Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis
<p>Cell type enrichments in distinct region types integrating GeoMx spatial transcriptomics and scRNA-seq transcriptomics in human IPF lungs by the Query method. (<b>A</b>) Workflow of the Query method. In this example, differential analysis extracted up-regulated fibroblast foci-specific genes (n = 50) from GeoMx spatial transcriptomics [<a href="#B17-proteomes-13-00003" class="html-bibr">17</a>], and the sum expression of the whole gene set was queried as a z-score in PLIN2+ fibroblast cells from scRNA-seq transcriptomics [<a href="#B21-proteomes-13-00003" class="html-bibr">21</a>]. (<b>B</b>) PCA plotting of gene expression pattern. (<b>C</b>) Venn graph of the up-regulated region-specific gene sets in five histopathological region types: 32 up-regulated region-specific differential genes for control alveoli, 27 for IPF blood vessel, 41 for IPF distant alveoli, 50 for IPF fibroblast foci and 106 for IPF immune infiltrate. (<b>D</b>) Enrichment z-score summary of 30 cell types in five histopathological region types from spatial transcriptomics. These 30 cell types are classified into five large types: Epithelium, Mesenchyme, Myeloid, Endothelium and Lymphoid. Abbreviations. ACTA2: Smooth muscle alpha-actin; ADAM12: Disintegrin and metalloproteinase domain-containing protein 12; BMP5: Bone morphogenetic protein 5; VCAN: Versican; PC: principal component; AT1: Alveoli type 1 epithelial cells; AT2: Alveoli type 2 epithelial cells; KRT5: Keratin 5; KRT17: Keratin 17; MUC5AC: Mucin 5AC; MUC5B: Mucin 5B; SCGB3A2: secretoglobin family 3A member 2; SCGB3A1: secretoglobin family 3A member 1; PLIN2+: perilipin 2; cDCs: Conventional dendritic cells; pDCs: Plasmacytoid dendritic cells; NK cells: Natural killer cells. Cell type annotations from all figures follow the same abbreviations.</p> "> Figure 2
<p>Cell type enrichments in distinct region types integrating GeoMx spatial transcriptomics [<a href="#B17-proteomes-13-00003" class="html-bibr">17</a>] and scRNA-seq transcriptomics [<a href="#B21-proteomes-13-00003" class="html-bibr">21</a>] in human IPF lungs by the Overlap method. (<b>A</b>,<b>B</b>) Two representative workflow examples of the Overlap method. (<b>A</b>) Enrichment example: Differential analysis extracted up-regulated fibroblast foci-specific genes (n = 50) from GeoMx spatial transcriptomics and PLIN2+ fibroblast-specific genes (n = 576) from scRNA-seq transcriptomics and determined their overlap is larger than expected by random, indicative of enrichment. (<b>B</b>) Depletion example: Differential analysis extracted up-regulated fibroblast foci-specific genes (n = 50) from GeoMx spatial transcriptomics and mast cell-specific genes (n = 581) from scRNA-seq transcriptomics and determined their overlap is smaller than expected by random, indicative of depletion. (<b>C</b>) Enrichment <span class="html-italic">p</span>-value summary of 30 cell types in five histopathological region types from spatial transcriptomics. (<b>D</b>) Spearman’s correlations between cell type rankings in five histopathological defined region types from the Query method and the Overlap method. Abbreviations. ACTA2: Smooth muscle alpha-actin; ADAM12: Disintegrin and metalloproteinase domain-containing protein 12; BMP5: Bone morphogenetic protein 5; VCAN: Versican; ABCA9: ATP binding cassette subfamily A member 9; ABCF2: ATP binding cassette subfamily F member 2; ABL1: ABL proto-oncogene 1; ZNFX1: Zinc finger NFX1-type containing 1; ABCB8: ATP binding cassette subfamily B member 8; ABCC1: ATP binding cassette subfamily C member 1; ABCC4: ATP binding cassette subfamily C member 4; ZNRF1: Zinc and ring finger 1.</p> "> Figure 3
