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Abstract: A hydraulic generator regulating system with electrical, mechanical, and hydraulic consti-
tution is a complex nonlinear system, which is analyzed in this research. In the present study, the
dynamical behavior of this system is investigated. Afterward, the input/output feedback lineariza-
tion theory is exerted to derive the controllable model of the system. Then, the chaotic behavior of the
system is controlled using a robust controller that uses a Chebyshev neural network as a disturbance
observer in combination with a non-singular robust terminal sliding mode control method. Moreover,
the convergence of the system response to the desired output in the presence of uncertainty and
unexpected disturbances is demonstrated through the Lyapunov stability theorem. Finally, the
effectiveness and appropriate performance of the proposed control scheme in terms of robustness
against uncertainty and unexpected disturbances are demonstrated through numerical simulations.

Keywords: hydraulic generator regulating system; Chebyshev neural network; disturbance observer;
robust non-singular terminal sliding mode control; external disturbance
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1. Introduction

A hydro-turbine governing system (HTGS) is a nonlinear, non-minimum phase, and
time-dependent system that is working in typically different statuses such as starting,
outage, and operating in parallel with power networks, etc., [1,2]. The HTGS plays a key
role in hydropower stations by engendering stable operation [3,4]. Nowadays, thermal
systems and especially hydropower stations are receiving more attention as world energy
strategies are going toward sustainable energy generation [5,6]. Therefore, modeling,
stability analysis, and control of the HTGS become necessary and vital subjects of research.
In this regard, Yu et al. [7] have compared the stability of the HTGS in several operating
conditions. Moreover, the effects of the surge tank area on a stable region have been
analyzed in their study. The stability of a hydro-governing system in the presence of
hydraulic excitation has been addressed in [3]. Li et al. [8] have controlled the HTGS
via a fuzzy and proportional–integral–derivative (PID) control method. Furthermore, the
hydro-structure of hydropower stations is studied in [9–11].

Nowadays, control and identification of the complex systems are important research
subjects [12]. Various nonlinear controllers have been used for systems with nonlinear
characteristics [13]. Among the stated control methods, sliding mode control (SMC),
because of its outstanding properties such as low computational complexity and robustness,
has received considerable attention [14]. Nonetheless, the SMC has some weaknesses, such
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as producing chattering in the systems [15,16]. Moreover, it may not guarantee finite-
time convergence of the entire closed-loop signals [17,18]. Thus, these issues have been
addressed through fast terminal sliding mode control (FTSMC), which has been elaborated
by several research studies [19].

Many research studies have applied disturbance estimators to observe the unexpected
disturbances and uncertainties in the nonlinear systems [20–23]. Lu [24] has proposed
an observer based on SMC, which possesses a switching gain adaptation law for non-
linear systems. Chen et al. [25] have developed a disturbance observer-based FTSMC
for the nonlinear systems in the presence of external disturbances and input saturation.
Furthermore, several research studies have shown that the neural network estimators are
a promising solution to make the controller robust against uncertainties of the dynamic
model of systems [26]. Neural network estimators can estimate unknown continuous
nonlinear functions; as a result, those are a good choice to deal with complex systems
without any knowledge of the system [27].

