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Abstract: Although seismic response predictions are widely used for engineering structures, their
applications in electrical equipment are rare. Overstressing at the bottom of the porcelain insulators
during seismic events has made power transformer bushings in substations prone to failure. Thus,
this paper proposed and compared six integrated machine learning (ML) models for seismic stress re-
sponse predictions for porcelain transformer bushings using easily monitored acceleration responses.
Metaheuristic algorithms such as particle swarm optimization were employed for architecture tuning.
Prediction accuracies for stress response values and classifications were evaluated. Finally, shaking
table tests and simulation analyses for a 1100 kV bushing were implemented to validate the accuracy
of the six ML models. The results indicated that the proposed ML models can quickly forecast
the maximum stress experienced by a porcelain bushing during earthquakes. Swarm intelligence
evolutionary technologies could quickly and automatically aid in the retrofitting of architecture for
the ML models. The K-nearest neighbor regression model had the best level of prediction accuracy
among the six selected ML models for experimental and simulation validations. ML prediction
models have clear benefits over frequently used seismic analytical techniques in terms of speed and
accuracy for post-earthquake emergency relief in substations.

Keywords: porcelain transformer bushing; seismic response prediction; metaheuristic optimization;
machine learning; simulation analysis; shaking table tests

MSC: 68W99

1. Introduction

Substations play a crucial role in power transmission since they are responsible for
converting and regulating electricity [1]. Nevertheless, during past seismic events [2–4],
including the 2022 Luding earthquake in China [5], electrical equipment in substations en-
dured significant harm and displayed clear susceptibility. Damage to substation equipment
can interrupt normal power delivery and result in high financial costs, further hindering
post-earthquake relief work.

Electrical equipment used in substations typically includes a vertical or inclined
cantilever insulator equipment body together with a supporting structure such as a steel
frame or turret, as shown in Figure 1. Substations consist of a variety of equipment, such
as post insulators, transformer bushings, disconnect switches, circuit breakers, and surge
arresters. The equipment damaged in the 2008 Wenchuan earthquake exhibited numerous
common failure mechanisms, including failure of the porcelain insulators, the cracking
of connection flanges [5], and oil leakage from insulators [6]. Damage to equipment
often occurs due to high stress in the bottom positions, surpassing the materials’ maximum
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strength. Thus, determining the peak stresses of the porcelain insulators during earthquakes
is a crucial factor for maintaining structural integrity.
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In recent years, studies with a particular emphasis on substation equipment, including
power transformers [7–11] and other equipment [12–14], have been conducted. These
studies have involved seismic response analysis [15,16], seismic mitigation [17–19], and
vulnerability and risk assessments [20–22]. Recently, research has been conducted on
the evaluation of substation equipment after earthquakes [23,24]. Among them, power
transformers are of high concern since they are the core equipment in substations. In
1998, Bellorini et al. conducted static calculations and vibrational experiments on high-
voltage bushings to assess the stipulated amplification factor between the ground and the
transformer bushing flange [25]. In 2019, He et al. conducted shaking table experiments to
assess the seismic performance of five UHV transformer bushings mounted on support
frames [26,27]. Their study indicated that the metal flange may be susceptible to collapsing
during earthquakes. Based on this analysis, a revised flange design was suggested to
enhance its ability to withstand seismic activity [28]. Additional research on the relationship
between flanges and their stiffness has also been conducted [29]. Xie et al. conducted a
numerical investigation of the seismic reactions of post-electrical equipment using linear-
elastic analysis [30]. The validity of the theoretical model was confirmed using shaking
table experiments. These studies contribute to improving the structural safety of electrical
systems in substations.

The most recent research is relevant to the design or retrofitting of structures un-
dergoing seismic activity, rather than for assessing damage after earthquakes. There is a
significant paucity of research on post-earthquake efforts. The analytical procedures often
used in seismic studies on electrical equipment, such as shaking table tests and simulation
calculations, are too time-consuming to provide prompt post-earthquake identification
due to the huge number of equipment involved and the damaged bushings or insulators
are clearly a result of inadequate strength. In some instances, the structures may still look
whole, but micro-cracks may have developed owing to excessive stress or cumulative dam-
age. Porcelain insulators containing micro-cracks pose a risk to structural safety and the
transmission of electricity. Therefore, it is necessary to identify and replace them. However,
the task of identifying every individual piece of equipment in substations after earthquakes
is difficult for maintenance staff due to the substantial quantity of equipment there. The
peak root stress is crucial for making informed decisions regarding post-earthquake ser-
vices, but the installation of strain gauges is challenging due to the presence of a silicone
layer used for protection. In addition, they are also susceptible to interference from elec-



Mathematics 2024, 12, 2084 3 of 21

tromagnetic fields, resulting in inaccurate monitoring data. Given these constraints, it is
imperative to use non-contact signal-gathering technologies and evaluation methods.

To assess the physical indexes that are difficult to measure, artificial intelligence (AI)
technologies, especially machine learning (ML) and deep learning (DL), have been intro-
duced in structural engineering [31,32]. Using AI algorithms, prediction models can be
developed to estimate the failure probability or damage index of building structures. In
2015, Goulet et al. proposed an assessment framework that could learn the relationship
between the frequency shift and damage state of buildings using data-driven methods, and
this assessment method could estimate the safety state by monitoring data [33]. Ni et al. pro-
posed a data-driven approach for post-earthquake reliability assessments of civil structures
and the updated probability density functions can be used to assess reliability [34]. How-
ever, the predicted objectives of these studies are always probability or defined performance
indexes, or response time history, and the hyper-parameter tuning is a time-consuming grid
search or is artificial. Thus, several academics accurately developed non-linear structural
seismic responses using long short-term memory (LSTM) networks [35] and attention-based
LSTM networks [36]. The previous paragraph has stated that the primary focus is on the
peak seismic stress response of substation equipment. Therefore, the network architecture
of DL, which requires significant time for superfluous time history adjustments, can be
disregarded. A rapid method for architecture tuning of ML models for predicting the peak
response of equipment after earthquakes is desperately needed.

