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Abstract: This paper investigates the integration of Structural Health Monitoring (SHM) within
the frame of Industry 4.0 (I4.0) technologies, highlighting the potential for intelligent infrastructure
management through the utilization of big data analytics, machine learning (ML), and the Internet of
Things (IoT). This study presents a success case focused on a novel SHM methodology for detecting
and locating damages in metallic aircraft structures, employing dimensional reduction techniques
such as Principal Component Analysis (PCA). By analyzing strain data collected from a network of
sensors and comparing it to a baseline pristine condition, the methodology aims to identify subtle
changes in local strain distribution indicative of damage. Through extensive Finite Element Analysis
(FEA) simulations and a PCA contribution analysis, the research explores the influence of various
factors on damage detection, including sensor placement, noise levels, and damage size and type. The
findings demonstrate the effectiveness of the proposed methodology in detecting cracks and holes
as small as 2 mm in length, showcasing the potential for early damage identification and targeted
interventions in diverse sectors such as aerospace, civil engineering, and manufacturing. Ultimately,
this paper underscores the synergistic relationship between SHM and I4.0, paving the way for a
future of intelligent, resilient, and sustainable infrastructure.

Keywords: industry 4.0; structural health monitoring; damage detection and localization; machine
learning; artificial intelligence

1. Introduction

The United Nations included Sustainable Development Goal (SDG) 9 within Agenda
2030, which emphasizes the importance of building resilient infrastructure, promoting
inclusive and sustainable industrialization, and fostering innovation [1]. Achieving SDG
9’s targets is crucial for sustainable economic growth and equitable development [2]. In this
context, advanced technologies are playing a pivotal role in enhancing the efficiency and
safety of infrastructure systems. The integration of Industry 4.0 (I4.0) technologies [3],
including the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML),
big data analytics, and cloud computing, among others, into infrastructure management can
enable real-time monitoring and enhance predictive maintenance processes [4,5]. Hence,
I4.0 has become a required framework for Structural Health Monitoring (SHM), which
has been used to ensure the longevity and safety of critical infrastructure by providing
high-quality information for decision-making in risk management.

SHM is a well-known concept and practice [6–8] and its main techniques that have
been used are shown in Figure 1. It is useful not only to prevent damage but also to extend
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the lifespan of elements, avoiding costs in maintenance, repair, and grounded or inoperable
structures. The concept of using machine assistance for monitoring will lead to the next
step of implementation of this methodology, with the continuous monitoring of elements.

Damage 
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Load
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Accoustic emissions
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Figure 1. Methodology of SHM and the main techniques nowadays.

SHM has become a topic of interest due to the large number of benefits it may provide
to several industries, including reliability improvement and real-time damage detection,
leading to lighter structures and maintenance cost reductions [9]. By implementing a real-
time damage detection strategy, safety factors can be reduced under the damage-tolerant
philosophy, especially for structures with high uncertainty in their failure modes (e.g.,
structures made of composite materials) [10].

One crucial aspect of SHM is the generation of vast amounts of data from sensors
embedded in structures [11]. Therefore, advanced ML and AI algorithms can help process
and analyze these data to extract valuable insights, patterns, and trends that may not be
apparent through traditional methods [12]. This analytical capability enables the identi-
fication of subtle changes in structural behavior over time, providing early warnings of
potential issues.

In this regard, ML and AI techniques are particularly valuable in damage detection and
classification [13]. By training models on labeled datasets, the system can learn to recognize
specific damage signatures and distinguish them from normal operating conditions. This
ability to detect and classify various types of damage, such as cracks, corrosion, or material
degradation, contributes to effective and targeted maintenance efforts [14], where a human
could take time with the large amount of data to process or be subject to human error
caused by fatigue or inexperience.

In parallel with the aforementioned intelligent processing techniques, sensor tech-
nologies have also advanced considerably during the last decades. For instance, with the
advent of Fiber Optic Sensors (FOS), several SHM methodologies based on these sensors
have been proposed in the scientific literature, being a suitable option for SHM of aerospace
vehicles due to their small size, light weight, electromagnetic immunity, and multiplexing
capability [15]. Such FOS are usually classified into local or point sensors (e.g., extrinsic
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Fabry–Perot interferometer), multi-point sensors (e.g., fiber Bragg Gratings) and distributed
sensors (e.g., Rayleigh and Brillouin distributed sensors) [16].

The future of SHM within I4.0 is indeed bright. As these technologies continue to
evolve and become more sophisticated, we can expect even more innovative applications
that will shape the way we monitor, maintain, and ultimately safeguard our infrastructure
for generations to come [17]. This powerful combination has the potential to create a world
where infrastructure is not just static and reactive, but intelligent, adaptable, and capable of
anticipating and responding to the ever-changing demands of the modern world [18].

SHM is set to revolutionize intelligent infrastructure development and management by
transitioning from simple data collection to predictive maintenance systems [19]. By lever-
aging vast amounts of data collected from a dense network of sensors, SHM systems can
utilize advanced analytics to predict potential failures. ML algorithms play a key role in
this process, analyzing data to identify patterns and anomalies that may indicate emerg-
ing problems [20]. This predictive approach enables targeted interventions before issues
escalate, saving time, money, and lives.