Hydropower provides extremely flexible, low-carbon energy that may be utilized to
balance electricity systems. As the energy transition progresses, hydropower will become
increasingly interesting. However, hydropower generation confronts various challenges
when employed in a flexible, quick way and under part load, overload, or transient
situations [28]. The presence of unexpected disturbances and dynamic uncertainty causes
nonlinear dynamics for the HTGS. The parameters in most HTGS are unknown, and there
are unmodeled dynamic disturbances. Hence, it is advantageous to design a control scheme
that is robust to unmodeled dynamics and external disturbances. In addition, the singularity
problem for these systems can lead to a large control input for any system. Therefore, to
achieve appropriate performance in the control of complex systems, more studies on robust
control methods are of crucial importance. In the latest years, SMC controllers were used
in the HTGS. In [29,30], the first-order SMC controller and second-order SMC controller
are employed to tune the response of hydropower plant load frequency, respectively. The
results of both studies have proven the superiority of SMC controllers. However, it should
be noted the most hydropower systems investigated in the literature are modeled linearly,
which have not considered any uncertain elements, and the robustness of a hydropower
station system with an SMC controller has not been proven. In practical application, due
to the model errors and the structural variations of the hydropower station system, such
as the electrical–mechanical coupled noise, the mechanical–hydraulic coupled noise, and
the hammer action of the water head, the unmodeled system uncertainties should not be
neglected. Moreover, the convergence time of the closed-loop systems is not investigated in
most research on these systems. To this end, to reach the high-performance for SMC-based
techniques used in the nonlinear uncertain HTGS in the presence of external disturbances,
further research is needed.

The current work is motivated by the abovementioned issues. To the best of our
knowledge, no study proposes a neural-network-based finite time control for HTGS. To
this end, the hydraulic generator regulating system has been considered in the presence of
disturbance and dynamic uncertainties. The Chebyshev neural network (ChNN)-based
FTSMC is offered for tracking control and suppressing of the chaotic system in the presence
of external disturbance and uncertainties.

The main contributions of the current study can be summarized as follows: First, the
complex dynamic of the HTGS has been studied. Then, a new control scheme has been
proposed to regulate its performance effectively and efficiently. The ChNN is applied in an
online manner to compensate for the unknown dynamic of the system. Consequently, the
ChNN will reduce the level of uncertainties and helps the controller to regulate the system
efficiently and quickly. In addition, in the proposed control algorithm, the singularity
problem, which can be a significant challenge in real systems, is taken into account, and
by the proposed mechanism it is avoided. Not only does the designed control scheme
guarantee fast convergence of the closed-loop system even when there are uncertainties
and disturbances, but also this controller averts the singularity problem. Ultimately, the
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effectiveness of the designed control scheme has been demonstrated through numerical
simulations.

The layout of the current study is as follows: Section 2 describes the mathematical
model of the HTGS in state-space form. In addition, phase diagrams of the systems with
different initial conditions have been illustrated, and chaotic behavior of the system has
been demonstrated. The control scheme is explained in Section 3. In this section, firstly, the
structure of the ChNN is presented. Then, the structure of the proposed ChNN-based non-
singular FTSMC is described, and proof of finite time convergence is given. In Section 4,
numerical simulations of the HTGS are presented. Section 4.1 shows the response of
the HTGS to the fixed-point input. In Sections 4.2 and 4.3, respectively, the numerical
results of the HTGS for periodic orbit tracking and under random noise are shown. Finally,
conclusions and future suggestions are described in Section 5.

2. Mathematical Modeling

The state-space equation of a hydraulic generator can be written as follows [31]:

.
δ1(t) = ω0ω + d1
.

ω(t) = 1
Ta

(
mt − Dω− E′dVs

x′dx
sin δ− V2

s
2

x′dx−xqx

x′dxxqx
sin 2δ

)
+ d2

.
mt(t) = 1

eqhTw

(
−mt − eyy− emeyTw

Ty
(u− y)

)
+ d3

.
y(t) = 1

Ty
(u− y) + d4

(1)

where δ(t), ω(t), mt(t), and y(t) are generator rotor angle relative deviation, generator
speed relative deviation, turbine mechanical torque relative deviation, and guide vane
relative deviation, respectively. In addition, Ta, D, E′d, Vs, x′dx, xqx, eqh, Tw, ey, and Ty
are generator mechanical time constant, generator damping constant, generator transient
voltage of d’s axis, generator voltage of infinite bus system, generator transient direct axis
reactance, generator quadrature axis reactance, partial derivatives of turbine flow with
respect to water head, water starting time, partial derivative of turbine torque with respect
to turbine guide vane, and major servo motor response time, respectively. Moreover, em is
defined as em = eqy × eh

