Theoretical Results on Positive Solutions in Delta Riemann–Liouville Setting
Abstract
:1. Introduction
2. Review of Results
- (a)
- For ,is the solution of (7).
- (b)
- For , we have
3. Positive Solution Results
- 1.
- for and for ;
- 2.
- for and for .
4. Existence Results
- There is such that .
- There are and such that .
5. Uniqueness Results
6. Numerical Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; Chapman and Hall/CRC Pure and Applied Mathematics Book: Boca Raton, FL, USA, 2000; Volume 228. [Google Scholar]
- Atici, F.; Sengul, S. Modeling with discrete fractional equations. J. Math. Anal. Appl. 2010, 369, 1–9. [Google Scholar] [CrossRef]
- Silem, A.; Wu, H.; Zhang, D.-J. Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation. Appl. Math. Lett. 2021, 116, 107049. [Google Scholar] [CrossRef]
- Cabada, A.; Dimitrov, N. Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. Fract. Calc. Appl. Anal. 2020, 23, 980–995. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D. Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 2015, 80, 1697–1703. [Google Scholar] [CrossRef]
- Gholami, Y.; Ghanbari, K. Coupled systems of fractional ∇-difference boundary value problems. Differ. Eq. Appl. 2016, 8, 459–470. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Initial Value Problems in Discrete Fractional Calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.C.; Bai, Y.R.; Chen, F.L. Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear. Sci. Numer. Simul. 2017, 48, 520–530. [Google Scholar] [CrossRef]
- Mozyrska, D.; Torres, D.F.M.; Wyrwas, M. Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales. Nonlinear Anal. Hybrid Syst. 2019, 32, 168–176. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Commput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. A transformmethod in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Abdeljawad, T. Different type kernel h-fractional differences and their fractional h-sums. Chaos Solitons Fract. 2018, 116, 146–156. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems. Math. Meth. Appl. Sci. 2020, 46, 7688–7713. [Google Scholar] [CrossRef]
- Goodrich, C.S. On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 2012, 385, 111–124. [Google Scholar] [CrossRef]
- Wang, Z.; Shiri, B.; Baleanu, D. Discrete fractional watermark technique. Front. Inf. Technol. Electron. Eng. 2020, 21, 880–883. [Google Scholar] [CrossRef]
- Ahrendt, K.; Castle, L.; Holm, M.; Yochman, K. Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula. Commun. Appl. Anal. 2012, 16, 317–347. [Google Scholar]
- Wang, M.; Jia, B.; Chen, C.; Zhu, X.; Du, F. Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-Lipschitz nonlinearities. Appl. Math. Comput. 2020, 367, 125118. [Google Scholar] [CrossRef]
- Almusawa, M.Y.; Mohammed, P.O. Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators. Chaos Soliton. Fract. 2023, 176, 114098. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammed, P.O.; Srivastava, H.M.; Al-Sarairah, E.; Hamed, Y.S. On convexity analysis for discrete delta Riemann-Liouville fractional differences analytically and numerically. J. Inequal. Appl. 2023, 2023, 4. [Google Scholar] [CrossRef]
- Chen, C.R.; Bohner, M.; Jia, B.G. Ulam-Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Brackins, A. Boundary Value Problems of Nabla Fractional Difference Equations. Ph.D. Thesis, The University of Nebraska-Lincoln, Lincoln, NE, USA, 2014. [Google Scholar]
- Abdo, M.S.; Abdeljawad, T.; Ali, S.M.; Shah, K. On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions. Adv. Differ. Equ. 2021, 37, 2021. [Google Scholar] [CrossRef]
- Ma, K.; Li, X.; Sun, S. Boundary value problems of fractional q-difference equations on the half-line. Bound. Value Probl. 2019, 46, 2019. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Sun, S. Existence of positive solutions of nonlinear fractional q-difference equation with parameter. Adv. Differ. Equ. 2013, 260, 2013. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. Turk. J. Math. 2020, 44, 857–869. [Google Scholar] [CrossRef]
- Bekkouche, M.M.; Mansouri, I.; Ahmed, A.A.A. Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral. J. Appl. Math. Comput. 2022, 68, 4305–4316. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, C.S.; Jonnalagadda, J.M. Monotonicity results for CFC nabla fractional differences with negative lower bound. Analysis 2021, 41, 221–229. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Chen, Z.; Lim, C.W.; Li, S.; Li, C. Controllable flexural wave in laminated metabeam with embedded multiple resonators. JSV 2024, 581, 118386. [Google Scholar] [CrossRef]
- Li, C.; Zhu, C.; Lim, C.W.; Li, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Appl. Math. Mech.-Engl. Ed. 2022, 43, 1821–1840. [Google Scholar] [CrossRef]
- Guo, L.M.; Cai, J.W.; Xie, Z.Y.; Li, C. Mechanical Responses of Symmetric Straight and Curved Composite Microbeams. J. Vib. Eng. Technol. 2024, 12, 1537–1549. [Google Scholar] [CrossRef]
- Chu, C.; Liu, H. Existence of positive solutions for a quasilinear Schrödinger equation. Nonlinear Anal. Real World Appl. 2018, 44, 118–127. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, L. Ground-state solution of a nonlinear fractional Schrödinger-Poisson system. Math. Meth. Appl. Sci. 2022, 45, 1934–1958. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Agarwal, R.P.; Baleanu, D.; Sabir, P.O.; Yousif, M.A.; Abdelwahed, M. Uniqueness Results Based on Delta Fractional Operators for Certain Boundary Value Problems. Fractals 2024, accepted. [Google Scholar]
- Guirao, J.L.G.; Mohammed, P.O.; Srivastava, H.M.; Baleanu, D.; Abualrub, M.S. A relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results. AIMS Math. 2022, 7, 18127–18141. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Meehan, M.; O’Regan, D. Fixed Point Theory and Applications; Cambridge Tracts in Mathematics, 141; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Pietsch, A. History of Banach Spaces and Linear Operators; Birkhauser: Basel, Switzerland; Springer: Berlin/Heidelberg, Germany, 2007; pp. 49–50. [Google Scholar]
- Mohammed, P.O.; Srivastava, H.M.; Muhammad, R.S.; Al-Sarairah, E.; Chorfi, N.; Baleanu, D. On existence of certain delta fractional difference models. J. King Saud. Univ. Sci. 2024, 36, 103224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Agarwal, R.P.; Yousif, M.A.; Al-Sarairah, E.; Lupas, A.A.; Abdelwahed, M. Theoretical Results on Positive Solutions in Delta Riemann–Liouville Setting. Mathematics 2024, 12, 2864. https://doi.org/10.3390/math12182864
Mohammed PO, Agarwal RP, Yousif MA, Al-Sarairah E, Lupas AA, Abdelwahed M. Theoretical Results on Positive Solutions in Delta Riemann–Liouville Setting. Mathematics. 2024; 12(18):2864. https://doi.org/10.3390/math12182864
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Ravi P. Agarwal, Majeed A. Yousif, Eman Al-Sarairah, Alina Alb Lupas, and Mohamed Abdelwahed. 2024. "Theoretical Results on Positive Solutions in Delta Riemann–Liouville Setting" Mathematics 12, no. 18: 2864. https://doi.org/10.3390/math12182864
APA StyleMohammed, P. O., Agarwal, R. P., Yousif, M. A., Al-Sarairah, E., Lupas, A. A., & Abdelwahed, M. (2024). Theoretical Results on Positive Solutions in Delta Riemann–Liouville Setting. Mathematics, 12(18), 2864. https://doi.org/10.3390/math12182864