<p>Cell type enrichments in distinct region types integrating LCM-directed LC–MS spatial proteomics and scRNA-seq transcriptomics in human IPF lungs by the Query method and the Overlap method. (<b>A</b>) Enrichment z-score summary of 30 cell types in four histopathological region types from spatial proteomics. (<b>B</b>) Enrichment <span class="html-italic">p</span>-value summary of 30 cell types in four histopathological region types from spatial proteomics. (<b>C</b>) Spearman’s correlations between cell type rankings in four histopathological region types from the Query method and the Overlap method.</p> "> Figure 4
<p>Cell type enrichment comparisons by combining either GeoMx spatial transcriptomics or LCM-directed LC–MS spatial proteomics with scRNA-seq transcriptomics. (<b>A</b>) z-score comparisons by the Query method from spatial RNA/cellular RNA integration and spatial protein/cellular RNA integration in 30 cell types in three common region types: IPF fibroblast foci, IPF alveoli and control alveoli regions. (<b>B</b>) significance <span class="html-italic">p</span>-value comparisons by the Overlap method from spatial RNA/cellular RNA integration and spatial protein/cellular RNA integration in 30 cell types in three common region types: IPF fibroblast foci, IPF alveoli and control alveoli regions. Spearman’s correlations are calculated in each comparison.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reanalysis of Published Omics Datasets Used in the Integration and Comparison
2.1.1. Reanalysis of the Eyres Spatial Transcriptomics Dataset
2.1.2. Reanalysis of the Herrera Spatial Proteomics Dataset
2.1.3. Comparisons of the Eyres Spatial Transcriptomics Dataset and the Herrera Spatial Proteomics Dataset
2.2. Integration of GeoMx Spatial Transcriptomics and scRNA-Seq Transcriptomics
2.2.1. Extraction of Region-Specific Differentially Expressed Genes from the Eyres Spatial Transcriptomics Dataset
2.2.2. Query Method: Query of Region-Specific Differential Gene in Distinct Cell Types to Compute Z-Scores Based on Relative Expression Levels
2.2.3. Overlap Method: Use the Degree of Overlap Between Region- and Cell Type-Specific Differential Genes to Calculate Cell Type Enrichments
2.2.4. Comparisons Between Deconvolution Methods and Enrichment Methods
2.3. LCM-Directed LC–MS
2.3.1. LCM Sample Preparations
2.3.2. LC-MS
2.3.3. Proteomics Data Analysis
2.4. Integration of LCM-Directed LC–MS Spatial Proteomics and scRNA-Seq Transcriptomics
3. Results
3.1. Comparisons of Spatial Transcriptomics and Spatial Proteomics in the Common Histopathological Region Types
3.2. Integration of Spatial Transcriptomics and scRNA-Seq Transcriptomics to Deduce Cell Type Enrichments in Pathological Regions
3.2.1. Query Method
3.2.2. Overlap Method
3.3. LCM-Directed LC–MS Proteomics Identified Key ECM Proteins and Related Pathways from Human IPF Lung Tissues
3.4. Integration of Spatial Proteomics and scRNA-Seq Transcriptomics by the Query Method and the Overlap Method
3.5. Comparisons of Integration Results from Spatial Transcriptomics and scRNA-Seq Transcriptomics Versus Those from Spatial Proteomics and scRNA-Seq Transcriptomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic Pulmonary Fibrosis. Nat. Rev. Dis. Prim. 2017, 3, 17074. [Google Scholar] [CrossRef]
