Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing
<p>Micro- Computed Tomography (CT) equipment.</p> "> Figure 2
<p>Single slices and locally reconstructed models of SLM specimens with keyhole defects. (<b>a</b>) <span class="html-italic">V</span> = 360 mm/s, <span class="html-italic">R<sub>D</sub></span> = 6.0%. (<b>b</b>) <span class="html-italic">V</span> = 480 mm/s, <span class="html-italic">R<sub>D</sub></span> = 2.0%. (<b>c</b>) <span class="html-italic">V</span> = 600 mm/s, <span class="html-italic">R<sub>D</sub></span> = 0.5%.</p> "> Figure 3
<p>Single slices and locally reconstructed models of SLM specimens with lack-of-fusion defects. (<b>a</b>) <span class="html-italic">V</span> = 1080 mm/s, <span class="html-italic">R<sub>D</sub></span> = 0.3%. (<b>b</b>) <span class="html-italic">V</span> = 1320 mm/s, <span class="html-italic">R<sub>D</sub></span> = 2.0%. (<b>c</b>) <span class="html-italic">V</span> = 1560 mm/s, <span class="html-italic">R<sub>D</sub></span> = 6.0%.</p> "> Figure 4
<p>Single slices and locally reconstructed models of EBM specimens (varied line offset). (<b>a</b>) <span class="html-italic">LO</span> = 0.18 mm, <span class="html-italic">R<sub>D</sub></span> = 0.7%. (<b>b</b>) <span class="html-italic">LO</span> = 0.24 mm, <span class="html-italic">R<sub>D</sub></span> = 2.0%. (<b>c</b>) <span class="html-italic">LO</span> = 0.30 mm, <span class="html-italic">R<sub>D</sub></span> = 4.0%.</p> "> Figure 5
<p>Single slices and locally reconstructed models of EBM specimens (varied focus offset). (<b>a</b>) <span class="html-italic">FO</span> = 16 mA, <span class="html-italic">R<sub>D</sub></span> = 0.3%. (<b>b</b>) <span class="html-italic">FO</span> = 20 mA, <span class="html-italic">R<sub>D</sub></span> = 3.0%. (<b>c</b>) <span class="html-italic">FO</span> = 24 mA, <span class="html-italic">R<sub>D</sub></span> = 4.5%.</p> "> Figure 6
<p>Optical microscopic image of cross-section surfaces of SLM and EBM samples.</p> "> Figure 7
<p>Image processing of a single slice of CT scanned EBM specimen.</p> "> Figure 8
<p>Schematic of grayscale adjustment to an individual cell (16 pixels).</p> "> Figure 9
<p>Example of EBM single slice image correction and binary image.</p> "> Figure 10
<p>Comparison between <span class="html-italic">R<sub>D</sub></span> and <span class="html-italic">R<sub>I</sub></span> (EBM specimens).</p> "> Figure 11
<p>Comparison between <span class="html-italic">R<sub>D</sub></span> and <span class="html-italic">R<sub>M</sub></span>.</p> ">
Abstract
:1. Introduction
2. Fundamentals of Micro-CT
3. Experiments
3.1. Specimen Fabrication
3.2. Micro-CT Evaluation
4. Results and Discussion
4.1. Characteristics of SLM Specimens
4.2. Characteristics of EBM Specimens
4.3. Porosity Determination
4.3.1. Image Correction to Single Slice
4.3.2. Selection of Grayscale Threshold for Reconstructed Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; pp. 1–18. [Google Scholar]
- Soboyejo, W.O.; Srivatsan, T.S. Advanced Structural Materials: Properties, Design Optimization, and Applications; CRC Press: Boca Raton, FL, USA, 2006; pp. 359–400. [Google Scholar]
- Hiemenz, J. Electron beam melting. Adv. Mater. Proc. 2007, 165, 45–46. [Google Scholar]
- Spierings, A.B.; Schneider, M. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J. 2011, 17, 380–386. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Ramana, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. 2010, 3, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Van Bael, S.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mat. Sci. Eng. A-Struct. 2011, 528, 7423–7431. [Google Scholar] [CrossRef]
