Effects of Build Direction and Heat Treatment on the Defect Characterization and Fatigue Properties of Laser Powder Bed Fusion Ti6Al4V
<p>Set-up, (<b>a</b>) BLT-S310 machine, (<b>b</b>) the scanning strategies, (<b>c</b>) the sample design.</p> "> Figure 2
<p>The reconstructed 3D samples in different build directions and heat treatment conditions.</p> "> Figure 3
<p>Defect distribution of LPBF Ti6Al4V in different build directions and heat treatment conditions: (<b>a</b>) 0° as-built, (<b>b</b>) 45° as-built, (<b>c</b>) 90° as-built, (<b>d</b>) 0° heat-treated, (<b>e</b>) 45° heat-treated, (<b>f</b>) 90° heat-treated.</p> "> Figure 4
<p>Effect of build direction and heat treatment on porosity.</p> "> Figure 5
<p>Orthographic projection of defects along the build direction: (<b>a</b>) the 0° as-built sample, (<b>b</b>) the 45° as-built sample, (<b>c</b>) the 90° as-built sample, (<b>d</b>) the 0° heat-treated sample, (<b>e</b>) the 45° heat-treated sample, (<b>f</b>) the 90° heat-treated sample, (<b>g</b>) porosity curves in the 0° samples, (<b>h</b>) porosity curves in the 45° samples, (<b>i</b>) porosity curves in the 90° samples.</p> "> Figure 6
<p>Cross-section gradient and heat transfer.</p> "> Figure 7
<p>Defect along the radial direction and its porosity distribution: (<b>a</b>) the 0° as-built sample, (<b>b</b>) the 45° as-built sample, (<b>c</b>) the 90° as-built sample, (<b>d</b>) the 0° heat-treated sample, (<b>e</b>) the 45° heat-treated sample, (<b>f</b>) the 90° heat-treated sample.</p> "> Figure 8
<p>Defect size distribution in different build direction samples: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90° sample, (<b>d</b>) comparison of the as-built samples.</p> "> Figure 9
<p>Defect size distribution of the heat-treated samples.</p> "> Figure 10
<p>Sphericity distribution: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90° sample, (<b>d</b>) comparison of the fitted relative frequency curves.</p> "> Figure 11
<p>Defect orientation.</p> "> Figure 12
<p>Defect orientation in different build direction samples: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90°sample, (<b>d</b>) defect coalescence under annealing treatment.</p> "> Figure 13
<p>Volume–defect orientation–aspect ratio relationship: (<b>a</b>–<b>c</b>) the as-built sample in 0°, 45°, and 90° build directions, (<b>d</b>–<b>f</b>) the heat-treated sample in 0°, 45°, and 90° build directions.</p> "> Figure 14
<p><math display="inline"><semantics> <mrow> <msqrt> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </msqrt> </mrow> </semantics></math> and its distance from the sample surface: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90° sample, (<b>d</b>) the relative frequency of large defects.</p> "> Figure 15
<p><math display="inline"><semantics> <mrow> <msqrt> <msub> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </msqrt> </mrow> </semantics></math> distribution under the heat-treated condition: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90° sample, (<b>d–f</b>) the heartland of the 0° sample, 45° sample, and 90° sample.</p> "> Figure 16
<p>Statistics of extremes of defects in heat-treated samples.</p> "> Figure 17
<p>Relationship between fatigue limit and <math display="inline"><semantics> <mrow> <msqrt> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </msqrt> </mrow> </semantics></math> [<a href="#B60-aerospace-11-00854" class="html-bibr">60</a>].</p> "> Figure 18
<p>Effect of the defect characteristics on stress concentration: (<b>a</b>) defect with the same projected area, (<b>b</b>) position, (<b>c</b>) orientation, (<b>d</b>) aspect ratio.</p> "> Figure 19
<p>The <math display="inline"><semantics> <mrow> <msqrt> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>a</mi> </msqrt> </mrow> </semantics></math> distribution of heat-treated samples: (<b>a</b>) the 0° sample, (<b>b</b>) the 45° sample, (<b>c</b>) the 90° sample, (<b>d</b>) stress distribution with real defects in the 90° sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Design
2.2. Defect Detection and Analysis
2.3. Defect-Based Fatigue Limit Analysis
3. Results and Discussion
3.1. Defect Reconstruction
3.2. Spatial Distribution
3.2.1. Porosity
3.2.2. Defect Distribution along the Build Direction
3.2.3. Defect Distribution along the Radial Direction
3.3. Defect Characterization
3.3.1. Defect Size
3.3.2. The Sphericity
3.3.3. Defect Orientation and Aspect Ratio
3.4. Relationship between Defect and Fatigue Anisotropy
3.4.1. The Equivalent Defect Size
3.4.2. Fatigue Anisotropy
3.4.3. Effect of Defect Characteristics
4. Conclusions and Outlook
- (1)
- The build direction can affect the porosity distribution and the maximum defect size, while annealing treatment can cause the coalescence of small defects and higher porosity. For the as-built samples, the 0° sample exhibits the largest porosity of 0.18%, and it was 18.4% and 66.7% higher than the 45° sample and the 90° sample, respectively. After annealing treatment, the porosity of the 0° sample and the 45° sample increased slightly, while that of the 90° sample increased more than three times.