- King, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Bois, R.M.d.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Furusawa, H.; Cardwell, J.H.; Okamoto, T.; Walts, A.D.; Konigsberg, I.R.; Kurche, J.S.; Bang, T.J.; Schwarz, M.I.; Brown, K.K.; Kropski, J.A.; et al. Chronic Hypersensitivity Pneumonitis, an Interstitial Lung Disease with Distinct Molecular Signatures. Am. J. Respir. Crit. Care Med. 2020, 202, 1430–1444. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; White, T.A.; Iijima, K.; Haak, A.J.; Ligresti, G.; Atkinson, E.J.; Oberg, A.L.; Birch, J.; Salmonowicz, H.; Zhu, Y.; et al. Cellular Senescence Mediates Fibrotic Pulmonary Disease. Nat. Commun. 2017, 8, 14532. [Google Scholar] [CrossRef]
- Nance, T.; Smith, K.S.; Anaya, V.; Richardson, R.; Ho, L.; Pala, M.; Mostafavi, S.; Battle, A.; Feghali-Bostwick, C.; Rosen, G.; et al. Transcriptome Analysis Reveals Differential Splicing Events in IPF Lung Tissue. PLoS ONE 2014, 9, e92111. [Google Scholar] [CrossRef] [PubMed]
- Duerr, J.; Leitz, D.H.W.; Szczygiel, M.; Dvornikov, D.; Fraumann, S.G.; Kreutz, C.; Zadora, P.K.; Agircan, A.S.; Konietzke, P.; Engelmann, T.A.; et al. Conditional Deletion of Nedd4-2 in Lung Epithelial Cells Causes Progressive Pulmonary Fibrosis in Adult Mice. Nat. Commun. 2020, 11, 2012. [Google Scholar] [CrossRef] [PubMed]
- Åhrman, E.; Hallgren, O.; Malmström, L.; Hedström, U.; Malmström, A.; Bjermer, L.; Zhou, X.-H.; Westergren-Thorsson, G.; Malmström, J. Quantitative Proteomic Characterization of the Lung Extracellular Matrix in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. J. Proteom. 2018, 189, 23–33. [Google Scholar] [CrossRef]
- Huang, Y.; Guzy, R.; Ma, S.-F.; Bonham, C.A.; Jou, J.; Schulte, J.J.; Kim, J.S.; Barros, A.J.; Espindola, M.S.; Husain, A.N.; et al. Central Lung Gene Expression Associates with Myofibroblast Features in Idiopathic Pulmonary Fibrosis. BMJ Open Respir. Res. 2023, 10, e001391. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, E.T.; Uhl, F.E.; Asarian, L.; Deng, B.; Becker, C.; Uriarte, J.J.; Downs, I.; Young, B.; Weiss, D.J. Regional and Disease Specific Human Lung Extracellular Matrix Composition. Biomaterials 2023, 293, 121960. [Google Scholar] [CrossRef] [PubMed]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex Digital Spatial Profiling of Proteins and RNA in Fixed Tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.A.; Pappalardo, P.A.; Carpino, A.; Haymond, A.; Howard, M.; Espina, V.; Wulfkuhle, J.; Petricoin, E. Laser Capture Proteomics: Spatial Tissue Molecular Profiling from the Bench to Personalized Medicine. Expert Rev. Proteom. 2021, 18, 845–861. [Google Scholar] [CrossRef]
- Mund, A.; Coscia, F.; Kriston, A.; Hollandi, R.; Kovács, F.; Brunner, A.-D.; Migh, E.; Schweizer, L.; Santos, A.; Bzorek, M.; et al. Deep Visual Proteomics Defines Single-Cell Identity and Heterogeneity. Nat. Biotechnol. 2022, 40, 1231–1240. [Google Scholar] [CrossRef]
- Eyres, M.; Bell, J.A.; Davies, E.R.; Fabre, A.; Alzetani, A.; Jogai, S.; Marshall, B.G.; Johnston, D.A.; Xu, Z.; Fletcher, S.V.; et al. Spatially Resolved Deconvolution of the Fibrotic Niche in Lung Fibrosis. Cell Rep. 2022, 40, 111230. [Google Scholar] [CrossRef]