ey
− eqh, where eqy is partial derivatives of turbine flow with respect

to guide vane, eh is the partial derivative of turbine torque with respect to turbine water
head, and eqh are partial derivatives of turbine flow with respect to turbine water head.
Finally, d1, d2, d3, and d4 are the perturbation of the HTGS part, and u is the output of the
controller. Figure 1 depicts the phase diagrams of the HTGS for different initial conditions.
The parameters of the HTGS have been considered as ω0 = 314; Tw = 0.8; Ta = 9; Ty = 0.1;
D = 2; E′d = 1.35; Vs = 1; x′dx = 1.15; xqx = 1.474; eqh = 0.5; ey = 1; em = 0.7. Figure 1a
illustrates the phase diagrams of the system of t ∈ [0, 350], while Figure 1b depicts the
phase diagrams of t ∈ [350, 500].
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The red color curves are obtained with initial conditions of [δ1(t0), ω(t0), mt(t0), y(t)] =
[1, 0.10, 0.10, 0.10], the green color curves are obtained with initial conditions of [δ1(t0), ω(t0),
mt(t0), y(t)] = [20, 0.10, 0.10, 0.10], the blue color curves are obtained with initial conditions of
[δ1(t0), ω(t0), mt(t0), y(t)] = [30, 0.10, 0.10, 0.10], and the cyan color curves are obtained
with initial conditions of [δ1(t0), ω(t0), mt(t0), y(t)] = [40, 0.10, 0.10, 0.10]. As a matter
of fact, the transient chaos is found in the system, which means that the system is chaotic
at the beginning and becomes periodic finally. Moreover, Figure 2 shows the Lyapunov
exponent spectrum of the system with respect to time. The maximum Lyapunov exponent
is positive, which confirms that the given system will show chaotic behavior.
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Using the same parameters as above, a bifurcation diagram of the system with the
variation of δ1(t0) is shown in Figure 3a, and the mean value of δ1 is given in Figure 3b. Here,
δ1(t0) varies from −500 to 500 with a step size of four. It is shown in Figure 3 that the value
of variable δ1 increases with the increase of δ1(t0) on the whole. The position of attractors is
changed with the initial conditions. According to reference [32], this phenomenon satisfies
the concept of offset boosting. Thus, multi-stability is found in the system.
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2
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′𝑉𝑠

𝑥𝑑Σ
′ 𝑥̇1cos𝑥1 −

𝑉𝑠
2

2

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

2𝑥̇1cos2𝑥1) + 𝑑̇2 =

1

𝑇𝑎
(

1

𝑒𝑞ℎ∗𝑇𝑤
(−𝑥3 + 𝑒𝑦 ∗ 𝑥4 +

𝑒𝑚∗𝑒𝑦∗𝑇𝑤

𝑇𝑦
𝑥4) −

𝑒𝑚∗𝑒𝑦

𝑒𝑞ℎ∗𝑇𝑦
𝑢 −

𝐷

𝑇𝑎
(𝑥3 − 𝐷𝑥2 −

𝐸𝑑
′𝑉𝑠

𝑥𝑑Σ
′ sin𝑥1 −

𝑉𝑠
2

2

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

sin2𝑥1) − (
𝐸𝑑
′𝑉𝑠

𝑥𝑑Σ
′ cos𝑥1 +

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

𝑉𝑠
2cos2𝑥1) ∗ 𝜔0𝑥2) + 𝑑3 − 𝐷𝑑2 −

(
𝐸𝑑
′𝑉𝑠

𝑥𝑑Σ
′ cos𝑥1 +

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

𝑉𝑠
2cos2𝑥1) 𝑑1 + 𝑑̇2 = 𝐹(𝑥) − 𝐺𝑢 + 𝐷, 

(3) 

where 𝐹(𝑥), 𝐺, and 𝐷(𝑥 · 𝑑) are defined as follows: 