Modern sensors, combined with I4.0 technologies such as the IoT, enhance SHM
systems by creating interconnected networks within a broader industrial ecosystem [21].
These systems enable real-time data exchange, allowing for a coordinated response to
potential infrastructure threats. For example, traffic management systems can reroute
vehicles to prevent overloading a bridge [22], while engineers receive notifications to plan
necessary repairs. This real-time communication minimizes downtime, safeguards public
safety, and supports proactive maintenance [23].

By harnessing the power of I4.0, SHM promotes improved safety, optimized resource
allocation, and the longevity and resilience of infrastructures. In alignment with SDG 9’s
targets, this paper addresses a successful case focused on a novel SHM methodology for
detecting and locating damages in metallic aircraft structures, employing dimensional
reduction techniques. The proposed methodology aims to identify subtle changes in local
strain distribution indicative of damage. The study explores the influence of various
factors on damage detection, including sensor placement, noise levels, and damage size
and type. The proposed methodology for detecting cracks and holes as small as 2 mm in
length showcases the potential for early damage identification and targeted interventions
in diverse sectors such as aerospace, civil engineering, and manufacturing.

This paper is organized as follows. Section 2 addresses the important relation between
SHM and I4.0. Section 3 describes the ML methods used in this study, the virtual testing
setup, and the damage detection methodology. Then, Section 4 contains the results and the
discussion, and finally Section 5 includes the conclusions.

2. SHM Context Within the Framework of I4.0

The SHM context within the framework of I4.0 emphasizes the transformative impact
of integrating advanced technologies into infrastructure monitoring and maintenance.
Figure 2 illustrates this integration, showing how key I4.0 components, such as artificial
intelligence, machine learning, big data analytics, cloud computing, and the Internet of
Things, enhance SHM systems across various industrial sectors. At the core, SHM is
supported by these technologies, facilitating applications in fields like transportation, utili-
ties, nuclear, health, mining, agriculture, construction, and manufacturing, among others.
Figure 2 highlights specific uses, such as condition monitoring in manufacturing, power
generation monitoring in utilities, and disease detection in health, demonstrating how I4.0
technologies can enable proactive maintenance, improve safety, and operational efficiency.
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Figure 2. SHM industry applications within the framework of I4.0.

2.1. Modern SHM Applications

In the field of infrastructure, SHM transcends its traditional domain, evolving into a
versatile technique for safeguarding infrastructures. For example, a bridge structure with
steel beams can be instrumented with strain gauges and accelerometers to extract a lot of
data [24], revealing early fatigue damage before it manifests as catastrophic failure. Hence,
SHM can extend the bridge’s lifespan, ensuring the safe passage of individuals and vehicles
of all kinds [25].

In the oil and gas industry, several subterranean aging pipelines [26] silently transport
very important fluids and gases, mostly oil-based fluids. Here, acoustic emission sensors
act as vigilant guards, listening intently for leaks or the initiation of corrosion. Their timely
warnings prevent environmental catastrophes and economic losses, ensuring the smooth
flow of resources that humanity relies on [27].

Shifting focus to the power generation industry, which has been transitioning to renew-
able sources, wind turbines transform kinetic energy from the wind into electrical energy.
Fiber optic sensors embedded within the blades can detect minute deflections [28]. These
whispers unveil impending cracks under extreme weather, enabling timely interventions
that optimize energy production while safeguarding these colossal structures.

SHM has emerged as a significant advancement in the aerospace industry. Aircraft
wings, once solely instruments for lift, are now equipped with embedded sensors that
continuously monitor stress and potential damage during flight. This innovation enhances
safety and operational efficiency, enabling more confident exploration of the skies [29].
Additionally, SHM has become a key factor in ensuring the high quality of spaceships
and their parts in different stages like manufacturing and the operation of parts and
machines. The use of this technique is often classified as a non-destructive test (NDT), and
there are two main classes of measurement, dynamic testing and static testing. Typically,
dynamic tests are related to electrical measurement: mechanical impedance, and thermal
measurements [30–32]; on the other hand, static tests regard electrical impedance and
strain-based measurements [33,34].

Strain-based measurements are the ones that approached the aerospace industry due
to their effectiveness in damage detection [30]. This does not mean it is easy to measure



Aerospace 2024, 11, 708 5 of 22

damage in structures; instead this method represents many challenges in measuring small
strains and also temperature changes. In order to partially overcome these challenges
and to enhance damage detection, increasingly smaller in size and also reducing false
indications, a new approach is used by means of optical fiber sensors like fiber Bragg
grating (FBG) [35–37]. In FBG technology, a periodic grating inscribed in an optical fiber
reflects specific wavelengths of light; changes in strain and temperature affect the grating’s
period, allowing the fiber to detect these physical quantities [38]. Advantages of FBG
sensors include [39] immunity to electromagnetic interference, high sensitivity and accuracy,
multiplexing capability, long-term stability, light weight and small size, corrosion resistance,
wide temperature range, and safety. There are other approaches in SMH with piezo-electric
and piezo-resistive sensors in which the materials induce an electric charge when their
shape changes due to stresses, but these are not often used in the aerospace industry since
they are heavy and susceptible to failure under greater strains, and their size could result
in installation issues [29]; however, piezo-electric sensors are cheaper to acquire.