Based on the above-mentioned research background and literature review, this paper
conducts a seismic assessment of electrical equipment in substations. In the current seismic
study of substation equipment, the existing literature focuses mainly on pre-earthquake seis-
mic performance analysis, mitigation analysis, and fragility assessment. Post-earthquake
rapid prediction of seismic stress responses is beneficial to the rapid detection of substations
with hundreds of equipment. However, investigations of seismic response predictions
for substation equipment are lacking in the current literature, indicating a gap in current
research. To solve this problem, ML techniques, which can estimate the response results in
a short time and provide potential solutions, are introduced in this work. The approach
of using artificial search or grid search to find suitable ML model hyperparameters is
time-consuming. Instead, metaheuristic optimization algorithms are employed due to their
automatic search performance. As the most commonly used metaheuristic optimization
algorithm, particle swarm optimization (PSO) is adopted as a representation to illustrate the
feasibility of using metaheuristic algorithms to optimize ML models of electrical equipment.

Therefore, the goal of this paper is to enrich the seismic research on substation equip-
ment by using ML techniques to predict peak stress responses of equipment. It provides
an approach for finding the peak response of one piece of equipment after earthquakes;
this can be further used for all equipment, thus reducing the post-earthquake decision
time. The specific methodology includes: (1) selecting a large number of natural ground
motions to excite the numerical model of equipment to obtain a batch seismic response
containing multiple peak accelerations and peak stress responses at vulnerable positions;
(2) each ground motion produces a sample, thus there are lots of samples that are then split
into a training set and a test set; (3) The training set is used to train ML models, taking peak
accelerations as inputs and the peak stress as the output; (4) During the training process,
the model structures can be adjusted using PSO to optimize the structural hyperparameters;
(5) after adjusting the model structures, the final ML models can be employed as prediction
models after earthquakes. This paper takes a typical 1100 kV porcelain transformer bushing
as an example to conduct the case study. The remainder of this paper is organized as
follows: In Section 2, six ML algorithms and PSO are introduced. Section 3 illustrates a
typical 1100 kV porcelain transformer. The overall application framework and specific
methodology for predicting the peak responses of the bushing are given in Section 4 and
the results are presented in Section 5. Finally, the prediction models are validated using
shaking table tests and simulation analyses in Section 6.
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2. Methodology
2.1. Machine Learning Models

ML is a commonly used technology in the data-driven area, known for its robust
learning and predictive capabilities. By using data learning, the prediction model can
be constructed as a mapping between various physical variables. This research aims to
estimate the peak stress at the bottom of the transformer bushing. Unlike a classified index,
this quantity is a continuous value; therefore, regression techniques are used instead of
classification algorithms. In the context of a certain prediction model, the optimum hyper-
parameter combination is considered as the solution that leads to the best performance.
This implies that it maximizes the performance function or minimizes the error function.
While ML models can enhance their prediction performance by artificial manipulation of
hyperparameters, the excessive time required for this procedure is often unsatisfactory.
Fortunately, biological metaheuristic algorithms provide possible replacements for artificial
methods, allowing for the automated discovery of the best combinations of hyperparam-
eters [37]. This work used the particle swarm optimization (PSO) method as the search
strategy for optimal hyperparameters. PSO is a stochastic search algorithm that mimics
the cooperative foraging behavior of birds. It should be pointed out that other heuristic
optimization algorithms can also be used. The main role is to find the optimal hyperparam-
eters for ML models, hence any optimization algorithm can be accepted as long as it can
help the ML model achieve the required predictive ability. In this paper, PSO is used as a
case study to illustrate the overall process. Its basic principle is introduced in Section 2.2.

2.1.1. Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) is a common neural network structure. Artificial
neural networks, convolutional neural networks, and recurrent neural networks are very
effective at making accurate predictions. MLP, as a basic network, also has a robust
capacity to determine both linear and non-linear relationships. The MLP model is capable
of converting a mapping from an m-dimensional input Xm = [x1, x2, . . ., xm] to an n-
dimensional output Yn = [y1, y2, . . ., yn]. Figure 2 illustrates the overall structure of an
MLP with two hidden layers and a one-dimensional output. Every neuron in the hidden
layer is responsible for converting the input from the preceding layer into the output of
that neuron. It is achieved using a weighted linear summation and a non-linear activation
function. Once the numbers of hidden layers and neurons in each layer are determined, the
learned objectives are the weighted coefficients and bias values. Following this, the output
can be provided by the MLP model if the m-dimension vector is given.
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2.1.2. Support Vector Regression (SVR)

The goal of the support vector machine (SVM) technique is to identify a hyperplane in
an n-dimensional space that can accurately classify input points. Support vector regression
(SVR) employs the same underlying ideas as SVM, but instead of doing classification, SVR
focuses on predicting numerical values. Although SVM is more well-known, SVR is known
for its efficacy in estimating real-value functions. SVR is a supervised learning technique
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that builds models using symmetric loss functions that may punish both overestimation and
underestimation. The SVR model, using the ordinary least squares approach, establishes a
threshold ε around the regression line (or hyperplane) to exclude any data points inside ε

from being penalized for mistakes. The range of deviation is referred to as the ε-pipeline.
The corresponding mathematical issue involves minimizing the norm of the weight vector,
as represented by Equation (1), while satisfying the constraint condition described in
Equation (2).

min
w,b

1
2
∥w∥2

2 (1)∣∣∣yi −
(

wTxi + b
)∣∣∣ ≤ ε i = 1, 2, ..., N (2)

where w represents the weight and b represents the bias value. (xi, yi) is the i-th sample.

