Dynamic Spillovers of Economic Policy Uncertainty: A TVP-VAR Analysis of Latin American and Global EPU Indices
<p>Co-occurrence network of keywords from the search terms EPU OR “Economic Policy Uncertainty” AND TVP-VAR. Source: authors’ analysis using VOSviewer with data from Scopus and Web of Science.</p> "> Figure 2
<p>Historiographic map. Source: authors’ own research using the Bibliometrix tool (<a href="#B6-economies-13-00011" class="html-bibr">Aria & Cuccurullo, 2017</a>), as well as Scopus and WoS databases.</p> "> Figure 3
<p>Temporal dynamics of EPU index prices (<b>a</b>) and returns (<b>b</b>) across global regions. Source: authors’ own research using data from <a href="#B8-economies-13-00011" class="html-bibr">Baker et al.</a> (<a href="#B8-economies-13-00011" class="html-bibr">2016</a>), <a href="#B10-economies-13-00011" class="html-bibr">Cerda et al.</a> (<a href="#B10-economies-13-00011" class="html-bibr">2016</a>), and <a href="#B21-economies-13-00011" class="html-bibr">Gil León and Silva Pinzón</a> (<a href="#B21-economies-13-00011" class="html-bibr">2019</a>).</p> "> Figure 4
<p>Research framework for analyzing economic policy uncertainty spillovers. Source: authors’ own research.</p> "> Figure 5
<p>Network of EPU return spillovers among global and Latin American economies. Source: authors’ own research.</p> "> Figure 6
<p>Dynamic total connectedness index (TCI) across global and Latin American economies. Notes: The black shaded area represents the TCI index including all external spillovers. The red line indicates the TCI considering only internal spillovers in Latin American economies—Brazil, Chile, Colombia, and Mexico. The green line illustrates the connectedness on a global scale, while the blue line represents the connectedness within Latin America (Latam). Source: authors’ own research.</p> "> Figure 7
<p>Net total directional connectedness: external and internal spillovers. Notes: the black shaded areas represent connectedness through external spillovers, while the red lines indicate internal spillovers. Source: authors’ own research.</p> "> Figure 8
<p>Total directional connectedness received from external and internal spillovers. Notes: the black shaded areas represent connectedness due to external spillovers, while the red lines indicate internal spillovers. Source: authors’ own research.</p> "> Figure 9
<p>Total directional connectedness transmitted to other economies: external and internal spillovers. Notes: the black shaded areas represent connectedness due to external spillovers, while the red lines indicate internal spillovers. Source: authors’ own research.</p> "> Figure 10
<p>Internal net pairwise total directional connectedness among economies. Source: authors’ own research.</p> "> Figure 11
<p>External net pairwise total directional connectedness among economies. Source: authors’ own research.</p> ">
Abstract
:1. Introduction
- RH1: external EPU significantly influences Latin American economies more than internal EPU, making these economies primarily recipients of global uncertainty spillovers.
- RH2: within Latin America, economies like Brazil and Mexico act as regional EPU transmitters, but their role is secondary to their dependence on global economic interactions.
- RH3: the intensity of external EPU impacts varies across Latin American economies, influenced by their degree of economic integration with global markets.
- RH4: strengthened institutional frameworks can reduce Latin America’s vulnerability to external EPU, highlighting the role of governance and policy stability.
- RH5: regional cooperation through frameworks such as the Pacific Alliance and Mercosur can alleviate shared EPU risks, fostering economic stability in Latin America.
