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Abstract: Two modifications with variable coefficients of the well-known SEIR model for epidemic
development in the application to the modeling of the infection curves of COVID-19 are considered.
The data for these models are information on the number of infections each day obtained from the
Johns Hopkins Coronavirus Resource Center database. In our paper, we propose special methods
based on Tikhonov regularization for models’ identification on the class of piecewise constant
coefficients. In contrast to the model with constant coefficients, which cannot always accurately
describe some of infection curves, the first model is able to approximate them for different countries
with an accuracy of 2–8%. The second model considered in the article takes into account external
sources of infection in the form of an inhomogeneous term in one of the model equations and is
able to approximate the data with a slightly better accuracy of 2–4%. For the second model, we also
consider the possibility of using other input data, namely the number of infected people per day.
Such data are used to model infection curves for several waves of the COVID-19 epidemic, including
part of the Omicron wave. Numerical experiments carried out for a number of countries show that
the waves of external sources of infection found are ahead of the wave of infection by 10 or more
days. At the same time, other piecewise constant coefficients of the model change relatively slowly.
These models can be applied fairly reliably to approximate many waves of infection curves with high
precision and can be used to identify external and hidden sources of infection. This is the advantage
of our models.
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1. Introduction

The mathematical modeling of epidemics has a long history (see, for example, [1]).
However, the spread of COVID-19 has given this area of research a significant expansion
and advancement. Due to the avalanche of publications on this topic, we cannot discuss
all areas in detail here. We only note that along with the classical SIR-type models based
on ordinary differential equations and improved recently (see, for example, [2,3]), models
have appeared that include partial differential equations (see, for example, [4]), models
with stochastic differential equations (e.g., [5]), agent-based models [6], etc. In turn, each
of these areas has received internal development and generalization. For example, in SIR
models, a direction associated with the use of fractional derivatives has emerged (see,
e.g., [7], etc.). In our work, we study some extension of the classical SIR-type model and do
not use other approaches.

SIR models have the form of specific systems of ordinary differential equations and
contain coefficients that have an important epidemiological meaning. However, some of
the coefficients, and sometimes all, are unknown. Therefore, the question of finding them
is very relevant, using, for example, data on the dynamics of the number of infected people
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and, possibly, other data. Thus, an inverse coefficient problem arises for the corresponding
SIR system. Methods for solving such inverse problems are well developed. An overview
of such methods can be found, for example, in [8]. Specific implementations of the methods,
based mainly on various optimization algorithms, are detailed in numerous works (see, for
example, [9–15] and others). A detailed analysis of these approaches and a block diagram
of their connection are given, for example, in [16].

In the classical formulation of inverse problems for SIR models, the coefficients are
assumed to be constant. However, it turned out that such models are not always adequate
to epidemiological data, and, as a rule, do not explain the emergence of pandemic waves.
In this regard, we note a recent publication [17], which proposes a new multi-wave SIR
model that can explain the generation of pandemic waves. The principal feature of this
model is a new form of differential equations and the use of functions with a retarded
argument, while the coefficients of the model are constant.

In our work, we use two other approaches within the framework of SIR models. Our
goal is rather modest: an adequate description of the data of the inverse problem, namely,
the dynamics of the number of infected for some countries. The first approach uses time-
varying coefficients in our SIR model, and here we develop the results of work [18]. To
adequately reproduce the data, we solve the inverse coefficient problem for the model on
the class of piecewise constant coefficients with some additional restrictions on the latter.
This makes it possible to model inverse problem data with sufficiently high accuracy for a
number of countries, but does not describe the generation of epidemic waves. This feature
can be explained by the fact that standard SIR models, as a rule, are written for closed
systems that do not take into account the external flow of infections. Therefore, to describe
the emergence of epidemic waves, we supplement the modeling with variable coefficients
by assuming that there are unknown external sources of infection that change over time.
These can be in the aggregate latent carriers of the infection, which are activated at different
times of the year due to weather conditions, as well as carriers of the infection arriving
from other countries and other sources. Mathematically, these sources are modeled by
including an additional term, represented by an unknown function of time, in one of the
equations of our SIR-type model. To find this term and the coefficients, the problem of
minimizing the discrepancy between the data and their analogs calculated from the model
is solved under restrictions on piecewise constant coefficients and on the source. Based
on the coefficients and sources found, it is possible to fairly accurately reproduce data on
infections from several waves of the epidemic for a number of countries. We solved this
problem using data from The Johns Hopkins Coronavirus Resource Center (CRC) [19] for
Austria, the Czech Republic, Germany, France, Italy and Russia. The time of the receipt
of data is 10 February 2022. Comparison of COVID-19 cases from different sources has
been studied [20]. Due to the size of the article, we are unable to give all these results
in detail, so we include figures in the article that correspond only to the calculations for
Austria and Russia. For the rest of the countries, we confine ourselves to presenting some
numerical data.