2.1.3. Kernel Ridge Regression (KRR)

Ridge regression is a modified version of the least squares approach that imposes a
penalty on the size of the coefficients. Kernel ridge regression (KRR) is a combination of
ridge regression and the kernel trick, as described by Murphy [39]. The space resulting from
combining the kernel and the data is determined, and the KRR algorithm then estimates a
linear relationship. A non-linear relationship may be obtained from the original data using
non-linear kernels. Unlike the least squares approach, KRR sacrifices its unbiasedness in
order to achieve great numerical stability, resulting in improved computational accuracy.
The KRR model can offer mapping between the covariates x and the output variables y,
both of which are continuous. The primary objective is to minimize the overall loss function,
which can be expressed as:

∑
i

(
wTϕ(xi)− yi

)2
+

λ

2
∥w∥2 (3)

where w is the weight and λ is the ridge parameter. ϕ(·) is a feature map and (xi, yi) is the
i-th sample. In Equation (3), the leftmost items are the cumulative error and regularization.
The goal of KRR is to determine the estimation model f (x) = wTϕ(x). In KRR, the kernel
k(x, y) = ϕ(x)Tϕ(y) such that the feature map is not included in the estimation model f.

2.1.4. Stochastic Gradient Descent Regression (SGDR)

Gradient descent is a widely used approach for optimizing model parameters in
machine learning architecture. The gradient descent approach may be used to iteratively
get the minimal loss and related model hyperparameters while searching for the minimum
value of the loss function. Machine learning encompasses two gradient descent algorithms
that are derived from fundamental theory: stochastic gradient descent and batch gradient
descent. The pseudocodes for stochastic gradient descent are shown in Algorithm 1. Only
the former is examined in this research due to its efficiency and ease of implementation.
Each training sample promptly changes settings to achieve a higher speed.

The loss function quantifies the discrepancy between the estimated and real values in
the linear estimation Equation (4), as shown in Equation (5).

f (xi) = θTxi (4)

L(θ) =
1
2
(yi − f (xi))

2 (5)

The loss function is directly associated with the model parameter, where the model
parameter is considered the independent variable and the loss is the dependent variable.
In order to reduce the amount of loss, the model parameter θ is adjusted in the direction of
the gradient (as shown in Equation (6)). Thus, the hyperparameter η determines the pace
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at which the best solution, namely the learning rate, is obtained. Both excessively big and
tiny values are unsuitable.

θ := θ − η ∗ ∇L = θ − η × ∂

∂θ
L(θ) (6)

where xi represents an input vector, yi represents an output corresponding to xi, and L
represents the loss function.

Algorithm 1 Stochastic Gradient Descent.

1: Require: Learning rate ηk
2: Require: Initial parameter θ
3: while Stopping criterion not met do
4: Sample a minibatch of m examples from the training set
5: {x1,. . .,xm}
6: Set g = 0.
7: for i = 1 to m do if m = 1 → single example SGD
8: Compute gradient estimate:

∧
g← ∧

g + 1
m∇θ L( f (xi; θ), yi)

9: end for
10: Apply update: θ ← θ − ηk

∧
g

11: end while

2.1.5. K-Nearest Neighbor Regression (KNR)

If the majority of the K-nearest samples in the feature space belong to a certain category,
then the sample should be classified in that category. This technique, called the K-nearest
neighbor algorithm, is used in the field of machine learning. K-nearest neighbor regression
(KNR) is an extension that is used to address challenges associated with the prediction
of continuous variables, as opposed to classification problems. KNR is a non-parametric
learning approach, which implies that it does not need training a function as an estimating
model. It only depends on the initial data. In Figure 3, the blue point is currently unknown
and we anticipate acquiring its output. Given that K = 4, there are four data points that are
in close proximity to this blue point. The proximity between any two points is contingent
upon the definition of distance. Typically, Euclidean distance or Manhattan distance are
used. After performing the distance computation, the outputs of these four data points are
retrieved, and the average value is used as the estimated output of the blue point.
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2.1.6. Decision Tree Regression (DTR)

A decision tree (DT) is a graphical representation in the form of a tree, as shown
in Figure 4. A DT does not need to assume a relationship between input and output
before training, unlike other models. This is because a DT relies on the original data
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structure. This approach is applicable for both linear and non-linear relationship estimation.
Algorithm 2 shows the pseudocode for the decision tree algorithm. Figure 4 illustrates
a straightforward example of DTR in a 2D feature space. The tree originates from the
root node, which encompasses all the data points. The first optimum division (x1, a) is
determined by calculating the error, resulting in the creation of two data subsets. The
same computations are performed for each subset in order to partition the spaces into
further subspaces. Following two divisions, a total of four-leaf nodes are identified. The
decision tree regression operates on the premise of averaging the outputs of all data points
inside a subspace to get the estimated output. If a newly acquired data point is verified as
belonging to this specific subspace, its output is determined solely based on the output of
this subspace.

Algorithm 2 Pseudocode for the decision tree algorithm.

