Unified Convergence Analysis of Chebyshev–Halley Methods for Multiple Polynomial Zeros
<p>Graph of the functions <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>m</mi> <mo>)</mo> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>α</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.285</mn> <mo>+</mo> <mn>0.006</mn> <mi>i</mi> </mrow> </semantics></math>.</p> "> Figure 2
<p>Graph of the functions <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>m</mi> <mo>)</mo> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>α</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.874</mn> <mo>−</mo> <mn>0.097</mn> <mi>i</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Graph of the functions <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>m</mi> <mo>)</mo> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>α</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>0.487</mn> <mo>−</mo> <mn>0.083</mn> <mi>i</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>Graph of the functions <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>m</mi> <mo>)</mo> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>α</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.016</mn> <mo>+</mo> <mn>0.030</mn> <mi>i</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Main Results
2.1. Local Convergence Theorem of the First Kind
2.2. Local Convergence Theorem of the Second Kind
3. Proof of the Main Results
3.1. Preliminaries
- (i)
- If is such that, then for allwe have
- (ii)
- Ifis such thatand, then for allwe have.
3.2. Proof of Theorem 1
3.3. Proof of Theorem 2
4. Comparative Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Halley, E. A new, exact, and easy method of finding the roots of any equations generally, and that without any previous reduction. Philos. Trans. R. Soc. 1694, 18, 136–148. (In Latin) [Google Scholar] [CrossRef] [Green Version]
- Chebyshev, P. Complete Works of P.L. Chebishev; USSR Academy of Sciences: Moscow, Russia, 1973; pp. 7–25. (In Russian) [Google Scholar]
- Ypma, T. Historical development of the Newton-Raphson method. SIAM Rev. 1995, 37, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Scavo, T.; Thoo, J.B. On the geometry of Halley’s method. Am. Math. Mon. 1995, 102, 417–433. [Google Scholar] [CrossRef]
- Ezquerro, J.; Gutiérrez, J.M.; Hernández, M.; Salanova, M. Halley’s method: Perhaps the most rediscovered method in the world. In Margarita Mathematica; University La Rioja: Logroño, Franch, 2001; pp. 205–220. (In Spanish) [Google Scholar]
- Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365. [Google Scholar] [CrossRef] [Green Version]
- Obreshkov, N. On the numerical solution of equations. Annu. Univ. Sofia Fac. Sci. Phys. Math. 1963, 56, 73–83. (In Bulgarian) [Google Scholar]
- Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [Google Scholar] [CrossRef] [Green Version]
- Osada, N. Chebyshev–Halley methods for analytic functions. J. Comput. Appl. Math. 2008, 216, 585–599. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, S.I. General Local Convergence Theorems about the Picard Iteration in Arbitrary Normed Fields with Applications to Super-Halley Method for Multiple Polynomial Zeros. Mathematics 2020, 8, 1599. [Google Scholar] [CrossRef]
- Hernández, M.; Salanova, M. A family of Chebyshev-Halley type methods. Int. J. Comput. Math. 1993, 47, 59–63. [Google Scholar] [CrossRef]
- Proinov, P.D. General local convergence theory for a class of iterative processes and its applications to Newton’s method. J. Complex. 2009, 25, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D.; Ivanov, S.I. On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 2015, 12, 555–572. [Google Scholar] [CrossRef]
- Ivanov, S.I. On the convergence of Chebyshev’s method for multiple polynomial zeros. Results Math. 2016, 69, 93–103. [Google Scholar] [CrossRef]
- Jay, L.O. A note on Q-order of convergence. BIT 2001, 41, 422–429. [Google Scholar] [CrossRef]
- Proinov, P.D. Two Classes of Iteration Functions and Q-Convergence of Two Iterative Methods for Polynomial Zeros. Symmetry 2021, 13, 371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, S.I. Unified Convergence Analysis of Chebyshev–Halley Methods for Multiple Polynomial Zeros. Mathematics 2022, 10, 135. https://doi.org/10.3390/math10010135
Ivanov SI. Unified Convergence Analysis of Chebyshev–Halley Methods for Multiple Polynomial Zeros. Mathematics. 2022; 10(1):135. https://doi.org/10.3390/math10010135
Chicago/Turabian StyleIvanov, Stoil I. 2022. "Unified Convergence Analysis of Chebyshev–Halley Methods for Multiple Polynomial Zeros" Mathematics 10, no. 1: 135. https://doi.org/10.3390/math10010135
APA StyleIvanov, S. I. (2022). Unified Convergence Analysis of Chebyshev–Halley Methods for Multiple Polynomial Zeros. Mathematics, 10(1), 135. https://doi.org/10.3390/math10010135