- Blumhagen, R.Z.; Kurche, J.S.; Cool, C.D.; Walts, A.D.; Heinz, D.; Fingerlin, T.E.; Yang, I.V.; Schwartz, D.A. Spatially Distinct Molecular Patterns of Gene Expression in Idiopathic Pulmonary Fibrosis. Respir. Res. 2023, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.A.; Dingle, L.A.; Fernandez, M.A.M.; Venkateswaran, R.V.; Blaikley, J.F.; Lawless, C.; Schwartz, M.A. The UIP/IPF Fibroblastic Focus Is a Collagen Biosynthesis Factory Embedded in a Distinct Extracellular Matrix. JCI Insight 2022, 7, e156115. [Google Scholar] [CrossRef]
- Franzén, L.; Lindvall, M.O.; Hühn, M.; Ptasinski, V.; Setyo, L.; Keith, B.P.; Collin, A.; Oag, S.; Volckaert, T.; Borde, A.; et al. Mapping Spatially Resolved Transcriptomes in Human and Mouse Pulmonary Fibrosis. Nat. Genet. 2024, 56, 1725–1736. [Google Scholar] [CrossRef]
- Habermann, A.C.; Gutierrez, A.J.; Bui, L.T.; Yahn, S.L.; Winters, N.I.; Calvi, C.L.; Peter, L.; Chung, M.-I.; Taylor, C.J.; Jetter, C.; et al. Single-Cell RNA Sequencing Reveals Profibrotic Roles of Distinct Epithelial and Mesenchymal Lineages in Pulmonary Fibrosis. Sci. Adv. 2020, 6, eaba1972. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.S.; Schupp, J.C.; Poli, S.; Ayaub, E.A.; Neumark, N.; Ahangari, F.; Chu, S.G.; Raby, B.A.; DeIuliis, G.; Januszyk, M.; et al. Single-Cell RNA-Seq Reveals Ectopic and Aberrant Lung-Resident Cell Populations in Idiopathic Pulmonary Fibrosis. Sci. Adv. 2020, 6, eaba1983. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, T.; Sun, K.-H.; Wetter, J.B.; Wilson-Kanamori, J.R.; Hazelwood, L.A.; Henderson, N.C.; Adams, T.S.; Schupp, J.C.; Poli, S.D.; Rosas, I.O.; et al. Collagen-Producing Lung Cell Atlas Identifies Multiple Subsets with Distinct Localization and Relevance to Fibrosis. Nat. Commun. 2020, 11, 1920. [Google Scholar] [CrossRef]
- Morse, C.; Tabib, T.; Sembrat, J.; Buschur, K.L.; Bittar, H.T.; Valenzi, E.; Jiang, Y.; Kass, D.J.; Gibson, K.; Chen, W.; et al. Proliferating SPP1/MERTK-Expressing Macrophages in Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2019, 54, 1802441. [Google Scholar] [CrossRef]
- Longo, S.K.; Guo, M.G.; Ji, A.L.; Khavari, P.A. Integrating Single-Cell and Spatial Transcriptomics to Elucidate Intercellular Tissue Dynamics. Nat. Rev. Genet. 2021, 22, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Mund, A.; Brunner, A.-D.; Mann, M. Unbiased Spatial Proteomics with Single-Cell Resolution in Tissues. Mol. Cell 2022, 82, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O.; Naba, A. Overview of the Matrisome—An Inventory of Extracellular Matrix Constituents and Functions. Cold Spring Harb. Perspect. Biol. 2012, 4, a004903. [Google Scholar] [CrossRef] [PubMed]
- Vannan, A.; Lyu, R.; Williams, A.L.; Negretti, N.M.; Mee, E.D.; Hirsh, J.; Hirsh, S.; Nichols, D.S.; Calvi, C.L.; Taylor, C.J.; et al. Image-Based Spatial Transcriptomics Identifies Molecular Niche Dysregulation Associated with Distal Lung Remodeling in Pulmonary Fibrosis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2011, 28, 112–118. [Google Scholar] [CrossRef]
- Jin, L.; Bi, Y.; Hu, C.; Qu, J.; Shen, S.; Wang, X.; Tian, Y. A Comparative Study of Evaluating Missing Value Imputation Methods in Label-Free Proteomics. Sci. Rep. 2021, 11, 1760. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef]
- Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating Microarray-Based Spatial Transcriptomics and Single-Cell RNA-Seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas. Nat. Biotechnol. 2020, 38, 333–342. [Google Scholar] [CrossRef]
- Danaher, P.; Kim, Y.; Nelson, B.; Griswold, M.; Yang, Z.; Piazza, E.; Beechem, J.M. Advances in Mixed Cell Deconvolution Enable Quantification of Cell Types in Spatial Transcriptomic Data. Nat. Commun. 2022, 13, 385. [Google Scholar] [CrossRef]
