Flexible Natural Language-Based Image Data Downlink Prioritization for Nanosatellites
<p>Overall concept of the prioritization pipeline presented in this paper. The numbers assigned to each image after the similarity calculation is the order in which the images will be downlinked.</p> "> Figure 2
<p>Intermediate representation generation process for the oriented bounding-box prioritization approach.</p> "> Figure 3
<p>Python-like pseudocode for the OBB approach.</p> "> Figure 4
<p>Intermediate representation generation process for the CLIP prioritization approach.</p> "> Figure 5
<p>Python-like pseudocode for the CLIP approach.</p> "> Figure 6
<p>The (<b>a</b>) front and (<b>b</b>) back of the VERTECS CCB engineering model [<a href="#B9-aerospace-11-00888" class="html-bibr">9</a>].</p> "> Figure 7
<p>The confusion matrices produced by class assignments of the OBB and CLIP approaches. (<b>a</b>,<b>b</b>) are produced from classifications from the OBB approach, while (<b>c</b>,<b>d</b>) are produced from classifications from the CLIP approach.</p> "> Figure 8
<p>The impact of prioritization on data downlink. (<b>a</b>) presents the case of no prioritization on a randomly ordered dataset. (<b>b</b>,<b>c</b>) present the cases of prioritization with the OBB approach, while (<b>d</b>,<b>e</b>) present the cases of prioritization with the CLIP approach.</p> "> Figure 9
<p>The runtime performance of the approaches on the VERTECS CCB. (<b>a</b>) presents the CPU usage over time, (<b>b</b>) presents the memory usage over time, (<b>c</b>) presents the maximum amount of system memory used during runtime, and (<b>d</b>) presents the total runtime of each approach.</p> "> Figure 10
<p>Max power and power consumption of the VERTECS CCB while running each approach.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oriented Bounding-Box Approach
2.2. CLIP Approach
2.3. Cosine Similarity Calculation
2.4. Datasets
2.4.1. DOTA-v1.5
2.4.2. NWPU-Captions
2.4.3. PrioEval
2.5. Model Training
2.5.1. YOLOv8
2.5.2. Llama 2
2.5.3. CLIP
2.6. Target Hardware
3. Results
3.1. Oriented Bounding-Box Approach
3.2. CLIP Approach
3.3. Prioritization Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OEC | Orbital edge computing |
AI | Artificial intelligence |
RS | Remote sensing |
ML | Machine learning |
NLP | Natural language processing |
SOTA | State of the art |
CNN | Convolutional neural network |
SCOTI | Science Captioning of Terrain Images |
OBB | Oriented bounding box |
LLM | Large language model |
CCB | Camera control board |
COTS | Commercial off-the-shelf |
CM4 | Compute module 4 |
FLOPS | Floating-point operations per second |
References
- Heidt, H.; Puig-Suari, J.; Moore, A.; Nakasuka, S.; Twiggs, R. CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, USA, 21–25 August 2000; Technical Session V: Lessons Learned—In Success and Failure. p. SSC00–V–5. [Google Scholar]
- Sano, K.; Nakagawa, T.; Matsuura, S.; Takimoto, K.; Takahashi, A.; Fuse, T.; Cordova, R.; Schulz, V.; Lepcha, P.; Örger, N.C.; et al. Astronomical 6U CubeSat mission VERTECS: Scientific objective and project status. In Proceedings of the Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, Yokohama, Japan, 16–22 June 2024; Coyle, L.E., Matsuura, S., Perrin, M.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2024; Volume 13092, p. 130920W. [Google Scholar] [CrossRef]
- Knapp, M.; Seager, S. ASTERIA: A CubeSat Enabling High Precision Photometry in a Small Package. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018; Volume 42, p. E4.1–4–18. [Google Scholar]
- France, K.; Fleming, B.; Egan, A.; Desert, J.M.; Fossati, L.; Koskinen, T.T.; Nell, N.; Petit, P.; Vidotto, A.A.; Beasley, M.; et al. The Colorado Ultraviolet Transit Experiment Mission Overview. Astron. J. 2023, 165, 63. [Google Scholar] [CrossRef]
- Zemcov, M.; Poppe, A.; Eisold, W.; James, W.; Lisse, C.; Lynch, O.; MacGregor, M.; McCauley, J.; Patru, D.; Pokorny, P.; et al. ZOdiacal Dust Intensity for Astrophysics Cubesat (ZODIAC): A Mission to Measure Zodiacal and Cosmic Background Light. Bull. AAS 2022, 54, 304-09. Available online: https://baas.aas.org/pub/2022n6i304p09 (accessed on 25 October 2024).