2. Modeling of Individual Waves of Epidemic

The SEIR model is widely used in mathematical epidemiology. In this section, we use
its modification with variable coefficients from [18]. The model has the following form:

.
S = −β(t)S(I + E)
.
E = β(t)S(I + E)− (γ(t) + δ(t))E, t0 < t < t1
.
I = δ(t)E− γ(t)I

S(t0) = α, E(t0) = 0, I(t0) = I0

(1)
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It will be used for different countries with different values for number N of people
included in epidemic process. The main variables of the model are defined as follows: S(t)
is the proportion of people who can be infected at time t; E(t) is proportion of infected
people in whom illness is not identified yet at time t, but they are able to infect surrounding
people; and I(t) is the proportion of ill people with confirmed diagnoses at time t. One can
calculate the number of people from the entered relative values by multiplying by N. The
choice of total number N of people for considered countries is discussed [9]. Moreover, the
proportion R(t) of recovered people at time t can be determined from system (1) by using
the equation:

.
R = µE + νI, R(t0) = R0. However, we do not use this equation, because

our goal is an adequate modeling of the quantity I(t). So, we consider in this section the SEI
model (1).

Note that we assume that coefficients of Equation (1) can be variable unlike the
standard SEIR model. The time t was measured in days. The coefficients of system (1) have
the following meaning: β(t) is proportional to probability of infection and is measured in
1/days; γ(t) is the reciprocal of the mean time to diagnosis of infection, 1/days; δ(t) is the
inverse value of the average time to cure the patient from the moment of diagnosis, 1/days.

The coefficients can vary due to health measures in specific country. For example, a
decrease in β(t) can consider the response to introduced restricted measures. A weakening
of these measures can result in an increase in β(t). An Increase in γ(t) can be interpreted
as a decrease in the average time of the determination of illness, while an increase in δ(t)
reflects a decrease in the average time of recovering.

Previously, in [18], the inverse problem of finding α, β = β(t), γ = γ(t), δ = δ(t)
from the data Idat(t), I0 was posed. Similar to [19], the input data for the inverse problem
were taken from the statistics of C = confirmed, R = recovered, D = died given in the
database of The Johns Hopkins CRC [19] and were computed as Idat(t) = C− R− D for
some countries. To model piecewise constant coefficients, we divide the time axis into
segments of the form [tn, tn+1] with constant length ∆t = 7. Then, we solve the inverse
problem with constant values α, β, γ, δ separately at each segment. The corresponding
solution is found out by the minimization of the following discrepancy functional at
t ∈ [tn, tn+1]:

Φ(α,β,γ, δ) =
‖I(t; α,β,γ, δ)− Idat(t)‖L2[tn ,tn+1]

‖Idat(t)‖L2[tn ,tn+1]

under a priori constraints of the form K = {0 ≤ α ≤ α0, 0 ≤ β ≤ β0, 0 ≤ γ ≤ γ0, 0 ≤ δ ≤ δ0}
with estimates α0, β0, γ0, δ0 known from the literature. Here, I(t; α,β,γ, δ) is the solution of
(1) for given α, β, γ, δ. Collecting the results of such minimization for all segments, we ob-
tain a solution in the form of piecewise constant functions β = β∗(t), γ = γ∗(t), δ = δ∗(t)
and of a set {αn}. However, such a problem can be ill-posed for each segment, and this is
expressed in an ambiguous solution to the discrepancy minimization problem. To isolate a
single solution, we used a special variant of Tikhonov regularization [21]. We present it in
the form of computation method 1.

Method 1.

Step 1. Set the values of the regularization parameter λm = λ010−m (m = 0, 1, . . .).

Step 2. For each parameter λm and for each segment [tn, tn+1], n = 0, 1, . . . , nmax, we
minimize on the set K the Tikhonov functional of the form

Mλm(α,β,γ, δ) = λmΩ(α,β,γ, δ) + Φ2(α,β,γ, δ)

where the functional

Ω(α,β,γ, δ) =
(α− αn)

2 + (β− βn)
2 + (γ− γn)

2 + (δ− δn)
2

αn2 + βn
2 + γn

2 + δn2 . (2)

determines the relative deviation of the parameters from their values αn, βn, γn, δn obtained
at the previous minimization on the segment [tn−1, tn]. For n = 0, these quantities are equal to



Mathematics 2023, 11, 167 4 of 10

zero. So, at step 2 we obtain the coefficients αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm), and
solving problem (1) for these coefficients, we then find the functions

Nn+1(λm) = Φ(αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm)),
Ωn+1(λm) = Ω(αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm)).