2.2. SHM and I4.0 within Industrial Processes

SHM has been positioned as a game changer within the I4.0 paradigm, which empha-
sizes intelligent machines and data-driven decisions [40]. Sensors embedded in machinery
and equipment continuously monitor their health, providing a steady stream of real-time
data. Advanced analytics, powered by ML algorithms, analyze these data to not only detect
current issues but also predict potential equipment failures before they impact produc-
tion [41]. This proactive approach enables preventative maintenance, minimizes downtime,
and optimizes production schedules.

In I4.0, SHM can excel by integrating with other industrial processes. For example,
if an SHM system detects a potential issue with a bridge [42], it could trigger a series
of automated responses: traffic management systems might reroute vehicles and nearby
factories could adjust their production schedules to minimize disruptions. This real-time
communication across various industrial systems creates an interconnected ecosystem,
enhancing efficiency, safety, and cost-effectiveness.

Additionally, SHM data can be integrated with digital twin technology [43], creating
virtual simulations of equipment performance. This integration allows engineers to test
potential repair scenarios and predict the effectiveness of interventions before physically
implementing them [44]. By optimizing maintenance schedules and predicting the impact
of future operational changes, this approach streamlines maintenance processes, minimizes
risks, and enhances process control. Ultimately, it ensures the continued smooth operation
of the entire industrial ecosystem while reducing costs in the manufacturing environment.

SHM is primordial in modern manufacturing processes, particularly within I4.0. Its
application has so many nuances in manufacturing, varying from monitoring the health
of manufacturing equipment and facilities to ensuring the integrity of the products them-
selves [45–47]. In this context, SHM systems are employed to continuously assess the
structural integrity of critical components and machinery, detecting any deviations from
normal operating conditions.

By utilizing a network of sensors and advanced data analytics, SHM can provide
real-time insights into equipment performance, alerting operators to potential failures or
inefficiencies before they occur [48,49]. This proactive approach to maintenance enhances
operational efficiency, reduces downtime, and ensures the safety and reliability of several
processes [50,51]. Furthermore, SHM enables predictive maintenance [52], optimizing
maintenance schedules based on actual equipment conditions rather than predefined
intervals, resulting in cost savings and improved asset utilization. As I4.0 continues to
evolve, the integration of SHM into manufacturing processes [53] will be essential, so that
efficiency, productivity, and product quality could be higher.

Embedded sensors, strategically placed on critical equipment and machinery, continu-
ously monitor parameters like vibration [54], strain [55], and temperature [56]. This data
stream feeds into real-time analytics, allowing for the detection of anomalies and potential
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equipment degradation before they escalate into catastrophic failures. This empowers
predictive maintenance, enabling targeted interventions at the early stages of wear and tear,
minimizing time where the parts of machines are inoperative, and maximizing production
efficiency [57–59].

2.3. Sensor Integration and IoT for SHM

SHM is advancing significantly in areas like sensor integration, the Internet of Things
(IoT), and advanced data analytics to enhance decision-making regarding structural dam-
age. Sensor integration and miniaturization involve embedding devices more deeply within
the fabric of structures, enabling more comprehensive and continuous monitoring. This
approach provides a global view of a structure’s health [60]. Additionally, miniaturized
sensors are less intrusive and easier to deploy on existing infrastructure.

The Internet of Things and cloud computing represent key future trends for intercon-
nected SHM systems. Sensors embedded in bridges, buildings, and other structures will
transmit real-time data to a central cloud platform [61]. This facilitates remote monitoring
and centralized analysis by experts, who can diagnose issues from anywhere in the world.
Cloud computing also offers virtually limitless storage and processing power, making it eas-
ier to manage the growing data volumes from SHM systems. The scalability of cloud-based
SHM systems will enable the easy integration of additional sensors and data sources in the
future, paving the way for more comprehensive structural health assessments [62–64].

2.4. Advanced Analytics for SHM

AI offers significant potential to enhance SHM by enabling the analysis of complex
sensor datasets [65]. ML algorithms can be applied to identify fine patterns and anomalies
that may be missed by conventional methods and this capability allows the early detection
of damage significantly before it progresses to a critical stage [66,67]. Additionally, AI
algorithms can be trained by using historical data to predict the degradation of a structure
over time [68,69], facilitating a transition from reactive repairs to preventative maintenance
strategies. This proactive approach not only reduces life-cycle costs but also minimizes the
risk of catastrophic failures by addressing issues before they escalate and by integrating AI
with SHM systems. Infrastructure can be transformed into intelligent entities capable of
communicating their health status and anticipating future maintenance needs [70–72].

