Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model
<p>(<b>a</b>) Convergence test in time where the <math display="inline"><semantics> <msup> <mi>L</mi> <mn>2</mn> </msup> </semantics></math> numerical errors for the phase field variable <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> are computed by using various time step size <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>t</mi> </mrow> </semantics></math>, and (<b>b</b>) convergence test in time where the <math display="inline"><semantics> <msup> <mi>L</mi> <mn>2</mn> </msup> </semantics></math> numerical errors for the phase-field variable <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> are computed by using various grid size <span class="html-italic">h</span>.</p> "> Figure 2
<p>The dynamical behaviors of the phase transition example, where snapshots of the numerical approximation of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> are taken at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, 100, 250, 350, 500, 600, 750, 850, and 1000.</p> "> Figure 2 Cont.
<p>The dynamical behaviors of the phase transition example, where snapshots of the numerical approximation of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> are taken at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, 100, 250, 350, 500, 600, 750, 850, and 1000.</p> ">
Abstract
:1. Introduction
2. Model and Its Energy Law
3. Numerical Schemes
3.1. Numerical Scheme
3.2. Energy Stability
3.3. Decoupled Implementation
4. Numerical Simulations
4.1. Accuracy Test
4.2. Phase Transition
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, D.J. Unconditionally gradient stable time marching the cahn- hilliard equation. In Computational and Mathematical Models of Microstruc- Tural Evolution; OPL: San Francisco, CA, USA, 1998; pp. 39–46. [Google Scholar]
- Feng, W.; Salgado, A.; Wang, C.; Wise, S.M. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-laplacian terms. J. Comput. Phys. 2017, 334, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Wise, S.M.; Wang, C.; Lowengrub, J.S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 2009, 47, 2269–2288. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, C.; Wang, S.; Wang, X. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM J. Numer. Anal. 2012, 50, 105–125. [Google Scholar] [CrossRef]
- Wang, C.; Wise, S.M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 2011, 49, 945–969. [Google Scholar] [CrossRef]
- Yang, X.; Han, D. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation. J. Comput. Phys. 2017, 330, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, X. Efficient second order Unconditionally Stable time marching numerical scheme for a modified phase-field crystal model with a strong nonlinear vacancy potential. Comput. Phys. Commun. 2019, 245, 106860. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X. Numerical approximations for a new L2-gradient flow based Phase field crystal model with precise nonlocal mass conservation. Comput. Phys. Commun. 2019, 243, 51–67. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X. On Efficient numerical schemes for a two-mode phase field crystal model with face-centered-cubic (FCC) ordering structure. Appl. Numer. Math. 2019, 146, 13–37. [Google Scholar] [CrossRef]
- Wu, K.; Adland, A.; Karma, A. Phase-field-crystal model for fcc ordering. Phys. Rev. E 2010, 81, 061601. [Google Scholar] [CrossRef] [Green Version]
- Linhananta, A.; Sullivan, D.E. Mesomorphic polymorphism of binary mixtures of water and surfactants. Phys. Rev. E 1998, 57, 4547–4557. [Google Scholar] [CrossRef]
- Potemkin, I.I.; Panyukov, S.V. Microphase separation in correlated random copolymers: Mean-field theory and fluctuation corrections. Phys. Rev. E 1998, 57, 6902–6912. [Google Scholar] [CrossRef]
- Sagui, C.; Desai, R.C. Late-stage kinetics of systems with competing interactions quenched into the hexagonal phase. Phys. Rev. E 1995, 52, 2807–2821. [Google Scholar] [CrossRef]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Gomez, H.; Nogueira, X. A new space-time discretization for the Swift-Hohenberg equation that strictly respects the Lyapunov functional. Commun. Nonlinear. Sci. Numer. Simulat. 2012, 17, 4930–4946. [Google Scholar] [CrossRef]
- Gomez, H.; Nogueira, X. An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 2012, 249–252, 52–61. [Google Scholar] [CrossRef]
- Hu, C.W.Z.; Wise, S.M.; Lowengrub, J.S. Stable and efficient finite difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 2009, 228, 5323–5339. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, X. Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model. Mathematics 2022, 10, 155. https://doi.org/10.3390/math10010155
Zhang J, Yang X. Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model. Mathematics. 2022; 10(1):155. https://doi.org/10.3390/math10010155
Chicago/Turabian StyleZhang, Jun, and Xiaofeng Yang. 2022. "Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model" Mathematics 10, no. 1: 155. https://doi.org/10.3390/math10010155
APA StyleZhang, J., & Yang, X. (2022). Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model. Mathematics, 10(1), 155. https://doi.org/10.3390/math10010155