1: Input: Training dataset D;
2: Output: Regression tree f (x)
3: In the input space where the training dataset is located, recursively divide each
4: region into two subregions and determine the output values on each subregion and
5: construct a binary decision tree:
6: (1) Select the optimal segmentation variable and segmentation point s, and solve it

7:min
j,s

[
min

c1
∑

xi∈R1(j,s)
(yi − c1)

2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)
2

]
8: Traverse variable j, scan the segmentation point s for a fixed segmentation variable
9: j, and select the pair (j, s) that minimizes equation
10: (2) Divide the region using the selected pairs (j, s) and determine the corresponding
11: output values:

12: R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) ≤ s

}
13:

∧
cm = 1

Nm
∑

xi∈Rm(j,s)
yi, x ∈ Rm, m = 1, 2

14: (3) Continue to call the above two steps on the two subregions until the stop
15: condition 1:is met.
16: (4) Divide the input space into M regions R1, R2, . . ., RM, and generate a decision tree:

17: f (x) =
M
∑

m=1

∧
cm I(x ∈ Rm)
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2.2. Particle Swarm Optimization Technology

Particle swarm optimization (PSO) is a swarm intelligence algorithm [33] that mimics
the predatory behavior of bird groups in nature. The flock’s objective is to locate suste-
nance within a designated area. During the search, the birds communicate and exchange
information, including their unique positions. In order to determine whether they have
discovered the most effective answer via collaboration, the birds assess the situation and
share their own ideal solution with the whole flock. Ultimately, the flock may converge on
the food source, thus establishing the ideal solution.
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Algorithm 3 displays the whole sequence of steps in the method. A group of particles
with no mass is used to replicate the collective behavior of bird flocks, which symbolizes
the random solutions. The function output represents the fitness value associated with
a particle. Every particle has two distinct characteristics: velocity (V) and position (X).
During each iteration, the particles undergo displacement from their present position X
based on their velocity V and two extrema. There are two types of extrema: the individual
extremum, known as pbest, and the global extremum, known as gbest. The term “gbest”
refers to the highest fitness value among all fitness values associated with all particles, as
shown in Equations (7) and (8).

Vj := ω×Vj + c1 × rand()×
(

pbestj − Xj
)
+ c2 ∗ rand()×

(
gbestj − Xj

)
(7)

Xj := Xj + Vj (8)

where Vj and Xj represent the speed and location of particle j, respectively; ω represents the
inertia weight; c1 and c2 represent the learning factors, generally c1 = c2 = 2. After enough
iterations, the particles find the optimal solution for the best fitness value.

Algorithm 3 Basic algorithm flow for PSO.

1: (1) Determine the fitness function f according to the actual problem;
2: (2) Give the total number of particles and the maximum generation, and initialize
3: them randomly;
4: (3) Calculate global optimum gbest;
5: (4) Update the speed V and position X of all particles per Equations (7) and (8);
6: (5) Calculate the fitness value of each particle;
7: (6) Update local optimum gbest for each particle;
8: (7) Update global optimum gbest;
9: (8) Is the maximum generation met? Yes, end; No, repeat Steps 4~8.
10: Output the optimal fitness and solutions.

3. Structure of the 1100 kV Transformer Bushing

This section introduces the detailed physical structure of a 1100 kV oil-paper insulated
capacitive transformer bushing. The ultra-high-voltage transformer bushing, working at
1100 kV, consists of two porcelain insulators (air-side and oil-side), a connection flange used
for connecting them, four corona rings, and a dome, as shown in Figure 5. The total length
of the bushing is 13,315 mm, with 2310 mm for the oil-side insulator and 11,005 mm for the
air-side insulator. The oil-side porcelain insulator is consistently immersed in dielectric oil.
In the same way, the air-side porcelain insulator is on the outside of the tank. The bottom
cross-section of the bushing has an outer diameter of 640 mm and an internal diameter
of 550 mm. The total mass of the bushing is 7135 kg. The connection flange serves to
link the two porcelain insulators and securely fasten the UHV bushing to the transformer
turret using bolts. Within the porcelain insulators, a central conductor with an aluminum
core is installed to facilitate the transmission of electric current. Additionally, to compress
the bushing before any external loads are applied to it, a seven-ton pretension is placed
on the conductor. The connecting flange is constructed from cast aluminum, which is
a commonly used material in high-voltage electrical apparatus, as shown in Figure 5b.
It consists of the top plate, the bottom plate, the installation plate, the cylinder, and the
stiffeners. The installation plate is installed to connect this flange and the transformer tank,
making them whole.

The finite element (FE) model was generated using ABAQUS2023 software, as shown
in Figure 5c. The corona ring, air-side porcelain insulator, flange, and oil-side porcelain
insulator were all represented using C3D8R solid elements in the simulation. The S4R shell
elements were used to imitate the stiffeners equipped on the flange. When considering
the air-side insulator, the impact of umbrellas on the shape was disregarded and only the
weight of the porcelain insulator was taken into account. The two horizontal directions and
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the vertical direction of the bushing frame system were set to the X, Z, and Y directions,
respectively. To accommodate the earthquake inputs in both the FE model and the experi-
mental model, a steel frame measuring 2.7 m in height was used to provide support for
the bushing. The connection between the frame and the mounting flange was established
at the installation plate. In order to verify the accuracy of the FE model, the researchers
conducted shaking table tests and compared the dynamic features, namely the vibration
frequencies (2.48 Hz for the FE model and 2.38 Hz for the test) and mode shapes, as stated
in reference [26]. Hence, it can be concluded that the FE simulation model is valid and
may serve as a substitute for the physical bushing when it comes to seismic responses [26].
This simulation model is used to compute the dynamic responses, which are deemed to be
consistent with the real structure.
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4. Framework and Methodology
4.1. Application Framework

To clearly understand the application of the ML models aided by PSO, a framework of
rapid prediction of seismic responses of substation equipment is illustrated in Figure 6. It
runs through the entire earthquake process, involving pre-earthquake sample collection
and model training, during-earthquake monitoring, and post-earthquake prediction using
the trained ML models. The optimal ML prediction model is the target of this study.
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Prior to the occurrence of an earthquake, certain locations (key points) are chosen
based on their ease of monitoring acceleration, taking into account the circumstances
for installation. High-speed cameras and infrared cameras may be used as methods for
acquiring acceleration response in monitoring technologies.