SHM has entered the age of big data because the network of sensors embedded in
bridges, buildings, and other structures generates massive amounts of data on strain,
vibration, and environmental conditions. This massive amount of data, while valuable,
presents a challenge and traditional analysis methods struggle to keep pace with the sheer
volume and complexity of the information. Big data offers a solution by employing big
data analytics, engineers can unlock the hidden insights within the SHM data [73], so these
techniques allow for real-time monitoring, enabling early detection of potential problems
before they become critical.

The introduction of big data in SHM has improved data management in terms of col-
lecting, storing, and analyzing massive amounts of data with real-time processing [74,75],
so adding ML to big data results in predictions about patterns and anomalies that might
indicate structural damage and the insights from data analysis can be used to predict po-
tential failures, so the lifespan of the structure could be increased and catastrophic failures
prevented [76,77]. ML algorithms will become even more sophisticated and capable of
not only identifying damage but also predicting its future progression and recommending
optimal maintenance strategies [78]. This information can be used to create digital twins or
virtual replicas of real-world structures and these can be continually updated with real-time
sensor data, allowing engineers to virtually test different repair scenarios and predict the
effectiveness of various interventions [79,80].
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3. Materials and Methods

With the evolution of computer science, advancements in hardware, and the develop-
ment of new software that facilitates the rapid implementation of ML algorithms, the need
for constant human monitoring has decreased. Instead, tools from I4.0 and AI are in-
creasingly used to prevent structural damage. These tools are based on fundamental ML
algorithms and schemes [81], as illustrated in Figure 3. Combining these data-processing
methods with various SHM monitoring systems represents the next step in maintenance
for several engineering domains.

Machine
Learning
Analysis

PredictiveDescriptive

RegressionClassificationFactor selectionClustering

Neural network,
Time series,

SVM regression

Neural network,
Classification tree,

SVM, KNN

Regression tree,
PCA

K-means

Figure 3. Machine learning classification and main algorithms.

3.1. Descriptive Methods

Descriptive methods in ML focus on analyzing and summarizing data to understand
its patterns and characteristics without making predictions [82]. These methods aim to
reveal the inherent structure of the data through statistical measures, visualization tools,
and clustering algorithms, which help uncover trends, distributions, and relationships
within the dataset. Descriptive techniques provide a comprehensive overview, serving as
a crucial initial step in the ML process. They guide subsequent modeling decisions and
establish a solid foundation for further analysis. Often referred to as unsupervised methods,
they do not require labeled datasets and can identify patterns in the data. The dataset and
model will have the following characteristics:

• Recent historical data are crucial for this analysis as it forms the foundation of the
model. The model aims to identify trends based on recent behavior or events. If the
dataset includes outdated historical data, the model may struggle to accurately simu-
late and classify current events. Therefore, it is essential to purge older data and retain
only recent information that reflects current trends.

• Nonexistence of an objective variable: As previously mentioned, these models focus
on understanding the inherent structure of the data rather than making predictions.
The model aims to describe phenomena effectively rather than optimizing or predict-
ing a specific numerical value.

Clustering, exemplified by the k-means technique, is an ML method that groups
similar data points based on shared characteristics [83]. k-means iteratively partitions the
dataset into k clusters, each represented by its centroid. This technique is widely used
for segmentation and pattern recognition, helping to identify distinct subgroups within a
larger dataset.

Factor selection involves choosing relevant variables to improve the performance
of the model. Regression trees use a tree-like structure to recursively split data based
on variables, identifying key predictors for the target variable. Conversely, Principal
Component Analysis (PCA) is a dimensionality reduction technique that transforms the
original variables into a smaller set of uncorrelated components [84]. Both regression trees
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and PCA assist in factor selection by highlighting the most influential variables, leading to
more efficient and interpretable models.

3.2. Predictive Methods

Predictive methods in ML involve using algorithms to analyze historical data and
identify patterns, which allows the model to make predictions or classifications for new,
unseen data [85]. These methods rely on mathematical models to learn relationships
between input features and output labels, adjusting their parameters through training.
Common predictive techniques include regression for continuous results and classification
for discrete categories. The goal is to develop a model that generalizes well to new data,
providing accurate predictions and insights based on learned patterns [86]. Often referred
to as supervised methods, these techniques require a labeled dataset to train the model
and recognize results within a defined set of options. The dataset and model will have the
following characteristics:

• Historical Data: the dataset may include older historical data compared to descriptive
methods, while the data describe the same event, and the age of the data—whether
from 5 years ago or 20 years ago—does not matter as long as the dataset is labeled
with the expected results.

• Existence of an Objective Variable: The model must predict a specific result, which
can be numerical or categorical. If categorical, it is typically represented by a binary
dummy variable.

• Relation Between Predictive and Result Variables: The dataset needs to be cleaned and
analyzed to select variables that have a direct relationship with the objective variable.
This requirement distinguishes predictive methods from descriptive methods, which
do not need this level of variable selection.

