IEEE Trans. Circuits
Syst. I Fundam. Theory Appl. 1992, 39, 124–138. [CrossRef]

7. Xia, Y.; Wang, J. A recurrent neural network for solving linear projection equations. Neural Netw. 2000, 13, 337–350. [CrossRef]
8. Zhang, Y.; Wang, J. Recurrent neural networks for nonlinear output regulation. Automatica 2001, 37, 1161–1173. [CrossRef]
9. Li, S.; Li, Y. Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 2013,

44, 1397–1407. [CrossRef] [PubMed]
10. Xiao, L.; Liao, B.; Luo, J.; Ding, L. A convergence-enhanced gradient neural network for solving Sylvester equation. In

Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3910–3913.

11. Zhang, Z.; Zheng, L.; Weng, J.; Mao, Y.; Lu, W.; Xiao, L. A new varying-parameter recurrent neural-network for online solution of
time-varying Sylvester equation. IEEE Trans. Cybern. 2018, 48, 3135–3148. [CrossRef]

12. Zhang, Y.; Jiang, D.; Wang, J. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE
Trans. Neural Netw. 2002, 13, 1053–1063. [CrossRef]

13. Yan, X.; Liu, M.; Jin, L.; Li, S.; Hu, B.; Zhang, X.; Huang, Z. New zeroing neural network models for solving nonstationary
Sylvester equation with verifications on mobile manipulators. IEEE Trans. Ind. Inform. 2019, 15, 5011–5022. [CrossRef]

14. Zhang, Z.; Zheng, L. A complex varying-parameter convergent-differential neural-network for solving online time-varying
complex Sylvester equation. IEEE Trans. Cybern. 2018, 49, 3627–3639. [CrossRef]

15. Deng, J.; Li, C.; Chen, R.; Zheng, B.; Zhang, Z.; Yu, J.; Liu, P.X. A Novel Variable-Parameter Variable-Activation-Function Finite-
Time Neural Network for Solving Joint-Angle Drift Issues of Redundant-Robot Manipulators. IEEE/ASME Trans. Mechatron. 2024,
1–12. [CrossRef]

16. Xu, X.; Sun, J.; Endo, S.; Li, Y.; Benjamin, S.C.; Yuan, X. Variational algorithms for linear algebra. Sci. Bull. 2021, 66, 2181–2188.
[CrossRef] [PubMed]

17. Li, Y.; Chen, W.; Yang, L. Multistage linear gauss pseudospectral method for piecewise continuous nonlinear optimal control
problems. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2298–2310. [CrossRef]

18. Wang, X.; Liu, J.; Qiu, T.; Mu, C.; Chen, C.; Zhou, P. A real-time collision prediction mechanism with deep learning for intelligent
transportation system. IEEE Trans. Veh. Technol. 2020, 69, 9497–9508. [CrossRef]

19. Zhang, Z.; Li, S.; Zhang, X. Simulink comparison of varying-parameter convergent-differential neural-network and gradient
neural network for solving online linear time-varying equations. In Proceedings of the 2016 12th World Congress on Intelligent
Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 887–894

20. Zhang, Y.; Chen, D.; Guo, D.; Liao, B.; Wang, Y. On exponential convergence of nonlinear gradient dynamics system with
application to square root finding. Nonlinear Dyn. 2015, 79, 983–1003. [CrossRef]

21. Wang, S.; Dai, S.; Wang, K. Gradient-based neural network for online solution of lyapunov matrix equation with li activation
function. In Proceedings of the 4th International Conference on Information Technology and Management Innovation, Shenzhen,
China, 12–13 September 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 955–959.

22. Ma, W.; Zhang, Y.; Wang, J. Matlab simulink modeling and simulation of zhang neural networks for online time-varying sylvester
equation solving. Comput. Math. Math. Phys. 2008, 47, 285–289.

23. Li, S.; Chen, S.; Liu, B. Accelerating a recurrent neural network to finite-time convergence for solving time-varying sylvester
equation by using a sign-bi-power activation function. Neural Process. Lett. 2013, 37, 189–205. [CrossRef]

24. Shen, Y.; Miao, P.; Huang, Y.; Shen, Y. Finite-time stability and its application for solving time-varying sylvester equation by
recurrent neural network. Neural Process. Lett. 2015, 42, 763–784. [CrossRef]

25. Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Modified znn for time-varying quadratic programming with inherent tolerance to noises and its
application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 2016, 63, 6978–6988. [CrossRef]

http://doi.org/10.1109/LSP.2016.2608858
http://dx.doi.org/10.1016/0096-3003(92)90040-8
http://dx.doi.org/10.1109/81.167018
http://dx.doi.org/10.1016/S0893-6080(00)00019-8
http://dx.doi.org/10.1016/S0005-1098(01)00092-9
http://dx.doi.org/10.1109/TCYB.2013.2285166
http://www.ncbi.nlm.nih.gov/pubmed/24184789
http://dx.doi.org/10.1109/TCYB.2017.2760883
http://dx.doi.org/10.1109/TNN.2002.1031938
http://dx.doi.org/10.1109/TII.2019.2899428
http://dx.doi.org/10.1109/TCYB.2018.2841970
http://dx.doi.org/10.1109/TMECH.2024.3425325
http://dx.doi.org/10.1016/j.scib.2021.06.023
http://www.ncbi.nlm.nih.gov/pubmed/36654109
http://dx.doi.org/10.1109/TAES.2021.3054074
http://dx.doi.org/10.1109/TVT.2020.3003933
http://dx.doi.org/10.1007/s11071-014-1716-3
http://dx.doi.org/10.1007/s11063-012-9241-1
http://dx.doi.org/10.1007/s11063-014-9397-y
http://dx.doi.org/10.1109/TIE.2016.2590379

Mathematics 2024, 12, 3891 22 of 22

26. Mao, M.; Li, J.; Jin, L.; Li, S.; Zhang, Y. Enhanced discrete-time zhang neural network for time-variant matrix inversion in the
presence of bias noises. Neurocomputing 2016, 207, 220–230. [CrossRef]

27. Xiao, L.; Liao, B. A convergence-accelerated zhang neural network and its solution application to lyapunov equation. Neurocom-
puting 2016, 193, 213–218. [CrossRef]

28. Liao, B.; Zhang, Y.; Jin, L. Taylor discretization of znn models for dynamic equality-constrained quadratic programming with
application to manipulators. Neural Netw. Learn. Syst. IEEE Trans. 2016, 27, 225–237. [CrossRef] [PubMed]

29. Xiao, L. A finite-time convergent zhang neural network and its application to real-time matrix square root finding. Neural Comput.
Appl. 2017, 31, 793–800. [CrossRef]

30. Zhang, Y.; Mu, B.; Zheng, H. Link between and comparison and combination of zhang neural network and quasi-newton bfgs
method for time-varying quadratic minimization. IEEE Trans. Cybern. 2013, 43, 490–503. [CrossRef]

31. Yan, D.; Li, C.; Wu, J.; Deng, J.; Zhang, Z.; Yu, J.; Liu, P.X. A novel error-based adaptive feedback zeroing neural network for
solving time-varying quadratic programming problems. Mathematics 2024, 12, 2090. [CrossRef]

32. Zhang, Z.; Lu, Y.; Zheng, L.; Li, S.; Yu, Z.; Li, Y. A new varying-parameter convergent-differential neural-network for solvingtime-
varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 2018, 63, 4110–4125. [CrossRef]

33. Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis, 1991; Cambridge University Presss: Cambridge, UK, 1991; Volume 37, p. 39.
34. Strang, G.; Freund, L. Introduction to applied mathematics. J. Appl. Mech. 1986, 53, 480. [CrossRef]
35. Mead, C.; Ismail, M. Analog VLSI Implementation of Neural Systems; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012; Volume 80.
36. Zhang, Y.; Ruan, G.; Li, K.; Yang, Y. Robustness analysis of the zhang neural network for online time-varying quadratic

optimization. J. Phys. A Math. Theor. 2010, 43, 245202. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2016.05.010
http://dx.doi.org/10.1016/j.neucom.2016.02.021
http://dx.doi.org/10.1109/TNNLS.2015.2435014
http://www.ncbi.nlm.nih.gov/pubmed/26058059
http://dx.doi.org/10.1007/s00521-017-3010-z
http://dx.doi.org/10.1109/TSMCB.2012.2210038
http://dx.doi.org/10.3390/math12132090
http://dx.doi.org/10.1109/TAC.2018.2810039
http://dx.doi.org/10.1115/1.3171799
http://dx.doi.org/10.1088/1751-8113/43/24/245202

	Introduction
	Problem Formulation and Knowledge Preparation
	Varying-Factor Finite-Time Recurrent Neural Networks
	Convergence Analysis
	Robustness Analysis

	Illustrative Example
	Convergence Discussion
	Robustness Discussion

	Conclusions
	References