𝐹(𝑥) =
1

𝑇𝑎
(
𝐷2

𝑇𝑎
− (

𝐸𝑑
′𝑉𝑠

𝑥𝑑Σ
′ cos𝑥1 +

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

𝑉𝑠
2cos2𝑥1)𝜔0) 𝑥2 −

1

𝑇𝑎
(
𝐷

𝑇𝑎
+

1

𝑒𝑞ℎ∗𝑇𝑤
) 𝑥3 +

1

𝑇𝑎
(

𝑒𝑦

𝑒𝑞ℎ∗𝑇𝑦
+

𝑒𝑚∗𝑒𝑦

𝑒𝑞ℎ∗𝑇𝑦
) 𝑥4 +

𝐷

𝑇𝑎
2 (

𝐸𝑑
′𝑉𝑠

𝑥𝑑Σ
′ sin𝑥1 +

𝑉𝑠
2

2

𝑥𝑑x
′ −𝑥𝑞x

𝑥𝑑x
′ 𝑥𝑞x

sin2𝑥1),  𝐺 =
𝑒𝑚∗𝑒𝑦

𝑒𝑞ℎ∗𝑇𝑦
, 𝐷 =

1
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(𝑑3 − 𝐷𝑑2 − (

𝐸𝑑
′𝑉𝑠
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′ cos𝑥1 +
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3. Control Design

In the HTGS, the main purpose is to control the value of output Y(t), by considering
the output of the HTGS as Y(t) = x2(t). Therefore, to accomplish this goal, a robust
controller should be designed. However, as it is obvious, the output is not an explicit
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function of control signal u(t); therefore, the input/output feedback linearization theory is
used to form the L&D model of the HTGS nonlinear system.

For applying input/output feedback linearization theory to the HTGS, the speed of
the output

.
Y(t) is differentiated until it becomes an explicit function of controller output;

the results are the following equations:

.
Y(t) =

.
x2(t) =

1
Ta

(
x3 − Dx2 −

E′dVs

x′dΣ
sin x1 −

V2
s

2
x′dx − xqx

x′dxxqx
sin 2x1

)
+ d2, (2)

..
Y(t) =

..
x2(t) = 1

Ta

( .
x3 − D

.
x2 −

E′dVs
x′dΣ

.
x1 cos x1 − V2

s
2

x′dx−xqx
x′dxxqx

2
.
x1 cos 2x1

)
+

.
d2 =

1
Ta

(
1

eqh∗Tw

(
−x3 + ey ∗ x4 +

em∗ey∗Tw
Ty

x4

)
− em∗ey

eqh∗Ty
u

− D
Ta

(
x3 − Dx2 −

E′dVs
x′dΣ

sin x1 − V2
s

2
x′dx−xqx
x′dxxqx

sin 2x1

)
−
(

E′dVs
x′dΣ

cos x1 +
x′dx−xqx
x′dxxqx

V2
s cos 2x1

)
∗ω0x2)

+d3 − Dd2 −
(

E′dVs
x′dΣ

cos x1 +
x′dx−xqx
x′dxxqx

V2
s cos 2x1

)
d1 +

.
d2= F(x)− Gu + D,

(3)

where F(x), G, and D(x·d) are defined as follows:

F(x) = 1
Ta

(
D2

Ta
−
(

E′dVs
x′dΣ

cos x1 +
x′dx−xqx
x′dxxqx

V2
s cos 2x1

)
ω0

)
x2

− 1
Ta

(
D
Ta

+ 1
eqh∗Tw

)
x3+

1
Ta

(
ey

eqh∗Ty
+

em∗ey
eqh∗Ty

)
x4

+ D
Ta2

(
E′dVs
x′dΣ

sin x1 +
V2

s
2

x′dx−xqx
x′dxxqx

sin 2x1

)
,

G =
em∗ey
eqh∗Ty

, D = 1
Ta

(
d3 − Dd2 −

(
E′dVs
x′dΣ

cos x1 +
x′dx−xqx
x′dxxqx

V2
s cos 2x1

)
d1 +

.
d2

)
,

(4)