- Chatar, K.; Kitamura, K.; Cho, M. Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites. Remote Sensing 2024, 16, 1729. [Google Scholar] [CrossRef]
- Azami, M.H.b.; Orger, N.C.; Schulz, V.H.; Oshiro, T.; Cho, M. Earth Observation Mission of a 6U CubeSat with a 5-Meter Resolution for Wildfire Image Classification Using Convolution Neural Network Approach. Remote Sens. 2022, 14, 1874. [Google Scholar] [CrossRef]
- Pham, M.L.; Artates, C.P. The Quickly Universally Integrated CubeSat: Rapid Integration for Small Packages. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Pre-Conference Poster Session I. p. SSC20–WP1–06. [Google Scholar]
- Fielding, E.; Schulz, V.H.; Chatar, K.A.A.; Sano, K.; Hanazawa, A. VERTECS: A COTS-based payload interface board to enable next generation astronomical imaging payloads. In Proceedings of the Software and Cyberinfrastructure for Astronomy VIII, Yokohama, Japan, 16–22 June 2024; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2024; Volume 13101, p. 131010J. [Google Scholar] [CrossRef]
- Denby, B.; Lucia, B. Orbital Edge Computing: Machine Inference in Space. IEEE Comput. Arch. Lett. 2019, 18, 59–62. [Google Scholar] [CrossRef]
- Denby, B.; Lucia, B. Orbital Edge Computing: Nanosatellite Constellations as a New Class of Computer System. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ′20, Lausanne, Switzerland, 16–20 March 2020; pp. 939–954. [Google Scholar] [CrossRef]
- Chatar, K.A.A.; Fielding, E.; Sano, K.; Kitamura, K. Data downlink prioritization using image classification on-board a 6U CubeSat. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2023; Volume 12729, p. 127290K. [Google Scholar] [CrossRef]
- Maskey, A.; Cho, M. CubeSatNet: Ultralight Convolutional Neural Network designed for on-orbit binary image classification on a 1U CubeSat. Eng. Appl. Artif. Intell. 2020, 96, 103952. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Qiu, D.; Rothrock, B.; Islam, T.; Didier, A.K.; Sun, V.Z.; Mattmann, C.A.; Ono, M. SCOTI: Science Captioning of Terrain Images for data prioritization and local image search. Planet. Space Sci. 2020, 188, 104943. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning, PMLR, Vienna, Austria, 18–24 July 2021; Volume 139, pp. 8748–8763. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. Available online: http://arxiv.org/abs/2307.09288 (accessed on 25 October 2024).
- Li, X.; Wen, C.; Hu, Y.; Zhou, N. RS-CLIP: Zero shot remote sensing scene classification via contrastive vision-language supervision. Int. J. Appl. Earth Observ. Geoinf. 2023, 124, 103497. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Xia, G.S.; Bai, X.; Yang, W.; Yang, M.Y.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; et al. Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7778–7796. [Google Scholar] [CrossRef] [PubMed]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Yifu, Z.; Wong, C.; Montes, D.; et al. ultralytics/yolov5: v7.0—YOLOv5 SOTA Realtime Instance Segmentation; Zenodo: Meyrin, Switzerland, 2022. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Arutiunian, A.; Vidhani, D.; Venkatesh, G.; Bhaskar, M.; Ghosh, R.; Pal, S. CLIP-Rsicd; Github: San Francisco, CA, USA, 2021. [Google Scholar]
- Cheng, Q.; Huang, H.; Xu, Y.; Zhou, Y.; Li, H.; Wang, Z. NWPU-Captions Dataset and MLCA-Net for Remote Sensing Image Captioning. IEEE Trans. Geosci. Remote Sensi. 2022, 60, 5629419. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. Available online: http://arxiv.org/abs/2010.11929 (accessed on 25 October 2024).
- Ilharco, G.; Wortsman, M.; Wightman, R.; Gordon, C.; Carlini, N.; Taori, R.; Dave, A.; Shankar, V.; Namkoong, H.; Miller, J.; et al. OpenCLIP; Zenodo: Meyrin, Switzerland, 2021. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
Model | Parameters (M) |
---|---|
CubeSatNet [12,13] | 0.098086 |
UNet (EfficientNetB0) [6,14] | 10.1 |
CLIP (ResNet50) [18] | 102.01 |
Llama2 [17] | 7000 |
Model | Parameters (M) | FLOPS (GFLOPS) | Image Encoder Parameters (M) | Image FLOPS (GFLOPS) | Text Encoder Parameters (M) | Text FLOPS (GFLOPS) |
---|---|---|---|---|---|---|
CLIP (ResNet50) | 102.01 M | 18.18 | 38.32 | 12.22 | 63.69 | 5.96 |