A sophisticated FE simulation model is created to analyze the seismic responses,
considering the precise dimensions of the substation equipment.

A variety of ground motions are selected based on the soil type as inputs for the FE
model, resulting in a collection of response samples consisting of peak accelerations (PA1,
PA2, . . ., PAn) and peak stress at the bottom of the air-side bushing (PS).

The samples are partitioned into one training set and one test set. The prediction
performance of an ML model with predefined architectural parameters may be assessed
using k-fold cross-validation (CV) [40–42].

The performance of the ML model is solely determined by its internal structures, while
the training sets are fixed. There exists a mapping connection between the architectural
hyperparameters and performance indicators, which is referred to as the performance func-
tion. The grid search and artificial search, which often use hyperparameter search methods,
are known to be time-consuming. One may also use biological heuristic algorithms like
PSO to evolve the performance function. The best architecture is found and may be utilized
to construct a task-optimized ML model.

All training and testing samples are used to train and test the model, respectively.
Additionally, the ML model is sufficiently advanced so that it can replace physical post-
earthquake equipment for seismic response analysis.

Sensors or other monitoring technologies can be used to measure the accelerations at
crucial places during an earthquake. Next, the maximum accelerations are evenly obtained
over a brief period.

Once an earthquake occurs, the built ML model is promptly used to evaluate the maxi-
mum stress at the bottom of the air-side insulator according to the peak accelerations of key
positions as inputs in the model. The predicted peak stress can assist with post-earthquake
rapid decision-making of response-level estimations for the detection of multiple electrical
equipment in a substation.

4.2. Data and Sample Collection

To obtain the seismic response samples to train the ML model, a large number of
natural ground motions should be selected. Since the ground motions are used for training
the ML model, which should be suitable for as many cases as possible, the selection only
considers the soil type and as many ground motions as possible. In this paper, the bushing
services in a specific location are designed to meet the eight-degree fortification requirement
with soil type II. However, it is recommended that nine degrees of fortification be adopted
due to the significance of the bushing [27]. The fundamental acceleration of the design is
0.4 g. Therefore, a total of 340 ground motions were chosen from the PEER ground motion
database, focusing on the Vs30 range that corresponds to soil type II [43]. The characteristic
information for the selected earthquake is shown in Table 1.

Table 1. Characteristics of the selected earthquake.

Characteristic Magnitude Epicenter
Distance (km)

Fault Type
Rrup (km) PGA (g)

Range 4.37~7.36 1.06~247.04 3.21~222.41 0.005~0.84
Mean value 5.91 42.74 38.09 0.128

Standard deviation 0.67 42.26 38.58 0.124

After inputting the ground motions into the bushing frame system, a series of re-
sponse samples can be obtained, each including the peak accelerations and the peak stress
responses. According to the application framework, they are divided into training sets and
testing sets. As shown in Figure 7, the training samples are divided into k parts (k = 5 in
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this paper). For each training session, only four sections are used as training data, while the
remaining sections are used as validation data. As a consequence, every training session
yields a validation outcome. Each of the five parts is used as validation data in rotation,
while the remaining four parts are utilized for training. Model performance is determined
by averaging five validation results and using them for comparison. The testing samples,
obtained by subtracting the training samples from the total samples, are considered predic-
tion samples. The estimated findings derived from these samples serve as the foundation
for error analysis.
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4.3. Evaluation Indicators

It is essential to compare the predicted results and actual results of stresses obtained
from the samples during the validation and testing processes. Thus, evaluation indicators
must be supplied. Several indicators are often employed, including the mean absolute
percentage error (MAPE) and the Willmott index of assessment. Four indicators are used in
this study: MAPE, Pearson correlation coefficient (R), mean square error (MSE), and mean
absolute error (MAE). MAPE is an error indicator that decreases as the estimated and real
stresses get closer to each other. On the other hand, the Pearson correlation coefficient, R, is
a consistency indicator that approaches 1 when the estimation performance is better. The
formulas are represented by Equations (9)–(12).

MAPE =
100%

n

n

∑
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∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)
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/
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)
(10)
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2
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1
m
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yi

∣∣∣ (12)

where yi, ŷi represent the actual and predicted values of testing samples, respectively; yi, ŷi
represent the means of the actual and predicted values of testing samples, respectively; n
represents the number of test samples.

The practitioner also pays attention to the response level of substation equipment. The
relevant standard [44] stipulates a factor of safety of 2.0 for the porcelain insulators used
in the electrical equipment. Therefore, the workers are more concerned with the critical
stress response (CSR), which is defined as the ratio of material strength (MS) to the factor
of safety (FOS), as given in Equation (13).

CSR = MS/FOS (13)



Mathematics 2024, 12, 2084 12 of 21

Therefore, the stress responses are divided into two classes: one contains responses
<CSR while the other contains responses ≥CSR. The response prediction results can further
output the classifications, thus there will be a comparison. For a classification model, the
confusion matrix is the frequently used error evaluation variable. A typical confusion
matrix is given in Table 2. TP and TN represent the numbers of correctly predicted stress
<CSR and ≥CSR, respectively. FN and FP represent the numbers of incorrectly predicted
stress <CSR and ≥CSR, respectively. The accuracies, TPR and TNR, are critical evaluation
indicators; their definitions are provided in Table 2.

Table 2. Typical confusion matrix and evaluation indicators for classification accuracy.