3.1. Structure of ChNN

In this section, ChNN’s structure is described. ChNN is one type of neural network
which uses Chebyshev polynomials [33]. Figure 4 shows the structure of a single-layer
ChNN with two input blocks, an expansion block which is based on Chebyshev polynomi-
als. The output of this ChNN is going to be an approximation of the model uncertainties of
the system, and it is implemented in the proposed control method in this study. The neural
network architecture is divided into two parts; the first part is numerical transformation,
and the second part is learning algorithms that are used to find the best values of the
network weights. By considering inputs of ChNN as x1 and x2, which, respectively, are
error and its time derivative, Chebyshev polynomials can be calculated using the following
well-known recursive formula:

Φi+1(xi) = 2xiΦi(xi)−Φi−1(xi), (5)

where the first Chebyshev polynomial is defined by Φ0(xi) = 1, and the second one
has different definitions such as xi, 2xi, 2xi + 1 and 2xi − 1. In this research, its value
is considered as Φ1(xi) = xi. The Chebyshev polynomial basis function for inputs is
considered as:

H = [Φ0(x1)·Φ1(x1)·Φ2(x1)· . . . ·Φn(x1)· . . .·Φ1(xm)·Φ2(xm)· . . . · Φn(xm)], (6)

where n is the order of Chebyshev polynomials, and m is the number of inputs of the neural
network. One application of neural networks is to approximate nonlinear functions. Using
the following formula, a continuous nonlinear function G(x) ∈ Rm can be estimated by a
ChNN:

F̂(x) = W∗H(x) + ε (7)

in which W∗ is the best weight matrix of the ChNN, and ε stands for the bounded approxi-
mation error of the ChNN.
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In the current study, using ChNN, the performance of the controller has been improved
in terms of dealing with dynamic uncertainties and unexpected disturbances.

3.2. ChNN-Based FTSMC

Defining errors and sliding mode manifold as:
e1 = x2 − x2d
e2 =

.
x2 −

.
x2d

s = e1 + k1|e1|αsign(e1) + k2|e2|βsign(e2)

(8)

where k1 and k2 are positive parameters and 1 < β< 2, also α >β. In each step, e1, e2, and
s are considered as inputs of ChNN. The error dynamic of the system can be derived as
Equation (8): { .

e1 =
.
x2 −

.
x2d.

e2 =
..
x2 −

..
x2d

, (9)

Assuming that uncertain parts of the system model are estimated by ChNN, the
control output can be designed as follows:

u =
1
G

(
−F̂− 1

βk2
|e2|2−β

(
1 + k1α|e1|α−1

)
sign(e2)− γs−

(
φ + η + δ′

)
sign(s)

)
, (10)

where τ, η, and δ′ φ are positive design parameters which φ > |D| and δ′ > εF, and also γ
is a switching gain.

Assumption 1. Uncertainties in the system model are not varying during the time, or they are
varying slightly in a way that their time-derivatives are near to zero.

Theorem 1. The output control defined in Equation (9) leads to the convergence of the HTGS
output into the desired output exponentially in finite time.

Proof. The Lyapunov function is chosen as follows:

V =
1
2

sTs +
1

2Γ
W̃TW̃, (11)

where W̃ is given by
W̃ = W∗ − Ŵ, (12)
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The time-derivative of the defined Lyapunov function is as follows:

.
V = sT .

s +
1
Γ

W̃T
.̃

W = s
( .

e1 + k1α|e1|α−1e2 + k2β|e2|β−1 .
e2

)
+

1
Γ

W̃T
.̃

W, (13)

Substituting variable
.
e2 into Equation (13) yields:

.
V = s

( .
e1 + k1α|e1|α−1e2 + k2β|e2|β−1(Ax + Gu + D)

)
+

1
Γ

W̃T
.̃

W, (14)

Substituting control output from Equation (8) in Equation (14) gives:

.
V = s

(
k2β|e2|β−1(F(x)− F̂(x) + D

)
− k2β|e2|β−1γs− k2β|e2|β−1(φ + η + δ)sign(s)

)
+

1
Γ

W̃T
.̃

W, (15)

We know that F(x)− F̂(x) = W̃T H + εF, where H is Chebyshev polynomials basis
functions.