Classification involves assigning predefined labels to input data based on their fea-
tures [87]. Neural networks, with their interconnected nodes organized in layers, are
effective at learning complex patterns and relationships for accurate classification. Decision
trees recursively split the dataset based on feature conditions to create a tree-like structure,
facilitating efficient classification. Support Vector Machines (SVMs) are skilled at finding
optimal hyperplanes to separate distinct classes in high-dimensional space, making them
versatile for both linear and non-linear classification tasks. K-nearest neighbors (KNN)
classifies data points by evaluating the majority class among their k-nearest neighbors,
providing a straightforward yet effective approach. These diverse classification techniques
address various data structures and problem complexities, demonstrating the versatility of
ML in solving real-world classification challenges across different domains.

Regression, on the other hand, involves predicting continuous values based on input
features [88]. Neural networks excel in capturing complex patterns for accurate predictions.
Time series regression models are designed for temporal data, capturing trends over time.
An SVM for regression identifies optimal hyperplanes to model non-linear relationships
in the data. These techniques, including neural networks, time series models, and SVMs,
provide adaptable solutions for predicting numerical values across various domains.

3.3. Virtual Testing Setup

To perform a virtual testing methodology within the context of SHM, the wing struc-
ture of an MQ1 Predator aircraft [89], made of aluminum alloy 2024-T3, was chosen for
this study. The structure comprises two beams, 18 ribs, and skins [90]. Rivets and other
structural joints were replaced with perfect contacts between components, and fuel tanks
and other systems were omitted to reduce computational cost. Figure 4 illustrates the
drawing views of the wing structure.

The Static Structural Simulation solver in ANSYS 2020 R1 was employed, with non-
linear effects being neglected. The boundary conditions for the model included fixed
supports for each beam at the root and a distributed load applied to the lower skin,
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representing the total lift generated by the aircraft during steady cruise flight. This load
was calculated as 3753 N per semi-wing, based on the aircraft’s weight of 766 kg.

Figure 4. Drawing views of the wing structure.

The model’s mesh used hexahedral elements with a multi-zone method applied to the
beams, and a finer mesh refinement was applied to the main beam, which was the primary
focus of this study. The damage was positioned at various locations (25%, 50%, and 75%
of the wingspan), as shown in Figure 5. This approach helped minimize significant mesh
changes when damage was introduced, as depicted in Figure 6. Additionally, beams, ribs,
and skins were modeled with shell elements to reduce overall model complexity, resulting
in a total of 50,144 elements with a minimum element quality of 0.22 (where a quality index
of 1 indicates maximum reliability).

25 % wingspan 50 % wingspan
75 % wingspan

D1, D4, D7 D2, D5, D8 D3, D6, D9

Figure 5. Meshed geometry and localization of damages.

2.50 5 7.5 10 (mm)

2.5 7.5 100 5 (mm)

Figure 6. Geometry and mesh for a 20 mm hole and a crack.
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The primary component studied in this structure was the leading edge beam, also
referred to as the main beam, of the aircraft wing. A total of 408 virtual strain sensors
were defined along this beam: 102 sensors were placed on the top face, 102 on the lower
face, 102 on the front face, and 102 on the back face. These virtual sensors were configured
to measure the normal strains along the longitudinal axis of the beam, emulating the
functionality of FBG sensors; see Figure 7.

Figure 7. Virtual sensor localization.

Mesh convergence was assessed by comparing the degrees of freedom (DOF) in the
mesh with the maximum deflection of the wing, as shown in Figure 8. The analysis
indicated a mesh convergence around 440,000 DOF. This configuration was achieved with
a general element size of 15 mm in the geometry and a special refinement of 5 mm in areas
near the damage. However, given the need to analyze the strain field around very small
damages relative to the overall structure size, the maximum number of elements possible
within the available computational capacity was utilized. This involved applying a special
mesh refinement specifically around the damaged areas to ensure accurate analysis.

2 2.5 3 3.5 4 4.5 5

·105

31

31.5

32

DOF

D
efl

ec
ti

on
[m

m
]

Figure 8. Mesh convergence study.

Two types of damage were analyzed: a circular hole and a high-aspect ratio rhombus,
simulating a crack. For each damage type, three different sizes were defined: 20 mm,
10 mm, and 2 mm in diameter for the holes, with equivalent lengths for the rhombus’s
largest diagonal (maintaining an aspect ratio of 10). The damages were positioned at three
different locations along the wingspan: 25%, 50%, and 75% (Figure 5). Table 1 provides the
details of the damage locations and sizes.

Table 1. Damage locations and sizes.

Position Size
(% of Wingspan) 2 mm 10 mm 20 mm

25% D1 D4 D7
50% D2 D5 D8
75% D3 D6 D9
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To emulate a real sensing scheme using FBGs, different experimental trials were
artificially defined. The trials were based on the strains measured for each sensor and
replicated I times using a random number generated from a Gaussian distribution, with a
mean equal to the initial strain value and a standard deviation of (1× 10−6). This deviation
was chosen considering that the sensitivity of the available FBG sensing techniques in the
market is approximately (1µε). Thus, the dimensions for each data matrix were 1000 × 600
for baseline (BL), 700 × 600 for validation data (D0), and 900 × 600 for damages (D1
to D9).