Actual
Stress

Predicted Stress
Accuracy = (TP + TN)/(TP + TN + FP + FN)

<CSR ≥CSR

<CSR TP FN TPR = TP/(TP + FN) FNR = FN/(TP + FN)
≥CSR FP TN FPR = FP/(FP + TN) TNR = TN/(FP + TN)

4.4. Hyperparameter Tuning

The predictive capabilities of ML models are heavily influenced by the algorithm’s
design, particularly the hyperparameters. In order to enhance the estimating capabilities
of ML models, a thorough search for appropriate hyperparameters is performed for each
individual model. PSO is used as a replacement for the time-consuming grid search and
artificial search to aid with the optimization of the hyperparameters. The overall process
employing PSO to optimize the model’s hyperparameters is shown in Figure 8. Firstly, for
each ML model with a given training set, a group of hyperparameters will produce a perfor-
mance indicator, such as MAPE or R. Therefore, the fitness function f should be determined
based on the ML model. The function returns an evaluation indicator based on a combina-
tion of hyperparameters provided as input. The average Mean Absolute Percentage Error
(MAPE) is the result obtained from each assessment using a 5-fold cross-validation (CV)
technique. Secondly, several initial groups of hyperparameters are randomly generated.
Then, the MAPE is calculated to obtain the minimum MAPE as the gbest. If the generation
is less than the given value, the hyperparameters are updated and then the MAPEs for all
groups are calculated so that there are minimum MAPE values for all groups of hyperpa-
rameters, gbest, and minimum MAPE for each group of hyperparameter, pbest, during the
existing and previous generations. The pbest for each group and the gbest are continuously
updated according to the PSO algorithm until the maximum number of generations is
reached. Then, the ideal combination of hyperparameters is obtained. The ML model is
trained using the whole set of training samples, with the optimal hyperparameter combina-
tion that was searched for. The trained model is then used to predict stress levels using the
testing examples in order to assess its performance.
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5. Results and Discussion
5.1. Data Collection Results

In this paper, five key points were selected to gain the peak acceleration responses as
the model inputs. The specific positions are the top of the air-side insulator, the two junc-
tions with variable cross-sections, the bottom of the insulator, and the top of the steel frame.
A total of 340 sets of ground motions were selected. The response spectra and average
spectrum are shown in Figure 9a. Subsequently, the 340 ground motions were inputted
into the bottom of the frame in order to get the seismic responses. After seismic response
analyses, the acceleration time histories of these points were derived, and the peaks were
extracted. Additionally, the peak stresses at the bottom of the porcelain insulator are gath-
ered. During an earthquake, five peak accelerations and one peak stress make up a sample,
with the 340 samples corresponding to the 340 ground motions. Their statistics are given in
Figure 9b.
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5.2. Hyperparameter Tuning Results

For the six ML models selected in this paper, the hyperparameters are searched using
PSO. The hyperparameters and their search ranges are shown in Table 3. The search ranges
are artificially determined because the hyperparameters should be accepted as long as the
prediction of the ML models is accurate enough. Additionally, notice that only two layers
are determined in MLP to simplify the tuning process because the more the layers, the
more complex the model. Inertia weight ω plays a pivotal role in maintaining the balance
between the exploration and exploitation processes. During the searches, the inertia weight
of PSO is set to 0.4, which is determined based on the commonly used range, 0.4~0.9.

The optimal hyperparameter results are provided in the last column of Table 3. The
change in the MAPE indicator is given in Table 4, where we can see that MAPE levels off
when the number of generations reaches 300, which indicates search stability. Table 4 shows
that SVR and KRR, which are the easiest ML models whose MAPEs level off, maintain
stability from the 20th generation. MLP and KNR reach stability from the 60th generation
and the 120th generation, while SGDR and DTR are the last two models whose MAPEs
reach stability.
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Table 3. Hyperparameter search ranges and results of the estimation models.

Ml
Models Hyperparameters Search Range Optimal

Results

MLP
Number of neurons in the 1st layer 1~20, integer 19
Number of neurons in the 2nd layer 1~20, integer 13

SVR
Regularization parameter 0.01~10 4.676

Kernel ‘linear’, ‘poly’, ‘rbf’ ‘linear’

KRR
Regularization strength 0.01~10 0.01

Kernel ‘linear’, ‘polynomial’, ‘rbf’ ‘linear’

KNR
Number of neighbors 1~50, integer 2

Leaf size 1~100, integer 40

SGDR
Regularization term (RT) 0.1~10 0.1103

The maximum iteration number (MI) 100~10,000, integer 6139
Stopping criteria (SC) 10−5~10−2 0.00952

DTR

The max depth of the tree (MD) 1~20, integer 11
The minimum samples required to

split (MSS) 2~10, integer 7

The minimum samples required for a
leaf (MSL) 1~10, integer 2

Table 4. MAPE changes versus PSO generations.

Generation 20 60 100 120 160 180 220 240 280 300

MLP 0.081 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078

SVR 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077

KRR 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079

KNR 0.147 0.116 0.116 0.112 0.112 0.112 0.112 0.112 0.112 0.112

SGDR 0.192 0.164 0.109 0.105 0.101 0.11 0.103 0.095 0.095 0.095

DTR 0.123 0.12 0.119 0.12 0.119 0.12 0.12 0.119 0.119 0.119

5.3. Regression Prediction Error Analysis

Comparisons were conducted to evaluate the prediction performance of the estab-
lished ML models. The testing samples are used to make comparisons between the pre-
dicted results of the ML models and the simulated results of the simulation model of the
1100 kV bushing. The peak acceleration data are inputted into the six trained ML models
and the outputted peak stresses are compared with the stress data in the testing samples, as
shown in Figure 10. The six ML models have enough ability to predict the peak stress of the
bushing. Most predicted points are close to the actual points and the similar variations in
trends also illustrate the prediction accuracy. SGDR also shows relatively larger prediction
deviations compared with the other five ML models.