Considering
.̃

W as:
.̃

W = −Γk2β|e2|β−1Hs, (16)

By taking Equation (16) into account, Equation (15) becomes:

.
V = s

(
k2β|e2|β−1(W̃T H + εA + D)− k2β|e2|β−1γs− k2β|e2|β−1(φ + η + δ′)sign(s)

)
− 1

Γ W̃TΓk2β|e2|β−1Hs = −k2β|e2|β−1(γs2 + ηsgn(s)s− εAs + δ′|s|+ D + φ |s|
)
,

(17)

According to the fact that φ > |D| and δ′ > εF, we have:

.
V ≤ −k2β|e2|β−1(γs2 + ηsgn(s)s− |εA||s|+ δ′|s|+ D + φ|s|

)
≤ −k2β|e2|β−1(γs2 + ηsgn(s)s + D

)
≤ 0

(18)

By updating the rule for the neural network, weights can be obtained by considering
Assumption 1 and Equation (16) as follows:

.̂
W = +Γk2β|e2|β−1Hs. (19)

Remark 1. Based on Theorem 1, using the proposed control scheme, all signals of the closed-loop
system are bounded, and the error of the system is convergent to zero. Now, we use the method,
which is proposed in reference [34], to avert the control singularity problem. The control input
calculated in Equation (20) could be used to avert the control singularity problem.

u =
G

G2 + τ

(
−F̂− 1

βk2
|e2|2−β

(
1 + k1α|e1|α−1

)
sign(e2)− γs−

(
φ + η + δ′

)
sign(s)

)
, (20)

Term G
G2+τ

has been used for control input instead of G to prevent the singularity
problem, and the error of this method will be compensated by the neural network estimator.
Actually, using control law (20), all of the compound disturbances are

Dcom = D + τ
(

G2 + τ
)−1

(
(−F̂− 1

βk2
|e2|2−β

(
1 + k1α|e1|α−1

)
sign(e2)− γs

−(φ + η + δ′)sign(s))

)
, (21)

and in this situation, design parameter φ should be designed to be φ > |Dcom|. In the
following, it has been proven that the output of the system converges to its desired value in
finite time. Keeping Theorem 1 in mind, it is conspicuous that the sliding surface ultimately
is uniformly bounded.

Theorem 2. Based on the proposed control law (10), all states of the system in finite time converge
to their desired value.
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Proof. Considering a new Lyapunov function as follows:

V′ =
1
2

sTs, (22)

Time-derivative of the new Lyapunov function is calculated as:

.
V
′
= sT .

s = s
( .

e1 + k1α|e1|α−1e2 + k2β|e2|β−1 .
e2

)
, (23)

By substituting control output from Equation (9) in Equation (8), Equation (23) be-
comes:

.
V
′
= s
(

k2β|e2|β−1(F(x)− F̂(x)
)
− k2β|e2|β−1γs− k2(η + δ)β|e2|β−1sign(s)

)
.

V
′
= k2β|e2|β−1(εFs− γs2 − (η + δ′)|s|

)
.