- Kong, A.T.; Leprevost, F.V.; Avtonomov, D.M.; Mellacheruvu, D.; Nesvizhskii, A.I. MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry–Based Proteomics. Nat. Methods 2017, 14, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Lynn, H.; Parks, W.C.; Stripp, B.; Chen, P.; Jiang, D.; Noble, P.W. Abnormal Respiratory Progenitors in Fibrotic Lung Injury. Stem Cell Res. Ther. 2022, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Aspal, M.; Zemans, R.L. Mechanisms of ATII-to-ATI Cell Differentiation During Lung Regeneration. Int. J. Mol. Sci. 2020, 21, 3188. [Google Scholar] [CrossRef] [PubMed]
- Kathiriya, J.J.; Wang, C.; Zhou, M.; Brumwell, A.; Cassandras, M.; Saux, C.L.; Cohen, M.; Alysandratos, K.-D.; Wang, B.; Wolters, P.; et al. Human Alveolar Type 2 Epithelium Transdifferentiates into Metaplastic KRT5+ Basal Cells. Nat. Cell Biol. 2022, 24, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Melms, J.C.; Biermann, J.; Huang, H.; Wang, Y.; Nair, A.; Tagore, S.; Katsyv, I.; Rendeiro, A.F.; Amin, A.D.; Schapiro, D.; et al. A Molecular Single-Cell Lung Atlas of Lethal COVID-19. Nature 2021, 595, 114–119. [Google Scholar] [CrossRef]
- Boyle, E.I.; Weng, S.; Gollub, J.; Jin, H.; Botstein, D.; Cherry, J.M.; Sherlock, G. GO::TermFinder—Open Source Software for Accessing Gene Ontology Information and Finding Significantly Enriched Gene Ontology Terms Associated with a List of Genes. Bioinformatics 2004, 20, 3710–3715. [Google Scholar] [CrossRef]
- Janesick, A.; Shelansky, R.; Gottscho, A.D.; Wagner, F.; Williams, S.R.; Rouault, M.; Beliakoff, G.; Morrison, C.A.; Oliveira, M.F.; Sicherman, J.T.; et al. High Resolution Mapping of the Tumor Microenvironment Using Integrated Single-Cell, Spatial and In Situ Analysis. Nat. Commun. 2023, 14, 8353. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Zhao, G.; Lee, Y.; Buzdin, A.; Mu, X.; Zhao, J.; Chen, H.; Li, X. Spatial Transcriptomics: Technologies, Applications and Experimental Considerations. Genomics 2023, 115, 110671. [Google Scholar] [CrossRef]
- Wang, H.; Huang, R.; Nelson, J.; Gao, C.; Tran, M.; Yeaton, A.; Felt, K.; Pfaff, K.L.; Bowman, T.; Rodig, S.J.; et al. Systematic Benchmarking of Imaging Spatial Transcriptomics Platforms in FFPE Tissues. bioRxiv 2023. [Google Scholar] [CrossRef]
- Liu, R.; Liao, Y.-Z.; Zhang, W.; Zhou, H.-H. Relevance of Immune Infiltration and Clinical Outcomes in Pancreatic Ductal Adenocarcinoma Subtypes. Front. Oncol. 2021, 10, 575264. [Google Scholar] [CrossRef]
- Nuovo, G.J.; Hagood, J.S.; Magro, C.M.; Chin, N.; Kapil, R.; Davis, L.; Marsh, C.B.; Folcik, V.A. The Distribution of Immunomodulatory Cells in the Lungs of Patients with Idiopathic Pulmonary Fibrosis. Mod. Pathol. 2012, 25, 416–433. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dai, K.; Zhang, X.; Huang, G.; Lynn, H.; Rabata, A.; Liang, J.; Noble, P.W.; Jiang, D. Multiple Fibroblast Subtypes Contribute to Matrix Deposition in Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2023, 69, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Shaykhiev, R. Basal-like Cells in the BAL Fluid: An Echo of Regenerative Crisis in Idiopathic Pulmonary Fibrosis Lungs. Am. J. Respir. Crit. Care Med. 2019, 199, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Cooley, M.A.; Jarnicki, A.G.; Borghuis, T.; Nair, P.M.; Tjin, G.; Hsu, A.C.; Haw, T.J.; Fricker, M.; Harrison, C.L.; et al. Fibulin-1c Regulates Transforming Growth Factor-β Activation in Pulmonary Tissue Fibrosis. JCI Insight 2019, 4, e124529. [Google Scholar] [CrossRef]