Evaluation indicators for the six ML models are shown in Table 5. Analysis of the
evaluation indicators shows that the R values of the ML models are all approximately
0.99, and in some cases considerably higher, approaching 1. Among these models, MLP,
SVR, and KRR have the lowest MAPE values and the highest R values (0.994). These ML
models are built using linear methods, indicating that there is a significant linear correlation
between the inputs and outputs. However, Other ML models provide accurate estimation
results. Therefore, the six ML models are considered suitable for estimating the peak stress
of the transformer bushing.
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Figure 10. Testing results of the ML models and comparison with actual results. 
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Figure 10. Testing results of the ML models and comparison with actual results.

Table 5. Evaluation indicators of the six ML models.

Indicator MLP SVR KRR KNR SGDR DTR

MAPE 0.0737 0.0771 0.0753 0.1009 0.1146 0.1355
R 0.994 0.994 0.994 0.988 0.993 0.983

MSE 0.6307 0.6340 0.6059 1.2468 2.3710 1.6747
MAE 0.5666 0.5667 0.5593 0.7630 1.2657 0.9227

As previously stated, the estimated error is a crucial factor that reflects the performance
of the estimation model. Figure 11 provides the distribution of estimated errors for the
six ML models. It is evident that the average errors for all cases are close to zero, with
the exception of SGDR. Regarding data divergence, KNR, SGDR, and DTR exhibit more
pronounced discreteness. MLP, SVR, and KRR exhibit a higher degree of error concentration,
around 0, compared to the aforementioned methods. Based on these situations, it can be
determined that the ML models, particularly MLP, SVR, and KRR, are very effective at
estimating the stress of the transformer bushing.
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Based on detailed analyses of data points, evaluation indicators, and error distribu-
tions, the ML models are deemed to be effective stress prediction models. While a few
models may be somewhat less superior, the predicted stresses as a whole align well with the
results obtained from the simulation model. The suggested compound ML framework is
both straightforward and very efficient, particularly for quick calculation of the maximum
stress experienced by the bottom section of a transformer bushing.

5.4. Prediction Performance Evaluation for Response Classifications

In some cases, the on-site workers are more concerned about the responses if they are
in a given range, which can help explain the response levels. In this paper, the material
strength of the porcelain insulator is 50 MPa, according to the manufacturers. Since IEEE
693 std. stipulates a factor of safety of 2.0 [44], the CSR is 25 MPa. Given that we have
established the ML regression prediction models, they can also be applied to judge the
response classifications. Table 6 shows the confusion matrices of the six ML models. MLP,
SVR, SGDR, and DTR models have a 98.6% prediction accuracy, while KRR and KNR
models have a 100% prediction accuracy, revealing low errors of prediction response values
on which the response classifications exhibiting high accuracy are based.

Table 6. Accuracy evaluation for judging whether the predicted responses are in corresponding classes.

Type Actual
Stress

Predicted Stress
Confusion Matrix Accuracy

<25 MPa ≥25 MPa

MLP
<25 MPa 65 0 TPR = 100% FNR = 0

98.6%≥25 MPa 1 4 FPR = 20% TNR = 80%

SVR
<25 MPa 65 0 TPR = 100% FNR = 0

98.6%≥25 MPa 1 4 FPR = 20% TNR = 80%

KRR
<25 MPa 65 0 TPR = 100% FNR = 0

100%≥25 MPa 0 5 FPR = 0 TNR = 100%

KNR
<25 MPa 65 0 TPR = 100% FNR = 0

100%≥25 MPa 0 5 FPR = 0 TNR = 100%

SGDR
<25 MPa 65 0 TPR = 100% FNR = 0

98.6%≥25 MPa 1 4 FPR = 20% TNR = 80%

DTR
<25 MPa 65 0 TPR = 100% FNR = 0

98.6%≥25 MPa 1 4 FPR = 20% TNR = 80%

6. Experimental and Simulation Validation

Even though the prediction accuracy of the established ML models has been illustrated
using the testing samples, an actual application is still needed to validate the universality.
Thus, shaking table tests were conducted for the transformer bushing using a given artificial
ground motion. Simulation analysis using artificial ground motion was also implemented.
According to the peak acceleration and stress responses, the ML models can be validated
further, revealing the actual engineering significance.

6.1. Experimental Validation

The experimental model for the bushing support system during the shaking table
tests is illustrated in Figure 12. It was employed to validate the proposed ML models. The
detailed structural parameters of the bushing and steel frame were introduced in Section 3.
In the tests, the acceleration sensors were installed on the key positions along the vertical
orientation of the bushing and strain gauges were installed at the bottom cross-section of
the porcelain insulator. Rigid connections were implemented at the bottom of the steel
frame to allow for the input of artificial ground motion from this location. The experiment
was conducted uniaxially due to the symmetrical nature of the structure [27].
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The test scenarios (TSs) are listed in Table 7. TS 2 is the test scenario where artificial
ground motions were inputted to excite the dynamic responses. In TS 1 and TS 3, white
noises were inputted to identify the dynamic characteristics of the porcelain bushing before
and after ground motion scenarios.

Table 7. Test scenarios for the shaking table tests.