2. Literature Review
2.1. Literature Clusters
2.1.1. Cluster 1 (Red): Drivers and Transmission Channels of Global EPU
2.1.2. Cluster 2 (Green): Financial Market Reactions and Risk Management Under EPU
2.1.3. Cluster 3 (Blue): Methodologies and Transmission Mechanisms of EPU Spillovers
2.1.4. Cluster 4 (Yellow): Nonlinear Dynamics and Specific Shocks in EPU
2.2. Historiographic Analysis of EPU and TVP-VAR Research: Foundations, Evolution, and Emerging Trends
3. Empirical Data and Methodological Approach
3.1. The Dataset and Research Framework
3.2. Time-Varying Parameter Vector Autoregressive (TVP-VAR) Model
4. Empirical Results
4.1. General Connectedness Findings
4.2. Internal and External Connectedness Findings
4.2.1. Dynamic Total Connectedness Index (TCI)
4.2.2. Net Total Directional Connectedness
4.2.3. Total Directional Connectedness Received from External and Internal Spillovers
4.2.4. Total Directional Connectedness Transmitted to Other Economies: External and Internal Spillovers
4.2.5. Internal Net Pairwise Total Directional Connectedness Among Economies
4.2.6. External Net Pairwise Total Directional Connectedness Among Economies
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abaidoo, R. (2019). Policy uncertainty and dynamics of international trade. Journal of Financial Economic Policy, 11(1), 101–120. [Google Scholar] [CrossRef]
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. [Google Scholar] [CrossRef]
- Antonakakis, N., Gabauer, D., & Gupta, R. (2019). Greek economic policy uncertainty: Does it matter for europe? evidence from a dynamic connectedness decomposition approach. Physica A: Statistical Mechanics and Its Applications, 535, 122280. [Google Scholar] [CrossRef]
- Antonakakis, N., Gabauer, D., Gupta, R., & Plakandaras, V. (2018). Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Economics Letters, 166, 63–75. [Google Scholar] [CrossRef]
- Apostolakis, G. N., Floros, C., Gkillas, K., & Wohar, M. (2021). Financial stress, economic policy uncertainty, & oil price uncertainty. Energy Economics, 104, 105686. [Google Scholar] [CrossRef]
- Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. [Google Scholar] [CrossRef]
- Assaf, A., Charif, H., & Mokni, K. (2021). Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter? Resources Policy, 72, 102112. [Google Scholar] [CrossRef]
- Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. [Google Scholar] [CrossRef]
- Bush, G., & Noria, G. L. (2021). Uncertainty and exchange rate volatility: Evidence from Mexico. International Review of Economics & Finance, 75, 704–722. [Google Scholar] [CrossRef]
- Cerda, R., Silva, A., & Valente, J. T. (2016). Economic policy uncertainty indices for Chile [Economic Policy Uncertainty Working Paper]. Available online: https://www.policyuncertainty.com/media/EPU_Chile.pdf (accessed on 3 July 2024).
- Chen, L., Du, Z., & Hu, Z. (2020). Impact of economic policy uncertainty on exchange rate volatility of China. Finance Research Letters, 32, 101266. [Google Scholar] [CrossRef]
- Christou, C., Gabauer, D., & Gupta, R. (2020). Time-Varying impact of uncertainty shocks on macroeconomic variables of the United Kingdom: Evidence from over 150 years of monthly data. Finance Research Letters, 37, 101363. [Google Scholar] [CrossRef]
- Degiannakis, S., Filis, G., & Panagiotakopoulou, S. (2018). Oil price shocks and uncertainty: How stable is their relationship over time? Economic Modelling, 72, 42–53. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158–171. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. [Google Scholar] [CrossRef]