- Leppäranta, O.; Sens, C.; Salmenkivi, K.; Kinnula, V.L.; Keski-Oja, J.; Myllärniemi, M.; Koli, K. Regulation of TGF-β Storage and Activation in the Human Idiopathic Pulmonary Fibrosis Lung. Cell Tissue Res. 2012, 348, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Yoon, Y.-M.; Meang, M.K.; Park, Y.E.; Lee, J.Y.; Lee, T.H.; Lee, J.E.; Kim, I.-H.; Youn, B.-S. Reversion of in Vivo Fibrogenesis by Novel Chromone Scaffolds. EBioMedicine 2019, 39, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Upagupta, C.; Shimbori, C.; Alsilmi, R.; Kolb, M. Matrix Abnormalities in Pulmonary Fibrosis. Eur. Respir. Rev. 2018, 27, 180033. [Google Scholar] [CrossRef] [PubMed]
- Al-Habeeb, F.; Aloufi, N.; Traboulsi, H.; Liu, X.; Nair, P.; Haston, C.; Azuelos, I.; Huang, S.K.; White, E.S.; Gallouzi, I.E.; et al. Human Antigen R Promotes Lung Fibroblast Differentiation to Myofibroblasts and Increases Extracellular Matrix Production. J. Cell. Physiol. 2021, 236, 6836–6851. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhang, M.; Wen, Z.; Wang, B.; Zhang, L.; Ou, Y.; Tang, X.; Yu, X.; Jiang, Q. Inhibition of EP300 and DDR1 Synergistically Alleviates Pulmonary Fibrosis In Vitro and In Vivo. Biomed. Pharmacother. 2018, 106, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2021, 50, D543–D552. [Google Scholar] [CrossRef]
Year | Spatial Data Reference | Spatial Data Access | Feature Domain | Platform | Spatial Method | scRNA-Seq Data Reference | scRNA-Seq Data Access | scRNA-Seq Integration Method | Who Performed the Integration |
---|---|---|---|---|---|---|---|---|---|
2022 | Eyres [17] | Table S1 | RNA | GeoMx DSP | Histopathology directed area selection | Habermann [21] | GSE135893 | Query/Overlap/ Deconvolution | This study |
2022 | Blumhagen [18] | N/A | RNA | GeoMx DSP | Histopathology directed area selection | Adams [22] | GSE136831 | Deconvolution | Original paper |
2023 | Vannan [28] | GSE 250346 | RNA | Xenium in situ | Pixel-based whole area, ROI selection offline | N/A | N/A | Direct cell count | Original paper |
2022 | Herrera [19] | PXD 029341 | Protein | LCM-directed LC–MS | Histopathology directed area selection | Habermann [21] | GSE135893 | Query/Overlap | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Jin, L.; Wang, X.; Cui, B.; Yang, Y.; Duggan, L.; Schwartz Sterman, A.; Lloyd, S.M.; Hazelwood, L.A.; Chaudhary, N.; et al. Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis. Proteomes 2025, 13, 3. https://doi.org/10.3390/proteomes13010003
Wang F, Jin L, Wang X, Cui B, Yang Y, Duggan L, Schwartz Sterman A, Lloyd SM, Hazelwood LA, Chaudhary N, et al. Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis. Proteomes. 2025; 13(1):3. https://doi.org/10.3390/proteomes13010003
Chicago/Turabian StyleWang, Fei, Liang Jin, Xue Wang, Baoliang Cui, Yingli Yang, Lori Duggan, Annette Schwartz Sterman, Sarah M. Lloyd, Lisa A. Hazelwood, Neha Chaudhary, and et al. 2025. "Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis" Proteomes 13, no. 1: 3. https://doi.org/10.3390/proteomes13010003
APA StyleWang, F., Jin, L., Wang, X., Cui, B., Yang, Y., Duggan, L., Schwartz Sterman, A., Lloyd, S. M., Hazelwood, L. A., Chaudhary, N., Bawa, B., Phillips, L. A., He, Y., & Tian, Y. (2025). Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis. Proteomes, 13(1), 3. https://doi.org/10.3390/proteomes13010003