V
′
≤ k2β|e2|β−1(|εF||s| − γs2 − (η + δ′)|s|

)
≤ k2β|e2|β−1(−γs2 − η|s|

)
,

(24)

Using Equation (21), Equation (24) can be written as:

.
V
′
≤ −2k2γβ|e2|β−1V′ − k2ηβ|e2|β−1√2|e2|β−1V′

1
2 (25)

Based on Equation (25), we have:

dt ≤ −dV′

2k2γβ|e2|β−1V′ + k2ηβ|e2|β−1√2V′
1
2
= −2

dV′
1
2

2k2γβ|e2|β−1V′
1
2 + k2ηβ|e2|β−1√2

(26)

Assuming that rising time (tr) is the time for reaching to the final error state e1 = 0,
the upper bound of tr could be calculated as:

∫ tr
0 dt ≤−2

∫ V′(tr)
V′(0)

dV′
1
2

2k2γβ|e2|β−1V′
1
2 +k2ηβ|e2|β−1√2

=

[
− 1

k2γβ|e2|β−1 ln
(

2k2γβ|e2|β−1V′
1
2 + k2ηβ|e2|β−1√2

)]V′(tr)

V′(0)

tr ≤ 1
k2γβ|e2|β−1 ln

(
2k2γβ|e2|β−1V′(0)

1
2 + k2ηβ|e2|β−1√2

)
.

(27)

Therefore, according to Theorems 1 and 2, the sliding manifold Equation (8) will
converge to the desired value in finite time.

The procedure of the proposed controller has been illustrated in Figure 5. The ChNN
observer, in combination with the non-singular FTSMC, is implemented to deal with the
effects of unknown external disturbances and dynamic uncertainties. In the following
section, the proposed control method is applied to control the HTGS.

Remark 2. In this study, the neural network is combined with the controller in an online manner,
so there are not several iterations, and in each time step we have only one iteration. Actually, the
weight and biases are updated in each time step based on the value of error, its dravite, and defined
sliding surface.

Remark 3. Due to the complexity of the controller, sometimes applying it to real-world systems can
be challenging. However, considering the fact that the accuracy of the controller in some systems
such as a hydraulic generator plays a vital role in their efficient performance, applying a naïve
controller such as PID is not recommended. Consequently, despite the complexities of applying a
sophisticated controller, what is proposed here is rational for these systems.
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4. Numerical Results

Herein, the proposed ChNN-based non-singular FTSMC was applied to the hy-
draulic generator regulating the system to control the orbit of generator speed relative
deviation ω. The simulations were conducted in MATLAB 2020a [35] environment.
Furthermore, the sliding mode controller developed by [36] was applied to the HTGS.
The simulation results of both controllers are compared to show the effectiveness of
the proposed controller over SMC developed by [36]. For all simulations, the dimen-
sionless equations were used. Consequently, all variables are dimensionless. With-
out loss of generality, disturbance in the HTGS Equation (1) has been considered as
[d1· d2·d3·d4] = [0.02 sin(t)· − 0.02 sin(2t)·0.05 cos(t)· − 0.025]. The initial values of the
HTGS Equation (1) are chosen as [x1(0); x2(0); x3(0); x4(0)] = [0.1; 0.1; 0.1; 0.1]. The per-
formance of the presented controller has been evaluated in following cases.

4.1. Fixed Point Stabilization

The proposed control method can be used to stabilize the HTGS to an arbitrary fixed
point. In this case, the desired value is considered to be as ωd = 1(t); to accomplish
this purpose, SMC [36] and the developed controller in this work are implemented. The
parameters of the SMC are the same as [36], and the parameters of the proposed controller
are set as k1 = 0.5, k2 = 0.045, α = 2, β = 5

3 , γ = 30, and η = 15. It is noteworthy that
some parameters such as γ significantly affect the performance of the system, and here
they are determined by trial and error. Generally, to assure the best performance under the
proposed controller, some evolutionary algorithms can be used to design the parameters of
the system. For instance, considering the convergence time and the value of control input as
objective functions of the genetic algorithm, through an offline process the parameters can
be designed, and after that, the obtained parameters can be fixed for the online applications.