- Elsherif, M. (2024). Modelling inflation dynamics and global oil price shocks in OAPEC countries: TVP-VAR. International Journal of Energy Economics and Policy, 14(3), 51–69. [Google Scholar] [CrossRef]
- Gabauer, D., & Gupta, R. (2018). On the Transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Economics Letters, 171, 63–71. [Google Scholar] [CrossRef]
- Gabauer, D., & Gupta, R. (2020). Spillovers across macroeconomic, financial and real estate uncertainties: A time-varying approach. Structural Change and Economic Dynamics, 52, 167–173. [Google Scholar] [CrossRef]
- Garfield, E. (2004). Historiographic Mapping of Knowledge Domains Literature. Journal of Information Science, 30(2), 119–45. [Google Scholar] [CrossRef]
- Gil León, J. M., & Silva Pinzón, D. E. (2019). Índice de incertidumbre de política económica (EPU) para colombia, 2000–2017. Ensayos de Economía, 29(55), 37–56. [Google Scholar] [CrossRef]
- Gulen, H., & Ion, M. (2015). Policy uncertainty and corporate investment. Review of Financial Studies, 29, 523–564. [Google Scholar] [CrossRef]
- Hardouvelis, G. A., Karalas, G., Karanastasis, D., & Samartzis, P. (2018). Economic policy uncertainty, political uncertainty and the greek economic crisis. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Huang, X., Wang, Y., & Li, H. (2024). Exploring the asymmetric influence of economic policy uncertainty on the nonlinear relationship between exchange rate and carbon prices in china. The North American Journal of Economics and Finance, 73, 102166. [Google Scholar] [CrossRef]
- Jiang, Y., Zhu, Z., Tian, G., & Nie, H. (2019). Determinants of within and cross-country economic policy uncertainty spillovers: Evidence from us and china. Finance Research Letters, 31, 1–12. [Google Scholar] [CrossRef]
- Kayani, U., Hassan, M. K., Dejan, A., Khan, M., & Nawaz, F. (2024). Assessment of economic policy uncertainty spillovers: A cross-border analysis of global and bric economies. International Economics, 179, 100530. [Google Scholar] [CrossRef]
- Kong, Q., Li, R., Wang, Z., & Peng, D. (2022). Economic policy uncertainty and firm investment decisions: Dilemma or opportunity? International Review of Financial Analysis, 83, 102301. [Google Scholar] [CrossRef]
- Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119–147. [Google Scholar] [CrossRef]
- Liu, F., Su, C. W., Tao, R., & Lobonţ, O.-R. (2024). Does economic and climate policy uncertainty matter the oil market? Resources Policy, 95, 105188. [Google Scholar] [CrossRef]
- Liu, L., Zhang, M., & Li, W. (2020). China’s economic policy uncertainty shocks and south korea’s exports: A TVP-VAR approach with an SMSS structure. Journal of Korea Trade, 24(4), 1–17. [Google Scholar] [CrossRef]
- Liu, Z., Zhu, T., Duan, Z., Xuan, S., Ding, Z., & Wu, S. (2023). Time-varying impacts of oil price shocks on china’s stock market under economic policy uncertainty. Applied Economics, 55(9), 963–989. [Google Scholar] [CrossRef]
- Marín-Rodríguez, N. J., González-Ruiz, J. D., & Valencia-Arias, A. (2023). Incorporating green bonds into portfolio investments: Recent trends and further research. Sustainability, 15(20), 14897. [Google Scholar] [CrossRef]
- Mishra, A. K., Nakhate, A. T., Bagra, Y., Singh, A., & Kar, B. P. (2024). The impact of directional global economic policy uncertainty on indian stock market volatility: New evidence. Asia-Pacific Financial Markets, 31(3), 423–452. [Google Scholar] [CrossRef]