Step 3. Choice of the regularization parameter λ = λ∗. To calculate it, we first find the
averages N(λm) = Nn(λm), Ω(λm) = Ωn(λm) across all segments for each λm. Next, we
build a Pareto curve, N(λm) vs. Ω(λm), which in the theory of regularization is called an
L-curve, and next find on it the point closest to the origin. The value of the parameter λm
corresponding to this point is taken as the optimal value of the regularization parameter λ∗.

Step 4. We repeat step 2 for λ = λ∗ and for each segment [tn, tn+1] and find out the
optimal coefficients α∗n+1, β∗n+1, γ∗n+1, δ∗n+1. Combining these coefficients for all intervals,
we obtain the regularized piecewise coefficients

β = β∗(t), γ = γ∗(t), δ = δ∗(t) : β∗(t) = β∗n+1, γ∗(t) = γ∗n+1, δ∗(t) = δ∗n+1, t ∈ [tn, tn+1], n = 0, 1, . . . , nmax.

Step 5. At the end, we solve system (1) for each interval [tn, tn+1] with the found coefficients
α∗n+1, β∗n+1, γ∗n+1, δ∗n+1, and so we find the function Icalc(t), which is an approximation for
Idat(t). At the same time, we find the functions Scalc(t), Ecalc(t).

The procedure described in Method 1 has the following meaning. We try to simultane-
ously minimize two functionals for each time interval, namely the discrepancy Φ(α,β,γ, δ)
and Ω(α,β,γ, δ). This means the best approximation of the problem data using the model
while ensuring the smallest change in the model parameters when moving from the pre-
vious time interval to the next. To do this, we use a combination of Φ(α,β,γ, δ) and
Ω(α,β,γ, δ) in the form of the Tikhonov functional. The weight parameter λm shows what
is more important for us, to accurately approximate the data or to provide small changes
in the model parameters. At step 3, the weight selection procedure gives a compromise
value λ = λ∗ for all time intervals at once. So, we provide the smallest deviation of the
calculated value Icalc(t) from the data Idat(t) for all points in time with the smallest change
in the model parameters.

A result of such a procedure for solving the inverse problem is shown in Figure 1 for
Russia. All calculations were carried out in MATLAB. The top subplot shows the initial data
Idat(t) and calculated approximation Icalc(t). The values are converted to the number of
people. These curves almost do not differ graphically. The middle subplot shows calculated
piecewise coefficients β = β∗(t), γ = γ∗(t), δ = δ∗(t). The bottom subplot shows the
residual values (discrepancy), Φmin(α,β,γ, δ), when minimizing at each time interval. An
important characteristic of Method 1 is the average value for Φmin(α,β,γ, δ) over all time
intervals, Φmin, which characterizes the quality of the approximation of data Idat(t) by
the found approximate function Icalc(t). For Russia, we obtain Φmin = 0.02. For other
countries, these values are presented in Table 1.

Table 1. Accuracy of the approximation of data for Method 1.

Country Austria Czech Rep. Germany France Italy

Φmin 0.040 0.071 0.050 0.081 0.077

Thus, the presented procedure for solving the inverse problem makes it possible to
approximate the data for model (1) with good accuracy (2–8%). It is interesting to note that
the coefficients β = β∗(t), γ = γ∗(t), δ = δ∗(t) calculated in solving the inverse problem
generally change slowly, and this is what we wanted by applying Method 1.

Unfortunately, model (1) does not describe well all waves of the COVID-19 epidemic.
Such sharply growing waves as for the Omicron strain are approximated by this model
with a significant error. For such waves, the model needs to be corrected by including a
mechanism for generating successive waves.
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in Russia.