Several sensitivity analyses were performed, including an examination of how changes
in the F1 Score were influenced by the number of operative sensors. The F1 Score is a
measure of a model’s accuracy in classification tasks [91], especially when dealing with
imbalanced datasets. By running the detection algorithm multiple times and artificially
removing some sensors each time, the change in the F1 Score in response to variations in
artificial noise was evaluated.

3.4. Validation model

To validate the model, an experiment involving a double-supported steel beam was
replicated using cross-validation with ANSYS 2020 R1 [77]. In this model, two supports
were placed at both ends of the beam, one fixed and one with displacement, with two
vertical loads applied at the midpoint, as shown in Figure 9. The entire geometry was
meshed with 2 mm shell elements. The model convergence was evaluated on the basis
of the maximum bending moment. Various loads were applied and compared to the
minimum safety factor associated with each load. Finally, a linear regression analysis was
performed to determine the load corresponding to a safety factor of one.

C A

26 kN

B D

26 kNdisplacement fixed

Figure 9. Boundary conditions used for the validation model.

The maximum calculated moment corresponding to a safety factor of one was
15.032 kN·m, as shown in Figure 10. In comparison, the maximum moment reported
by [77] was 15.227 kN·m, resulting in an absolute error of 1.82%.
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1.4

1.45
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3.5. Damage Detection Methodology

For the experiments presented in this work, which involve simulations of the damaged
structure with cracks and holes and their respective variations, each dataset was organized
into a matrix A ∈ M(I×J), where I represents the trial number and J represents the sensor
number. As mentioned above, the main objective of PCA is to reduce J to several principal
components while retaining a significant portion of total variability.

Recently, other dimensionality reduction techniques such as UMAP (Uniform Mani-
fold Approximation and Projection) and t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) have emerged in the field of SHM, offering advantages and limitations compared
to PCA [92]. A significant advantage of these techniques is their ability to capture highly
nonlinear relationships, unlike traditional PCA, which only captures linear relationships.
However, previous work by the authors demonstrated that for metallic structures and
even some made of composite materials, the structural behavior is predominantly lin-
ear. Therefore, the use of nonlinear dimensionality reduction and modeling techniques
does not significantly enhance detection sensitivity relative to sensor density, while the
computational cost increases substantially, especially for large datasets. In the context of
damage detection based on strain measurements, traditional PCA has shown a superior
“quality-price” ratio compared to other nonlinear dimensionality reduction techniques in
predominantly linear structures [93].

For this study, 90% of the variability was retained by selecting three principal com-
ponents, as suggested by Jolliffe [94]. To achieve this, the matrix P ∈ M(J×J), which
represents the covariance eigenvalues of A, was calculated for the baseline (BL) dataset.
The remaining datasets, corresponding to the damage conditions, were then projected using
the P matrix obtained from the BL data. The principal component matrix T is given by

T = AP ∈ M(I×J), (1)

where the first three columns correspond to the three first principal components of the new
dataset [95].

Then, to calculate the Q statistic, the residual error matrix E is computed as follows:

E = A − Ā, (2)

where Ā is given by
Ā = TPT . (3)

With these values, the Q statistic array is given by

Qi =
√

eieT
i . (4)

where ei denotes the ith row of E. Then, T2 is calculated as follows:

T2
i = aT

i (PΛ−1PT)ai, (5)

where ai is the ith row of matrix A, and Λ is a diagonal matrix composed of the eigenvalues
of A.

To determine if there is a damage or not, a damage threshold is defined based on BL’s
χ2 inverse distribution. To calculate this threshold TH, mean ω and variance ν of Q and
T2 ∈ M(I×1) for BL dataset is computed as follows [96]:

TH = [χ2]−1(α, 2ω2/ν)y, (6)

where
y = ν/2ω. (7)
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Given that [χ2]−1 represents the squared inverse statistical distribution for a specified
confidence level α; previous experiments reported by Sierra-Pérez et al. [97] indicated that
using α values between 95% and 99% yields acceptable results. It is important to note
that D0 corresponds to a validation dataset (pristine state); therefore, the statistics for D0
should fall below the threshold, while the data for damaged conditions should be above
the threshold.

According to the threshold, each datum is classified as true when it exceeds the
threshold and false when it falls below it, with true data considered as having detected
damage. With this in mind, ROC analysis was performed, classifying data into true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) categories. Finally,
the F1 Score, which measures the experiment’s accuracy, can be computed as follows:

F1 = (2TP)/(2TP + FP + FN). (8)

This score, which ranges between 0 and 1, measures the accuracy of data classifica-
tion. In the context of SHM methodology, a higher F1 Score indicates more successful
damage detection.

3.6. Damage Localization Methodology

Once the Q and T2 statistics have been calculated and a dataset with successfully
detected damage is obtained, a contribution analysis is performed. This analysis assigns a
numerical value to each column (or data measured by each sensor) of the original dataset,
quantifying the influence of the data of each sensor on the increase in statistics Q and T2.
In the context of SHM, damage is identified in sensors (or rows of the original dataset) with
higher contribution magnitudes. The contribution analysis for the Q statistic is calculated
as follows:

C(Qi)l = [eT
i el ]

2, (9)

where el ∈ M(J×J) is lth row of the identity matrix and C(Qi)l denotes the contribution of
each row based on the Q statistic. Similarly, the contribution analysis for the T2 statistic is
given by

C(T2
i )l = [aiP[Λ−1]1/2el ]

2. (10)

Once the contribution values for each sensor have been obtained, the damage location
is estimated based on the sensors with the highest contribution.