- Mokni, K., Hammoudeh, S., Ajmi, A. N., & Youssef, M. (2020). Does economic policy uncertainty drive the dynamic connectedness between oil price shocks and gold price? Resources Policy, 69, 101819. [Google Scholar] [CrossRef]
- Mumtaz, H., & Surico, P. (2018). Policy uncertainty and aggregate fluctuations. Journal of Applied Econometrics, 33(3), 319–331. [Google Scholar] [CrossRef]
- Nyakurukwa, K., & Seetharam, Y. (2023). Cross-country categorical economic policy uncertainty spillovers: Evidence from a conditional connectedness TVP-VAR framework. Journal of Financial Economic Policy, 15(2), 164–181. [Google Scholar] [CrossRef]
- Paule-Vianez, J., Lobão, J., Gómez-Martínez, R., & Prado-Román, C. (2021). Momentum strategies in times of economic policy uncertainty. Journal of Financial Economic Policy, 13(3), 285–300. [Google Scholar] [CrossRef]
- Paule-Vianez, J., Prado-Román, C., & Gómez-Martínez, R. (2020). Monetary policy uncertainty and stock market returns: Influence of limits to arbitrage and the economic cycle. Studies in Economics and Finance, 37(4), 777–798. [Google Scholar] [CrossRef]
- Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17–29. [Google Scholar] [CrossRef]
- Raza, S. A., Sharif, A., Kumar, S., & Ahmed, M. (2023). Connectedness between monetary policy uncertainty and sectoral stock market returns: Evidence from asymmetric TVP-VAR approach. International Review of Financial Analysis, 90, 102946. [Google Scholar] [CrossRef]
- Ren, X., Xiao, Y., Duan, K., & Urquhart, A. (2024). Spillover effects between fossil energy and green markets: Evidence From informational inefficiency. Energy Economics, 131, 107317. [Google Scholar] [CrossRef]
- Roma, C. M. d. S., Louzada, L. C., da Silva Roma, P. M., Goto, H., & Souma, W. (2021). Earnings management, policy uncertainty and firm life cycle stages: Evidence from publicly traded companies in the usa and brazil. Journal of Financial Economic Policy, 13(3), 371–390. [Google Scholar] [CrossRef]
- Rúa, J. A., & Marín-Rodríguez, N. J. (2024). Análisis tiempo-frecuencia de la incertidumbre de la política económica y su relación con los tipos de cambio: Aplicación para países latinoamericanos, 2010–2022. Lecturas De Economía, 102, 93–131. [Google Scholar] [CrossRef]
- Song, L., Tian, G., & Jiang, Y. (2022). Connectedness of Commodity, exchange rate and categorical economic policy uncertainties—Evidence from China. The North American Journal of Economics and Finance, 60, 101656. [Google Scholar] [CrossRef]
- van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. [Google Scholar] [CrossRef]
- Vogel, B., Reichard, R. J., Batistič, S., & Černe, M. (2021). A Bibliometric review of the leadership development field: How we got here, where we are, & where we are headed. The Leadership Quarterly, 32(5), 101381. [Google Scholar] [CrossRef]
- Wang, E.-Z., & Lee, C.-C. (2020). Dynamic spillovers and connectedness between oil returns and policy uncertainty. Applied Economics, 52(35), 3788–3808. [Google Scholar] [CrossRef]
- Wang, K.-H., Wang, Z.-S., Liu, H.-W., & Li, X. (2023). Economic policy uncertainty and geopolitical risk: Evidence from china and southeast asia. Asian-Pacific Economic Literature, 37(2), 96–118. [Google Scholar] [CrossRef]
- Wang, Y., Wang, L., Pan, C., & Hong, S. (2022). Economic policy uncertainty and price pass-through effect of exchange rate in China. Pacific-Basin Finance Journal, 75, 101844. [Google Scholar] [CrossRef]