3. A mechanism of Successive Waves Simulation in SEI Model

Some models are known from the literature that describe the mechanism of the gener-
ation of epidemic waves (see, e.g., [17]). In this article, we consider one of the possibilities
for changing the SEI model (1) so that such generation occurs in it as well. Formally, we
ensure this by including an additional term f (t) in the third equation of system (1). After
multiplying by N, the function f (t) represents the additional number of infected people per
day. Therefore, the new modification of the SEI model has the form

.
S = −β(t)S(I + E)
.
E = β(t)S(I + E)− (γ(t) + δ(t))E, t0 < t < t1
.
I = δ(t)E− γ(t)I + f (t)

(3)

with the same initial conditions S(t0) = α, E(t0) = 0, I(t0) = I0. This additional term
can, for example, be considered as a source of infections associated with hidden carriers
that are seasonally activated due to weather changes. Moreover, this term may include
the transition of infection into the country in question from abroad. For model (3), we
first set the inverse problem of finding the values α, β = β(t), γ = γ(t), δ = δ(t) and the
function f (t) using the same data Idat(t) = C− R− D as in Section 2. We again assume
piecewise constancy of the quantities β(t), γ(t), δ(t), f (t) on time intervals [tn, tn+1] and
try to minimize a new discrepancy of the form

Φ1(α,β,γ, δ, f ) =
‖I(t; α,β,γ, δ, f )− Idat(t)‖L2[tn ,tn+1]

‖Idat(t)‖L2[tn ,tn+1]
.

for such interval under restrictions (α,β,γ, δ) ∈ K and f ≥ 0. Here, I(t; α,β,γ, δ, f ) is the
solution to system (3) for given quantities α,β,γ, δ, f .

Again, taking into account the ambiguity of the solution of such an inverse problem,
we apply for its solution Method 2, a modification of Method 1. It is based on introduction
of the external source of infection f (t). In this modification, we replace the quantities
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α, β(t), γ(t), δ(t) with their analogs α, β(t), γ(t), δ(t), f (t) and use the discrepancy of
the form Φ1 instead of Φ. Moreover, the functional (2) is replaced by the following:

Ω1(α,β,γ, δ, f ) =
(α− αn)

2 + (β− βn)
2 + (γ− γn)

2 + (δ− δn)
2 + ( f − fn)

2

αn2 + βn
2 + γn

2 + δn2 + fn2 .

As a result of applying Method 2, we obtain another approximate counterpart Icalc(t)
of the data Idat(t) and corresponding piecewise constant optimal coefficients of model (3),
β∗(t), γ∗(t), δ∗(t), f ∗(t).

Now we present the results of numerical experiments on modeling epidemic waves
using model (3) and Method 2 for some countries. Figure 2 refers to Russia. The top subplot
represents the curves Idat(t) and Icalc(t). One can see their practical coincidence. This
subplot also shows a curve representing the dynamics of the changes in external sources of
infection, f ∗(t). Since curves Icalc(t) and f ∗(t) are very different in scale, graph 10 f ∗(t) is
given instead of f ∗(t). All values are converted to the number of people.
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The lower subplot demonstrates the found dynamics of the coefficients. Next, Figure 3
refers to Austria. Again, we present in the upper subplot the quantity 5 f ∗(t) instead of
f ∗(t) along with Idat(t) and Icalc(t).

Similar calculations for other countries show that data approximations, that is the
average discrepancies Φ1, min, for model (3) are generally better than those for model (2),
and this is due to using the source f (t). This is presented in the Table 2.

Table 2. Accuracy of the approximation of data for Method 2.

Country Czech Rep. Germany France Italy

Φ1, min 0.0438 0.0327 0.0248 0.0155



Mathematics 2023, 11, 167 7 of 10

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 10 
 

 

The lower subplot demonstrates the found dynamics of the coefficients. Next, Figure 
3 refers to Austria. Again, we present in the upper subplot the quantity *5 ( )f t  instead 
of *( )f t along with ( )datI t  and ( )calcI t . 

 
Figure 3. Results of modeling of epidemic for Austria: 1— ( )datI t , 2— ( )calcI t , 3— *5 ( )f t . 

Similar calculations for other countries show that data approximations, that is the 
average discrepancies 1,minΦ , for model (3) are generally better than those for model (2), 
and this is due to using the source ( )f t . This is presented in the Table 2. 

Table 2. Accuracy of the approximation of data for Method 2. 

Country Czech Rep. Germany France Italy 

1,minΦ  0.0438 0.0327 0.0248 0.0155 

At the same time, the coefficients ( ), ( )t tγ δ  vary insignificantly, while the coefficient 
( )tβ  changes more markedly. In all numerical experiments, it turned out that the found 

waves of external sources of infection, ( )f t , were ahead of the wave of infection ( )I t by 
10 or more days. 

4. Applying Other Data 
Unfortunately, data provided by Hopkins Coronavirus Resource Center database do 

not contain information about recovered persons ( )R R t=  for several recent waves of the 
epidemic. Therefore, we cannot use, for example, input values dat ( )I t C R D= − −  dated 
10 February 2022 in our models. In this situation, we use the number of infected people 
per day, that is the quantity ( )I t , as a new type of data for the inverse problem. Accord-
ingly, the inverse problem here is related to the minimization of the residual of the form 

2 1

2 1

[ , ]
2

[ , ]

( ; , , , , ) ( )
( , , , , )

( )
n n

n n

dat L t t

dat L t t

I t f I t
f

I t
+

+

α β γ δ −
Φ α β γ δ =

 


.  