4. Results and Discussion

After applying the previously proposed methodology, the F1 Score based on the Q
statistic was calculated for each damage type and location. Tables 2 and 3 present the
obtained F1 Score values for hole crack and crack damages, respectively. Additionally,
Figure 11 illustrates the distribution of the Q statistic for each measurement and its location
relative to the defined threshold.

Table 2. F1 Score for hole damage.

Size
Position 2 mm 10 mm 20 mm

25% 0.6511 0.9852 0.9852
50% 0.0976 0.9852 0.9852
75% 0.2263 0.1770 0.9737
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Table 3. F1 Score for crack damage.

Size
Position 2 mm 10 mm 20 mm

25% 0.0360 0.9936 0.9936
50% 0.0468 0.8939 0.9936
75% 0.1584 0.3850 0.6016

The results show the F1 Scores for detecting hole and crack damages at various
positions and sizes. For hole damages (Table 2), the F1 Scores indicate high accuracy for
10 mm and 20 mm sizes across all positions, particularly at 25% and 50%, with scores near
0.9852. However, the detection accuracy drops significantly for 2 mm holes, especially at
the 50% position (0.0976). For crack damages (Table 3), the F1 Scores are similarly high for
10 mm and 20 mm sizes, with the 25% position reaching nearly perfect scores of 0.9936.
The scores decrease for the 75% position, particularly for smaller crack sizes, where the
2 mm crack has an F1 Score of only 0.1584. These results indicate that larger damages and
certain positions are more reliably detected.

According to these results, the location of the damage appears to influence the detec-
tion capability. For both types of damage, a decrease in the F1 Score can be observed when
the damage is located in the central position of the wing (i.e., approximately 50% of the
wingspan), especially for smaller damages. This could be attributed to the distribution
of stresses and strains in the wing structure, where the central region might experience
less variation compared to areas near the root and tip, making it harder to identify subtle
damages in these areas.

Furthermore, comparing the results between the two damage types, there is a slight
advantage in detecting holes compared to cracks, particularly for smaller damages. This
suggests that damage geometry can influence the sensitivity of the methodology. Holes
create an abrupt discontinuity in the structure and therefore might produce more distinctive
strain patterns than cracks, which tend to propagate more slowly and subtly. Consequently,
the proposed methodology might require specific adjustments or improvements for the
early detection of cracks, especially in critical locations of structures.
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Figure 11. Q statistic for hole and crack.

Once damage was identified, a contribution analysis was performed to determine the
most contributing sensors. The results of this analysis are detailed in Tables 4 and 5.

Table 4. Most contributing sensors for hole damages.

Size
Position 2 mm 10 mm 20 mm

25% 321 321 321
50% 347 347 149
75% 364 351 351
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Table 5. Most contributing sensors for crack damages.

Size
Position 2 mm 10 mm 20 mm

25% 322 321 321
50% 347 347 148
75% 68 373 373

In most cases, the contributing sensor was located on the lower face of the beam and
close to the actual damage. It should be noted that the lower face typically experiences
maximum tensile stresses and strains. Additionally, there are instances of undetected
damages where the most contributing sensor is affected by system noise rather than
damage locations. This occurs because the contribution analysis is only valid when damage
is detected; thus, several contribution results are rejected if they do not correspond to
actual damage.

Figures 12 and 13 present representative heat maps showing the contribution levels
around the beam for different types of damage. In these maps, the damage location is
clearly identified when the F1 Score is high. Conversely, when the F1 Score is lower,
the highest contribution is not concentrated in a single, clearly marked spot.
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Figure 12. Damage location comparison between lower and higher F1 Score values for hole.
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Figure 13. Damage location comparison between lower and higher F1 values for crack.

In the sensitivity analysis based on the number of operative sensors, one of the largest
damages (20 mm length at 25% of the wingspan) was selected. Previous calculations were
performed by iteratively removing one sensor at a time nearest to the damage. The trends
observed, shown in Figure 14, indicate that up to 15 sensors closest to the damage can be
inoperative, and the damage can still be detected normally for both types of damage (hole
and crack).
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Figure 14. Sensors removed for hole and crack.

For the sensitivity analysis based on noise, a previously detected damage (10 mm
length at 75% of the wingspan) was selected. The F1 Score was calculated for varying noise
levels, ranging from 0.1 µε to 100 µε. As shown in Figure 15, the damage can be detected in
both cases when the noise level is 1 µε. However, detection becomes unreliable at higher
noise levels.
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Figure 15. Signal-to-noise ratio for hole and crack at damage D6.