- Xiao, J., Jiang, J., & Zhang, Y. (2024). Policy uncertainty, investor sentiment, & good and bad volatilities in the stock market: Evidence from China. Pacific-Basin Finance Journal, 84, 102303. [Google Scholar] [CrossRef]
- Youssef, M., Mokni, K., & Ajmi, A. N. (2021). Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: Does economic policy uncertainty matter? Financial Innovation, 7(1), 13. [Google Scholar] [CrossRef]
- Zhou, Y., Liu, Z., & Wu, S. (2022). The global economic policy uncertainty spillover analysis: In the background of COVID-19 pandemic. Research in International Business and Finance, 61, 101666. [Google Scholar] [CrossRef] [PubMed]
- Zou, H., Ahmed, M., Tariq, Q., & Khan, K. A. (2024). Time-varying connectedness between global economic policy uncertainty and regional real estate markets: Evidence from TVP-VAR extended joint connectedness approach. International Journal of Housing Markets and Analysis, 17(1), 79–95. [Google Scholar] [CrossRef]
Variable | Label | Description |
---|---|---|
EPU Index for Brazil | EPU_BRA | Developed by Baker et al. (2016) using articles from the journal Folha de São Paulo. |
EPU Index for Chile | EPU_CHI | Developed by Cerda et al. (2016) using articles from the journals El Mercurio and La Segunda, following Baker et al. (2016). |
EPU Index for Colombia | EPU_COL | Developed by y Gil León and Silva Pinzón (2019) using data from the journal El Tiempo, based on Baker et al. (2016). |
EPU Index for Mexico | EPU_MEX | Constructed by Baker et al. (2016) using articles from the journals El Norte and Reforma. |
Global EPU Index | GEPU | Constructed by Baker et al. (2016), the global EPU (GEPU) index re-normalizes national indices and imputes missing data to reflect GDP-weighted policy uncertainty across 21 countries, covering around 71% of global output. |
EPU Index for Mexico | EPU_MEX | Baker et al. (2016) created a U.S. EPU index by analyzing the ten major U.S. newspapers: USA Today, Miami Herald, Chicago Tribune, Washington Post, Los Angeles Times, Boston Globe, San Francisco Chronicle, Dallas Morning News, Houston Chronicle, and Wall Street Journal. |
EPU Index for Europe | EPU_EUR | Baker et al. (2016) developed a European EPU index based on five European countries: France (Le Monde, Le Figaro), Germany (Handelsblatt, Frankfurter Allgemeine Zeitung), Italy (Corriere Della Sera, La Stampa), Spain (El Mundo, El Pais), and the United Kingdom (The Times of London, Financial Times). |
EPU Index for Japan | EPU_JPY | Baker et al. (2016) introduced a Japan EPU index, constructed by counting articles in four major Japanese newspapers: Yomiuri, Asahi, Mainichi, and Nikkei. |
Statistic/Metric | REPU_BRA | REPU_CHI | REPU_COL | REPU_MEX | RGEPU | REPU_USA | REPU_EUR | REPU_JPY |
---|---|---|---|---|---|---|---|---|
MEAN | 0.124 ** | 0.052 ** | 0.057 * | 0.095 ** | 0.024 | 0.002 | 0.006 | 0.000 |
(0.013) | (0.043) | (0.068) | (0.020) | (0.147) | (0.926) | (0.746) | (0.989) | |
VARIANCE | 0.361 | 0.095 | 0.140 | 0.242 | 0.040 | 0.086 | 0.045 | 0.036 |
SKEWNESS | 2.095 *** | 0.899 *** | 1.512 *** | 1.010 *** | 1.271 *** | 0.043 | 0.291 | −0.049 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.824) | (0.138) | (0.799) | |
EX. KURTOSIS | 6.973 *** | 1.505 *** | 3.352 *** | 1.167 ** | 3.070 *** | 0.559 | 1.158 ** | 0.803 * |
(0.000) | (0.006) | (0.000) | (0.019) | (0.000) | (0.143) | (0.019) | (0.063) | |
JB | 408.093 *** | 33.894 *** | 125.642 *** | 33.554 *** | 97.967 *** | 1.974 | 10.362 *** | 4.038 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.373) | (0.006) | (0.133) | |