- Saâdaoui, M.; Khaldoun, F.; Adrien, J.; Reveron, H.; Chevalier, J. X-ray tomography of additive-manufactured zirconia: processing defects – strength relations. J. Eur. Ceram. Soc. 2019, in press. [Google Scholar]
- Haleem, A.; Javaid, M. Role of CT and MRI in the design and development of orthopaedic model using additive manufacturing. J. Clin. Ortho. Trauma. 2018, 9, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.H.; Moylan, S.P.; Garboczi, E.J.; Slotwinski, J.A. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis. Addit. Manuf. 2017, 17, 23–38. [Google Scholar] [CrossRef]
- Ortega, N.; Martínez, S.; Cerrillo, I.; Lamikiz, A.; Ukar, E. Computed tomography approach to quality control of the Inconel 718 components obtained by additive manufacturing (SLM). Procedia Manuf. 2017, 13, 116–123. [Google Scholar] [CrossRef]
- Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. Int. J. Press. Vessels Pip. 2008, 85, 745–751. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014, 1–4, 87–98. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Gu, H.; Janaki Ram, G.D.; Starr, T.; Stucker, B. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Mater. Des. 2015, 86, 545–554. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Schwerdtfeger, J.; Singer, R.F.; Körner, C. In situ flaw detection by IR-imaging during electron beam melting. Rapid Prototyping J. 2012, 18, 259–263. [Google Scholar] [CrossRef]
- Hovig, E.W.; Azar, A.S.; Sunding, M.F.; Andreassen, E.; Sørby, K. High cycle fatigue life estimation of materials processed by laser powder bed fusion. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1454–1466. [Google Scholar] [CrossRef]
- Beevers, E.; Brandão, A.D.; Gumpinger, J.; Gschweitl, M.; Seyfert, C.; Hofbauer, P.; Rohr, T.; Ghidini, T. Fatigue properties and material characteristics of additively manufactured AlSi10Mg – Effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int. J. Fatigue 2018, 117, 148–162. [Google Scholar] [CrossRef]
- Romano, S.; Brückner-Foit, A.; Brandão, A.; Gumpinger, J.; Ghidini, T.; Beretta, S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: defect-based modelling and prediction of fatigue strength. Eng. Fract. Mech. 2018, 187, 165–189. [Google Scholar] [CrossRef]
- Brown, S.; Bailey, D.L.; Willowson, K.; Baldock, C. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl. Radiat. Isot. 2008, 66, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
AM Process * | Parameters ** | RD | |
---|---|---|---|
SLM | Keyhole defect (high energy density) | V = 360 mm/s | 6.0% |
V = 480 mm/s | 2.0% | ||
V = 600 mm/s | 0.5% | ||
Lack-of-fusion defect (low energy density) | V = 1080 mm/s | 0.3% | |
V = 1320 mm/s | 2.0% | ||
V = 1560 mm/s | 6.0% | ||
EBM | Lack-of-fusion defect (low energy density) | LO = 0.18 mm | 0.7% |
LO = 0.24 mm | 2.0% | ||
LO = 0.30 mm | 4.0% | ||
Lack-of-fusion defect (low energy density) | FO = 16 mA | 0.3% | |
FO = 20 mA | 3.0% | ||
FO = 24 mA | 4.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Nadimpalli, V.K.; Rafi, K.; Starr, T.; Stucker, B. Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing. Technologies 2019, 7, 44. https://doi.org/10.3390/technologies7020044
Gong H, Nadimpalli VK, Rafi K, Starr T, Stucker B. Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing. Technologies. 2019; 7(2):44. https://doi.org/10.3390/technologies7020044
Chicago/Turabian StyleGong, Haijun, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, and Brent Stucker. 2019. "Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing" Technologies 7, no. 2: 44. https://doi.org/10.3390/technologies7020044
APA StyleGong, H., Nadimpalli, V. K., Rafi, K., Starr, T., & Stucker, B. (2019). Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing. Technologies, 7(2), 44. https://doi.org/10.3390/technologies7020044