CLIP (ViT-B-16) | 149.62 M | 41.09 | 86.19 | 35.13 | 63.43 | 5.96 |
Category | DOTA-v1.5 |
---|---|
Plane | 14,978 |
Baseball diamond | 1127 |
Bridge | 3804 |
Ground track field | 689 |
Small vehicle | 242,276 |
Large vehicle | 39,249 |
Ship | 62,258 |
Tennis court | 4716 |
Basketball court | 988 |
Storage tank | 12,249 |
Soccer ball field | 727 |
Roundabout | 929 |
Harbor | 12,377 |
Swimming pool | 4652 |
Helicopter | 833 |
Container crane | 237 |
Total | 402,089 |
Training | 210,631 |
Validation | 69,565 |
Test/Test-dev | 121,893 |
Airplane | Airport | Baseball diamond | Basketball court |
Beach | Bridge | Chaparral | Church |
Circular farmland | Cloud | Commercial area | Dense residential |
Desert | Forest | Freeway | Golf course |
Ground track field | Harbor | Industrial area | Intersection |
Island | Lake | Meadow | Medium residential |
Mobile home park | Mountain | Overpass | Palace |
Parking lot | Railway | Railway station | Rectangular farmland |
River | Roundabout | Runway | Sea ice |
Ship | Snow berg | Sparse residential | Stadium |
Storage tank | Tennis court | Terrace | Thermal power station |
Wetland |
Class | CLIP | OBB |
---|---|---|
Airplane | A plane on the ground. | More than 2 planes with any average distance. |
Ship | A ship or boat in the water. | More than 2 ships with any average distance. |
Basketball_court | A basketball court is present. | More than 2 basketball courts with any average distance. |
Bridge | A bridge is present. | More than 2 bridges with any average distance. |
Model | Parameters | Size (MB) | Target |
---|---|---|---|
YOLOv8 | 3.1 M | 6.16 | Satellite |
CLIP (ResNet50) | 102.01 M | 1167.4 | Satellite (image)/ground (text) |
CLIP (ViT-B-16) | 149.62 M | 1710 | Satellite (image)/ground (text) |
Llama2 | 7 B | 129 | Ground |
YOLOv8 960 | YOLOv8 1280 | Llama2 |
---|---|---|
0.75 | 0.75 | 0.99 |
Max Image Dim 960 | Max Image Dim 1280 |
---|---|
0.76 | 0.76 |
k | Max Image Dim 960 | Max Image Dim 1280 |
---|---|---|
1 | 0.15 | 0.17 |
3 | 0.28 | 0.30 |
5 | 0.37 | 0.38 |
10 | 0.49 | 0.49 |
20 | 0.62 | 0.62 |
30 | 0.71 | 0.71 |
Individual Description | Class Description | ||
---|---|---|---|
ResNet50 | ViT-B-16 | ResNet50 | ViT-B-16 |
0.73 | 0.50 | 0.70 | 0.43 |
k | Individual Description | Class Description | ||
---|---|---|---|---|
ResNet50 | ViT-B-16 | ResNet50 | ViT-B-16 | |
1 | 0.05 | 0.09 | 0.95 | 0.92 |
3 | 0.14 | 0.21 | 0.98 | 0.97 |
5 | 0.21 | 0.31 | 0.99 | 0.98 |
10 | 0.35 | 0.47 | 0.99 | 0.99 |
20 | 0.55 | 0.67 | 0.99 | 0.99 |
30 | 0.70 | 0.79 | 0.99 | 1.0 |
Model | Airplane | Ship | Basketball_Court | Bridge |
---|---|---|---|---|
No priority | 0.77 | 0.78 | 0.73 | 0.62 |
OBB 960 | 0.73 | 0.71 | 0.77 | 0.72 |
OBB 1280 | 0.73 | 0.71 | 0.77 | 0.72 |
CLIP RN50 | 0.00 | 0.00 | 0.00 | 0.24 |
CLIP ViT-B-16 | 0.62 | 0.58 | 0.03 | 0.58 |
Associated Model/Approach | Size |
---|---|
OBB | 179 B |
CLIP RN50 | 16.38 KB |
CLIP ViT-B-16 | 8.38 KB |
Model | Image Processing | Similarity Calculation |
---|---|---|
(Seconds/Image) | (Seconds/100 Images) | |
OBB 960 | 2.47 | 0.28 |
OBB 1280 | 4.38 | 0.28 |
CLIP RN50 | 0.96 | 0.003 |
CLIP ViT-B-16 | 1.61 | 0.0006 |
Associated Model/Approach | Max Power (W) | Power Consumption (Wh) |
---|---|---|
OBB 960 | 4.54 | 13.96 |
OBB 1280 | 4.69 | 24.92 |
CLIP RN50 | 5.37 | 7.63 |
CLIP ViT-B-16 | 5.59 | 13.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fielding, E.; Hanazawa, A. Flexible Natural Language-Based Image Data Downlink Prioritization for Nanosatellites. Aerospace 2024, 11, 888. https://doi.org/10.3390/aerospace11110888
Fielding E, Hanazawa A. Flexible Natural Language-Based Image Data Downlink Prioritization for Nanosatellites. Aerospace. 2024; 11(11):888. https://doi.org/10.3390/aerospace11110888
Chicago/Turabian StyleFielding, Ezra, and Akitoshi Hanazawa. 2024. "Flexible Natural Language-Based Image Data Downlink Prioritization for Nanosatellites" Aerospace 11, no. 11: 888. https://doi.org/10.3390/aerospace11110888
APA StyleFielding, E., & Hanazawa, A. (2024). Flexible Natural Language-Based Image Data Downlink Prioritization for Nanosatellites. Aerospace, 11(11), 888. https://doi.org/10.3390/aerospace11110888