According to Tables 4 and 5, the damages with the lowest performance of the technique
correspond to D2 for the hole and D3 for the crack. These damages were analyzed at
different noise levels to determine an adequate level for achieving acceptable F1 Score
results. As shown in Figure 16, it is possible to detect smaller damages as long as the noise
level is sufficiently low. Compared to the minimum noise in previous analyses, this noise
decreases to levels around 0.4 µε.
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Figure 16. Signal-to-noise ratio for hole and crack at damage D3.

The proposed damage detection and localization methodology is aligned with the
advances highlighted in the state-of-the-art and the targets proposed in SDG 9. Our
approach leverages the potential of SHM systems to transition from mere data collection
to predictive maintenance by employing data analytics, including PCA and contribution
analysis, to identify and localize structural damage. This methodology not only detects
damage but also identifies its location with high accuracy, thereby confirming the system’s
effectiveness in a real-world context. Furthermore, our sensitivity analysis underlines the
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robustness of the proposed technique, showing that even with a significant number of
inoperative sensors or the presence of noise, the system can still reliably detect damages.
This capability is crucial in an I4.0 context, where interconnected systems and real-time data
processing are essential for timely interventions in aerospace systems. The integration of
such advanced SHM systems into broader industrial ecosystems, as discussed, underscores
the importance of this work for enhanced infrastructure safety and management through
predictive and proactive maintenance strategies.

The proposed damage detection and localization methodology, while effective, has
some limitations. It relies on sensor placement quality and density, and is sensitive to noise
in the data, which can affect detection accuracy. The computational demands are significant,
potentially limiting real-time applications. Additionally, the methodology’s effectiveness
was tested on specific damage types and sizes, which may not generalize to all structural
configurations. Further refinement and validation in diverse settings are needed to ensure
consistent performance. Another limitation of this study is the reduced sensitivity of the
methodology in detecting cracks compared to holes, particularly for smaller damages. This
suggests that the geometry of the damage can affect detection accuracy, indicating a need
for adjustments to improve the early detection of cracks in critical structural locations.

5. Conclusions

SHM is poised for a revolutionary transformation as it integrates with the core princi-
ples of I4.0. This paper has explored various areas where this synergy will have the most
significant impact, fundamentally reshaping our approach to infrastructure management
in diverse sectors.

Big data analytics and ML algorithms are set to unlock the hidden potential within
the vast amount of SHM data. These data will no longer merely serve as a record of the
past; it will become a powerful tool for predicting future issues. This predictive capability
will extend the lifespan of structures in various domains, from the delicate wings of aircraft
to the buildings that support cities. Early detection of anomalies will enable targeted
interventions before problems escalate, leading to significant cost savings and improved
safety across all fields.

Real-time communication will enable proactive responses to potential issues before
they snowball into major disruptions. Data acquisition is instantly transmitted to a cen-
tral hub, triggering a cascade of automated responses within interconnected ecosystems,
optimizing efficiency, safety, and cost-effectiveness in unprecedented ways.

The sensitivity of FBGs is a crucial factor in detecting small damage, as it relates to the
strain field generated by the damage itself; if the sensitivity is not high enough, the damage
will not be sensed. However, the strain field is associated with stress concentrations, which
depend on geometry and size. Thus, the damage type is also important, as each type has a
different geometry and therefore a different stress concentration.

In this study, several sensitivity analyses were performed, concluding that sensor
noise and the number of sensors are key factors for achieving adequate accuracy in this
methodology. This study is based on currently available FBGs; however, the sensitivity
analysis results presented in this paper show that improving FBG performance can enhance
SHM accuracy, potentially surpassing traditional NDT techniques.

Furthermore, the placement of FBGs plays a crucial role in damage detection; they
must be located at points where strains are highest and near potential damage sites. Other-
wise, they will only sense noise or very low-strain fields. As a result, some sensors near the
damage may not contribute significantly to statistical indexes, even though they are close
to the damage.

The main advantage of the methodology presented in this paper, compared to other
methodologies previously developed by the authors, is that it enables damage detection
and localization with good precision using sparse sensor networks. Unlike other techniques
that require highly dense sensor networks, this approach is more efficient and cost-effective.
Additionally, the developed methodology exhibits greater sensitivity, allowing the detection
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of even smaller damages than those detectable by previously developed methods. This
results in a better relationship between damage size and sensor density, enhancing the
overall effectiveness and applicability of the SHM system [97,98].

The proposed methodology is promising but also has some limitations. It is highly
dependent on sensor placement quality and density, and sensitive to data noise, which
can impact detection accuracy. The computational demands are substantial, which may
hinder real-time applications. The methodology was tested on specific damage types
and sizes, which may not be representative of all structural configurations. Addition-
ally, the methodology demonstrated reduced sensitivity in detecting cracks compared to
holes, particularly for smaller damages, highlighting the need for further adjustments and
validation in diverse settings to improve accuracy and performance.

The future of SHM within I4.0 is promising. As these technologies continue to evolve
and become more sophisticated, they will give rise to innovative applications that will
reshape how we monitor, maintain, and ultimately safeguard our infrastructure. This
powerful combination has the potential to create a world where infrastructure is not
just static and dynamic, but also intelligent, adaptable, and capable of anticipating and
responding to the changing demands of the modern world.
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