Figure 3. Results of modeling of epidemic for Austria: 1—Idat(t), 2—Icalc(t), 3—5 f ∗(t).

At the same time, the coefficients γ(t), δ(t) vary insignificantly, while the coefficient
β(t) changes more markedly. In all numerical experiments, it turned out that the found
waves of external sources of infection, f (t), were ahead of the wave of infection I(t) by 10
or more days.

4. Applying Other Data

Unfortunately, data provided by Hopkins Coronavirus Resource Center database do
not contain information about recovered persons R = R(t) for several recent waves of the
epidemic. Therefore, we cannot use, for example, input values Idat(t) = C− R− D dated
10 February 2022 in our models. In this situation, we use the number of infected people per
day, that is the quantity

.
I(t), as a new type of data for the inverse problem. Accordingly,

the inverse problem here is related to the minimization of the residual of the form

Φ2(α,β,γ, δ, f ) =
‖

.
I(t; α,β,γ, δ, f )−

.
Idat(t)‖L2[tn ,tn+1]

‖
.
Idat(t)‖L2[tn ,tn+1]

.

Here,
.
Idat(t) is the data presented in [19] and the value of

.
I(t; α,β,γ, δ, f ) can be

found from the equation
.
I = δ(t)E− γ(t)I + f (t) after solving problem (3) with given

coefficients α, β = β(t), γ = γ(t), δ = δ(t), f = f (t). In this case, we use a modification
of Method 2 with Φ1 replaced by Φ2 to approximate data

.
Idat(t) by

.
I(t; α,β,γ, δ, f ).

The results of such numerical experiments are shown in Figures 4 and 5 again for
Russia and Austria. In these calculations, the initial conditions are taken at points t0

other than 0, due to the small value of data
.
Idat(t) for t < t0, where values are compared

with background.
We have to note that the accuracy of the approximation of data

.
Idat(t) is 5–10 times

worse here than for data Idat(t) = C− R− D in Section 3. The Table 3 confirms this.

Table 3. Accuracy of approximation for other data.

Country Czech Rep. Germany USA Italy

Φ2, min 0.294 0.268 0.183 0.245
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Thus, the use of Idat(t) = C− R− D seems to be preferable if such data are available.
Nonetheless, we can observe for data

.
Idat(t) the same effect that the peak of source f (t)

precedes the peak of infection I(t).

5. Discussion and Conclusions

Numerical experiments with the identification of model (1), which includes piecewise
constant coefficients, show that for a number of countries the data to the inverse problem,
i.e., infection curves, can be approximated with a high accuracy of 2–8%. This is true for
modeling both an isolated wave of an epidemic and a sequence of waves that do not rise
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sharply. In this case, the found piecewise constant coefficients generally change slightly. For
example, the coefficient γ(t) (see Figure 1) approximately changes by 3%. Identification is
carried out here using the proposed Method 1 based on Tikhonov regularization. However,
for infection waves with a sharp increase, the approximation errors grow tenfold.

To overcome this trouble, we introduce an additional term f (t) into model (1). The
term takes into account external and latent sources of infection. For model (3), an identifica-
tion process similar to Method 1 can be proposed. Then, for the data at our disposal, the
model makes it possible to approximate all successive infection peaks, up to the Omicron
peak, with an accuracy of about 2–4% for different countries. This is somewhat better than
for model (1). This is significantly better (by a factor of 2 to 5) than the results that can
be obtained using the algorithm from [18] when trying to approximate several epidemic
waves without the term f (t) using spline variable coefficients.

When modeling the Omicron peak, we encountered the lack of a series of data in
the Hopkins Coronavirus Resource Center database. Therefore, we had to use other data
that can be extracted from this database, namely the number of infected people per day.
Applying another modification of our Method 1 for the identification of model (3) with
such input data for some countries, we approximated the infection curves for all waves,
including the Omicron wave, with an accuracy of about 10–30%.

The three parts of our work noted here also show the degree of applicability of the
SEI models used to describe the COVID epidemic. These models can be applied fairly
reliably to approximate many waves of infection curves with high precision and can
be used with a certain degree of confidence to identify external and hidden sources of
infection. It distinguishes our models from other models with variable coefficients known
in the literature.
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