- (2)
- Larger defects are prone to present in the consecutive deposition layers, and the subsurface region exhibits significantly higher porosity compared to other regions. The defect size obeys a lognormal distribution, and the sphericity can be fitted by a two-phase exponential growth function.
- (3)
- The defect orientation is related to the build direction and can be changed by heat treatment. The defect orientation is related to its volume, and the defect orientation alternately changed in the order of 0°–45°–90°–45°–0° with the increase in defect volume.
- (3)
- Different defect distributions, resulting from build direction, can lead to anisotropic fatigue performance. An extended effective defect size considering its position, orientation, and aspect ratio was successfully used in the Murakami model. The predicted fatigue limit was in good agreement with the experiment results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joshi, K.; Promoppatum, P.; Quek, S.S.; Raghavan, S.; Johan, N.S.; Shukla, S.; Samudrala, S.; van der Veen, S.; Jhon, M.H. Effect of porosity distribution on the strength and strain-to-failure of La-ser-Powder Bed Fusion printed Ti–6Al–4V. Addit. Manufact. 2023, 75, 103738. [Google Scholar] [CrossRef]
- Siddiqui, S.F.; Araiza, E. Microstructural defects governing torsional fatigue failure of additively manufactured as-built and heat-treated Inconel 718. Eng. Fail. Anal. 2023, 144, 106975. [Google Scholar] [CrossRef]
- du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020, 187, 108385. [Google Scholar] [CrossRef]
- Li, H.; Tian, Z.; Zheng, J.; Huang, K.; Nie, B.; Xu, W.; Zhao, Z. A defect-based fatigue life estimation method for laser additive manufactured Ti-6Al-4V alloy at elevated temperature in very high cycle regime. Int. J. Fatigue 2023, 167, 107375. [Google Scholar] [CrossRef]
- Hu, D.; Pan, J.; Mi, D.; Mao, J.; Li, W.; Fu, Y.; Wang, R. Prediction of anisotropic LCF behavior for SLM Ti-6Al-4V considering the spatial orientation of defects. Int. J. Fatigue 2022, 158, 106734. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Analysis of the effect of internal defects on fatigue performance of additive manufactured metals. Mater. Sci. Eng. A 2020, 785, 139385. [Google Scholar] [CrossRef]
- Cunningham, R.; Narra, S.P.; Ozturk, T.; Beuth, J.; Rollett, A.D. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography. JOM 2016, 68, 765–771. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Liu, C.; Li, Z.; Wu, Q.; Fang, D. Understanding internal defects in Mo fabricated by wire arc additive manu-facturing through 3D computed tomography. J. Alloys Compd. 2020, 840, 155753. [Google Scholar] [CrossRef]
- Chen, X.; Liao, W.; Yue, J.; Liu, T.; Zhang, K.; Li, J.; Yang, T.; Liu, H.; Wei, H. Unveiling the layer-wise dynamics of defect evolution in laser powder bed fusion: Insights for in-situ monitoring and control. Addit. Manuf. 2024, 94, 104414. [Google Scholar] [CrossRef]
- Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 2016, 105, 160–170. [Google Scholar] [CrossRef]
- Xie, C.; Wu, S.; Yu, Y.; Zhang, H.; Hu, Y.; Zhang, M.; Wang, G. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling. J. Mech. Work. Technol. 2021, 291, 117039. [Google Scholar] [CrossRef]
- Mian, J.; Razmi, J.; Ladani, L. Defect analysis and fatigue strength prediction of as-built Ti6Al4V parts, produced using electron beam melting (EBM) AM technology. Materialia 2021, 16, 101041. [Google Scholar] [CrossRef]
- Qian, W.; Wu, S.; Wu, Z.; Ahmed, S.; Zhang, W.; Qian, G.; Withers, P.J. In situ X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy. Int. J. Fatigue 2022, 155, 106616. [Google Scholar] [CrossRef]
- Liu, W.; Chen, C.; Shuai, S.; Zhao, R.; Liu, L.; Wang, X.; Hu, T.; Xuan, W.; Li, C.; Yu, J.; et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography. Mater. Sci. Eng. A 2020, 797, 139981. [Google Scholar] [CrossRef]