The step response of HTGS using SMC and the proposed controller is demonstrated
in Figure 6. Moreover, Figure 7 illustrates the error of HTGS using SMC and the proposed
controller. As it is evident from Figures 6 and 7, the proposed controller has shown superior
performance over SMC in terms of rising time, the oscillations of the system response
around the desired output, and the error amplitude of the HTGS in fixed point tracking.
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4.2. Periodic Orbit Tracking

The proposed controller can also be used for tracking purposes. Without losing
generality, ωd = 1 + sin(t) is taken. SMC and the proposed controller are implemented
to control the response of HTGS. The parameters of the proposed controller are kept
unchanged. Figures 8 and 9 show the performance of HTGS to periodic desired output
using SMC and the proposed controller.

According to Figures 8 and 9, the amplitude of the HTGS error using the proposed
controller is less than the SMC. Furthermore, using the proposed controller for controlling
the HTGS results in a shorter rise time. Therefore, it can be concluded that regardless of the
reference output of the chaotic HTGS, the proposed controller has a superior performance
over the SMC method.

Tables 1 and 2 list more details of both control methods in which there is ITAE, integral
of time-multiplied absolute value of error, and MSE, mean squared error. Both of these
tables clearly confirm the superiority of the proposed method.
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Table 1. Results of SMC and NNNFTSMC for periodic response.

Periodic Response Var MSE ITAE

SMC 0.0093 0.0094 2178.2
NNNFTSMC 0.0026 0.0027 200.7
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Table 2. Results of SMC and NNNFTSMC for step response.

Step Response Var MSE ITAE

SMC 0.0072 0.0074 314.1
NNNFTSMC 0.0026 0.0027 126.5

Additionally, to investigate the performance of the neural network estimator, its results
for both cases are shown in Figures 10 and 11. As it is observed in Figure 12, the ChNN
approximates the function of the system. After t = 25, the estimated and actual values are
approximately equal. In addition, for periodic input, the ChNN has a proper performance,
resulting in more effective control results.
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4.3. Robustness Test against Random Noise

HTGS is a complex system which is operating in a wide range of conditions; for this
reason, it is arduous to model the system precisely. One of the critical factors of performance
evaluation of a controller is its ability to seeking desire performance under uncertainties
and external disturbances that impose on the system. In this part, the performance of SMC
is compared with the proposed control method. During the simulation, the random noises
that are imposed on the system are the same as [36]. The parameters of both controllers are
kept unchanged in this simulation.

As it is shown in Figures 12 and 13, when the HTGS is under random noises, the
proposed controller has a smaller error amplitude and system rise time in comparison with
SMC. Moreover, it is evident that the proposed control scheme has the acceptable ability to
control the output of the system under random noises, and these noises could not have a
noticeable influence on the performance of the proposed controller.
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5. Conclusions

In this research, the dynamical behavior of a hydraulic generator regulating system
was studied. Based on numerical tools such as phase diagrams, time series of the system
with different initial conditions, and bifurcation diagram, dynamics of the system were
investigated. It was illustrated that the maximum Lyapunov exponent is positive, which
confirms the chaotic behavior of the given system. After that, a robust control method was
proposed for the control of the HTGS in the presence of external disturbances and dynamic
uncertainties. The ChNN was combined with a non-singular FTSMC in order to guarantee
the appropriate performance of the controller in the presence of external disturbances
and dynamic uncertainties. Finally, using numerical simulation, the performance of the
proposed controller was investigated. Numerical results show the superiority of the
proposed control strategy over the conventional sliding controller for the HTGS in terms
of robustness and convergence time. It was demonstrated that although the dynamic of
the systems is very complicated with high frequency, the ChNN estimates the unknown
function of the system with proper accuracy (see Figures 9 and 10), which confirmed the
positive effects of the ChNN on the performance of the controller. It is noteworthy that
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the stability of the system under the proposed control method is limited to the case in
which the time derivative of W∗ is approximately equal to zero. Hence, as a future work
suggestion, some research can be conducted to use a deep reinforcement learning algorithm
with the control scheme while the parameters of the system vary faster. Moreover, deep
reinforcement learning algorithms can be applied in order to perform fault diagnostics of
this system. Moreover, the presented ChNN-based non-singular fast terminal sliding mode
method could be extended for fractional-order systems.
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