Test
Test Scenario

Earthquake Motion Target PGA/g

TS 1 White noise 0.07

TS 2 Artificial ground motion 0.15

TS 3 White noise 0.07

Based on the examination of dynamic characteristics and observed phenomena, it was
determined that the bushing remained undamaged throughout TS 2. The experimental
results from TS 2 were used to validate the model. Five acceleration sensors were vertically
positioned along the bushing. The specific positions are the same as the above-mentioned
key points: the top of the air-side insulator (PA1), the two junctions with variable cross-
sections (PA2, PA3), the bottom of the insulator (PA4), and the top of the steel frame
(PA5). The peak accelerations measured by the sensors are 7.076, 3.807, 3.269, 2.022, and
1.614 m/s2, respectively. The peak accelerations are inputted into the six ML models and
the resulting peak stress is compared to the real peak stress of 5.50 MPa. The actual peak
stress was determined by integrating Young’s modulus for the porcelain material (106 GPa)
with the data collected from strain sensors. Using these procedures, the evaluated results
were obtained and are shown in Figure 13. The prediction errors were simultaneously
calculated and are shown in this figure. Based on Figure 13, the calculated value of 5.33 MPa
obtained from KNR is closest to the measured value of 5.5 MPa, resulting in a relative
error of just 3.04%. The six ML models provide precise evaluations of peak stress, with a
maximum relative error of just 8.72%. In summary, the ML models possess the capacity to
precisely evaluate the maximum stress experienced by the bottom section of the insulator.
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Figure 13. Comparison of the experimental and simulation results obtained using ML models. 

6.2. Simulation Validation 
To validate the accuracy of ML models using the simulation model, dynamic analysis 
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in Section 3. The earthquake excitation for this simulation model is the artificial ground 
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6.2. Simulation Validation

To validate the accuracy of ML models using the simulation model, dynamic analysis
was performed. The details of the simulation model for the 1100 kV bushing are illustrated
in Section 3. The earthquake excitation for this simulation model is the artificial ground
motion used in the shaking table test in Section 6.1, as shown in Figure 14. After the
dynamic analysis, the stress responses at the bottom section are obtained, with the peak
stress being 5.431 MPa. The five peak accelerations are input into the simulation model
and the predicted peak stress is then obtained and compared with the simulation results,
as shown in Figure 14. The minimum error is 1.86% for KNR and the maximum is 7.57%
for KRR. The ML models can be deemed reliable enough based on the results, with the
maximum relative error being smaller than that of the experiment.
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6.3. Overall Comparison

Shaking table tests and simulation computations were conducted in the preceding
two sections. When the same artificial ground motion is used, the two methodologies
provide different assessment results for peak root stress. The shaking table test gave a
value of 5.500 MPa, while the simulation analysis gave a value of 5.431 MPa. Furthermore,
the six ML models were used to evaluate the stress levels using the peak acceleration
inputs obtained from the most dependable shaking table experiments. The results of the
comparison are shown in Figure 13, where the relative errors are calculated. Based on
Figure 13, of the six ML models, KNR predicts the highest peak stress, while KRR predicts
the lowest. Compared to the two regularly used methods, KNR consistently demonstrates
the lowest error level. Regarding the anticipated maximum stress, dynamic tests provide
the highest but most precise results, with the simulation models following closely. The
largest discrepancy in results between the ML models and the other two techniques is 8.72%,
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while the lowest discrepancy is 1.86%. Once the ML architecture is chosen and tuned, the
ML model will have enough accuracy to replace previous approaches in post-earthquake
rapid prediction of stress responses of porcelain transformer bushings.

The prediction model based on hybrid ML models has significantly improved com-
putational efficiency compared to traditional methods. Six algorithms were tested on a
universal computer platform with an Intel Core i5 CPU, an NVIDIA GeForce GTX 1660
Super GPU, and 16 GB of DDR4 RAM. Taking the earthquake response prediction analysis
in Section 6 as an example, the traditional numerical analysis method takes 40 min, while
prediction using the hybrid ML models takes 3 s, thus improving the efficiency of rapid
emergency warning for post-earthquake damage in substations.

7. Conclusions and Future Work
7.1. Conclusions

This paper established hybrid ML models for predicting seismic responses of porcelain
transformer bushings. The developed multiple ML models were compared and validated
using shaking table tests and simulation analysis. The conclusions include:

(1) The proposed hybrid machine learning models can quickly forecast the maximum
stress experienced by a porcelain bushing and its classifications after earthquakes
based on the recorded acceleration data collected during seismic events. By prioritizing
pre-earthquake preparations, this approach minimizes the workload after earthquakes
and facilitates prompt and effective response to post-earthquake emergencies.

(2) Swarm intelligence evolutionary technologies can quickly and automatically aid
in the retrofitting of architecture for ML algorithms, resulting in ML models that
demonstrate higher prediction performance for test samples.

(3) Six ML models with optimal architectures were used to predict the maximum stress
experienced by a 1100 kV bushing after an earthquake. The accuracies of the six ML
models were confirmed using shaking table tests and simulation analysis. Compared
with the experimental results, the errors of all the ML models were within 10%, with
KNR having the smallest prediction error of 3.04%. The K-nearest neighbor regression
model had the best prediction accuracy compared to the other six ML models.

(4) The ML method described in this study has clear benefits over frequently used seismic
analytical techniques in terms of speed and accuracy when it comes to post-earthquake
emergency relief of electrical equipment in substations.

7.2. Limitations and Future Work

Even though this paper illustrates the feasibility of using ML techniques to predict
the seismic responses of electrical equipment in substations, some limitations remain and
should be investigated in future work.

(1) This paper mainly focuses on the seismic response prediction of substation equipment
using ML techniques where PSO is adopted as the tuning approach for the model’s
hyperparameters. However, only six ML models were employed in this paper, thus
more ML models should be analyzed in the future. Additionally, PSO is a typical
metaheuristic optimization algorithm that represents a way of automatically optimiz-
ing the model architecture. In the future, other metaheuristic optimization algorithms
can also be investigated to predict the accuracy of ML models.

(2) The strong ground motions account for a relatively small proportion of the selected
ground motion database, which may influence the training results. In the future,
more strong ground motions should be added to the dataset to provide sufficient
diversity, further extending the application range of the developed ML models to
strong ground motions.

(3) Based on the method proposed in this article, analyzing and simulating more ex-
perimental objects under different scenarios will further improve the universality of
ML models and facilitate uncertainty analysis. This should be further improved in
future work.
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