- Malashin, I.; Martysyuk, D.; Tynchenko, V.; Evsyukov, D.; Nelyub, V.; Borodulin, A.; Gantimurov, A.; Galinovsky, A. Predicting defects in SLM-produced parts based on melt pools clustering analysis. Int. J. Adv. Manuf. Technol. 2024, 134, 1169–1178. [Google Scholar] [CrossRef]
- Du, L.; Qian, G.; Zheng, L.; Hong, Y. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 240–256. [Google Scholar] [CrossRef]
- Childerhouse, T.; Hernández-Nava, E.; Tapoglou, N.; M’saoubi, R.; Franca, L.; Leahy, W.; Jackson, M. The influence of finish machining depth and hot isostatic pressing on defect distribution and fatigue behaviour of selective electron beam melted Ti-6Al-4V. Int. J. Fatigue 2021, 147, 106169. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Ng, C.; Bermingham, M.; Dargusch, M. Eliminating segregation defects during additive manufacturing of high strength β-titanium alloys. Addit. Manuf. 2021, 39, 101855. [Google Scholar] [CrossRef]
- Moran, T.P.; Warner, D.H.; Phan, N. Scan-by-scan part-scale thermal modelling for defect prediction in metal additive manufacturing. Addit. Manufact. 2021, 37, 101667. [Google Scholar] [CrossRef]
- Bartlett, J.L.; Jarama, A.; Jones, J.; Li, X. Prediction of microstructural defects in additive manufacturing from powder bed quality using digital image correlation. Mater. Sci. Eng. A 2020, 794, 140002. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Lutz, B.S.; Pantano, M.; Nalam, Y.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F. Porosity in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Bonneric, M.; Brugger, C.; Saintier, N. Effect of hot isostatic pressing on the critical defect size distribution in AlSi7Mg0.6 alloy obtained by selective laser melting. Int. J. Fatigue 2020, 140, 105797. [Google Scholar] [CrossRef]
- Bustillos, J.; Kim, J.; Moridi, A. Exploiting lack of fusion defects for microstructural engineering in additive manufacturing. Addit. Manuf. 2021, 48, 102399. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.A.; Satko, D.P.; Ackelid, U.; Semiatin, S.L.; Lewandowski, J.J. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb. J. Alloys Compd. 2017, 729, 1118–1135. [Google Scholar] [CrossRef]
- Poudel, A.; Yasin, M.S.; Ye, J.; Liu, J.; Vinel, A.; Shao, S.; Shamsaei, N. Feature-based volumetric defect classification in metal additive manufacturing. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Hu, Y.N.; Wu, S.C.; Wu, Z.K.; Zhong, X.L.; Ahmed, S.; Karabal, S.; Xiao, X.H.; Zhang, H.O.; Withers, P.J. A new approach to correlate the defect population with the fatigue life of selective laser melt-ed Ti-6Al-4V alloy. Int. J. Fatigue 2020, 136, 105584. [Google Scholar] [CrossRef]
- Yamashita, Y.; Murakami, T.; Mihara, R.; Okada, M.; Murakami, Y. Defect analysis and fatigue design basis for Ni-based super-alloy 718 manufactured by selective laser melting. Int. J. Fatigue 2018, 117, 485–495. [Google Scholar] [CrossRef]
- Zhang, K.; Meng, Q.; Cai, N.; Qu, Z.; He, R. Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic: A quantitative defect study by X-ray computed tomography. Ceram. Int. 2021, 47, 24353–24359. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, S.; Withers, P.; Zhang, J.; Bao, H.; Fu, Y.; Kang, G. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater. Des. 2020, 192, 108708. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, S.; Bao, J.; Qian, W.; Karabal, S.; Sun, W.; Withers, P.J. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int. J. Fatigue 2021, 151, 106317. [Google Scholar] [CrossRef]
- Hu, D.; Pan, J.; Mao, J.; Hu, S.; Liu, X.; Fu, Y.; Wang, R. Mechanical behavior prediction of additively manufactured components based on defect evolution observation by synchrotron radiation X-ray tomography. Mater. Des. 2021, 198, 109353. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Satko, D.; Shaffer, J.; Lewandowski, J.J. Defect distribution and microstructure het-erogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int. J. Fatigue 2017, 94, 263–287. [Google Scholar] [CrossRef]