ERS | −5.872 | −1.469 | −3.570 | −1.563 | −5.569 | −3.690 | −5.708 | −6.530 |
(0.000) | (0.144) | (0.000) | (0.120) | (0.000) | (0.000) | (0.000) | (0.000) | |
Q(20) | 14.940 | 26.555 *** | 26.529 *** | 29.874 *** | 18.166 ** | 22.567 *** | 24.644 *** | 18.620 ** |
(0.124) | (0.001) | (0.001) | (0.000) | (0.037) | (0.006) | (0.002) | (0.031) | |
Q2(20) | 18.669 ** | 4.569 | 10.249 | 12.757 | 17.690 ** | 8.116 | 11.543 | 6.538 |
(0.030) | (0.971) | (0.478) | (0.249) | (0.045) | (0.713) | (0.350) | (0.863) | |
KENDALL CORRELATIONS | ||||||||
REPU_BRA | 1.000 *** | 0.099 | 0.119 ** | 0.029 | 0.254 *** | 0.147 *** | 0.138 ** | 0.056 |
REPU_CHI | 0.099 | 1.000 *** | 0.130 ** | 0.096 | 0.202 *** | 0.197 *** | 0.111 ** | 0.105 |
REPU_COL | 0.119 ** | 0.130 ** | 1.000 *** | 0.222 *** | 0.266 *** | 0.255 *** | 0.206 *** | 0.105 |
REPU_MEX | 0.029 | 0.096 | 0.222 *** | 1.000 *** | 0.170 *** | 0.139 ** | 0.140 ** | 0.126 ** |
RGEPU | 0.254 *** | 0.202 *** | 0.266 *** | 0.170 *** | 1.000 *** | 0.579 *** | 0.509 *** | 0.235 *** |
REPU_USA | 0.147 *** | 0.197 *** | 0.255 *** | 0.139 ** | 0.579 *** | 1.000 *** | 0.328 *** | 0.153 *** |
REPU_EUR | 0.138 ** | 0.111 ** | 0.206 *** | 0.140 ** | 0.509 *** | 0.328 *** | 1.000 *** | 0.178 *** |
REPU_JPY | 0.056 | 0.105 | 0.105 | 0.126 ** | 0.235 *** | 0.153 *** | 0.178 *** | 1.000 *** |
REPU_BRA | REPU_CHI | REPU_COL | REPU_MEX | RGEPU | REPU_USA | REPU_EUR | REPU_JPY | FROM | |
---|---|---|---|---|---|---|---|---|---|
REPU_BRA | 80.47 | 0.00 | 0.00 | 0.00 | 0.00 | 3.54 | 0.85 | 1.64 | 6.03 |
REPU_CHI | 0.00 | 61.31 | 4.51 | 2.30 | 10.81 | 5.48 | 6.18 | 6.43 | 35.72 |
REPU_COL | 0.00 | 3.36 | 51.37 | 10.17 | 9.87 | 12.39 | 7.29 | 4.64 | 47.72 |
REPU_MEX | 0.00 | 2.97 | 11.78 | 60.59 | 4.74 | 7.39 | 4.02 | 5.96 | 36.86 |
RGEPU | 0.00 | 6.10 | 7.38 | 3.26 | 33.84 | 19.85 | 17.13 | 10.40 | 64.11 |
REPU_USA | 1.38 | 3.45 | 10.54 | 3.52 | 25.21 | 40.64 | 10.21 | 5.05 | 59.36 |
REPU_EUR | 0.41 | 4.49 | 6.48 | 3.16 | 22.41 | 10.22 | 43.35 | 9.49 | 56.65 |
REPU_JPY | 0.92 | 7.48 | 5.55 | 7.23 | 12.10 | 5.67 | 8.13 | 52.93 | 47.07 |
TO | 2.71 | 27.84 | 46.24 | 29.63 | 85.15 | 64.54 | 53.81 | 43.60 | 353.51 |
Inc.Own | 83.17 | 89.15 | 97.61 | 90.22 | 118.98 | 105.18 | 97.15 | 96.54 | cTCI/TCI |
NET | −3.32 | −7.87 | −1.48 | −7.23 | 21.03 | 5.18 | −2.85 | −3.46 | 50.50/44.19 |
NPT | 0.00 | 2.00 | 3.00 | 1.00 | 6.00 | 6.00 | 4.00 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Rodríguez, N.J.; González-Ruíz, J.D.; Botero, S. Dynamic Spillovers of Economic Policy Uncertainty: A TVP-VAR Analysis of Latin American and Global EPU Indices. Economies 2025, 13, 11. https://doi.org/10.3390/economies13010011
Marín-Rodríguez NJ, González-Ruíz JD, Botero S. Dynamic Spillovers of Economic Policy Uncertainty: A TVP-VAR Analysis of Latin American and Global EPU Indices. Economies. 2025; 13(1):11. https://doi.org/10.3390/economies13010011
Chicago/Turabian StyleMarín-Rodríguez, Nini Johana, Juan David González-Ruíz, and Sergio Botero. 2025. "Dynamic Spillovers of Economic Policy Uncertainty: A TVP-VAR Analysis of Latin American and Global EPU Indices" Economies 13, no. 1: 11. https://doi.org/10.3390/economies13010011
APA StyleMarín-Rodríguez, N. J., González-Ruíz, J. D., & Botero, S. (2025). Dynamic Spillovers of Economic Policy Uncertainty: A TVP-VAR Analysis of Latin American and Global EPU Indices. Economies, 13(1), 11. https://doi.org/10.3390/economies13010011