- Ge, J.; Ma, T.; Han, W.; Yuan, T.; Jin, T.; Fu, H.; Xiao, R.; Lei, Y.; Lin, J. Thermal-induced microstructural evolution and defect dis-tribution of wire-arc additive manufacturing 2Cr13 part: Numerical simulation and experimental characterization. Appl. Therm. Eng. 2019, 163, 114335. [Google Scholar] [CrossRef]
- Haridas, R.S.; Thapliyal, S.; Agrawal, P.; Mishra, R.S. Defect-based probabilistic fatigue life estimation model for an additively manufactured aluminum alloy. Mater. Sci. Eng. A 2020, 798, 140082. [Google Scholar] [CrossRef]
- Romano, S.; Abel, A.; Gumpinger, J.; Brandão, A.; Beretta, S. Quality control of AlSi10Mg produced by SLM: Metallography versus CT scans for critical defect size assessment. Addit. Manuf. 2019, 28, 394–405. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, A.; Wang, X.; Liu, B.; Guo, M. Fatigue limit prediction model and fatigue crack growth mechanism for selective laser melting Ti6Al4V samples with inherent defects. Int. J. Fatigue 2021, 143, 106008. [Google Scholar] [CrossRef]
- Bao, J.; Wu, S.; Withers, P.J.; Wu, Z.; Li, F.; Fu, Y.; Sun, W. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography. Mater. Sci. Eng. A 2020, 792, 139809. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, H.; Hu, J.; Li, C.; Li, B. Fatigue life prediction model for shot-peened laser powder bed fused 304L steel considering residual stress relaxation and defect distribution. Eng. Fail. Anal. 2024, 162, 108423. [Google Scholar] [CrossRef]
- Li, W.; Song, P.; Sun, C.; Zhang, Y. Defect induced fatigue failure behavior and life assessment of laser powder bed fused Al-Si alloy under different building directions. Eng. Fail. Anal. 2024, 156, 107826. [Google Scholar] [CrossRef]
- Biswal, R.; Syed, A.K.; Zhang, X. Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy. Addit. Manuf. 2018, 23, 433–442. [Google Scholar] [CrossRef]
- Biswal, R.; Zhang, X.; Syed, A.K.; Awd, M.; Ding, J.; Walther, F.; Williams, S. Criticality of porosity defects on the fatigue per-formance of wire + arc additive manufactured titanium alloy. Int. J. Fatigue 2019, 122, 208–217. [Google Scholar] [CrossRef]
- Liu, B.; Chen, B.; Lu, S.; Wang, Q.; Bao, R. Investigations into Gas-Pore Effects on Fatigue Strength with a Peridynamic Approach. Aerospace 2022, 9, 641. [Google Scholar] [CrossRef]
- Akgun, E.; Zhang, X.; Biswal, R.; Zhang, Y.; Doré, M. Fatigue of wire+arc additive manufactured Ti-6Al-4V in presence of process-induced porosity defects. Int. J. Fatigue 2021, 150, 106315. [Google Scholar] [CrossRef]
- Rotella, A.; Nadot, Y.; Piellard, M.; Augustin, R.; Fleuriot, M. Influence of defect morphology and position on the fatigue limit of cast Al alloy: 3D characterization by X-ray microtomography of natural and artificial defects. Mater. Sci. Eng. A 2020, 785, 139347. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, B.; Feng, X.; Song, Z.; Qi, X.; Li, C.; Chen, G.; Zhang, G. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach. Mater. Sci. Eng. A 2021, 802, 140693. [Google Scholar] [CrossRef]
- Prithivirajan, V.; Sangid, M.D. The role of defects and critical pore size analysis in the fatigue response of additively manu-factured IN718 via crystal plasticity. Mater. Des. 2018, 150, 139–153. [Google Scholar] [CrossRef]
- Shamir, M.; Syed, A.K.; Janik, V.; Biswal, R.; Zhang, X. The role of microstructure and local crystallo-graphic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4V. Mater. Charact. 2020, 169, 110576. [Google Scholar] [CrossRef]
- Yeratapally, S.R.; Lang, C.; Glaessgen, E.H. A computational study to investigate the effect of defect geometries on the fatigue crack driving forces in powder-bed AM materials. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Dunstan, M.K.; Paramore, J.D.; Fang, Z.Z. The effects of microstructure and porosity on the competing fatigue failure mechanisms in powder metallurgy Ti-6Al-4V. Int. J. Fatigue 2018, 116, 584–591. [Google Scholar] [CrossRef]
- Zou, J.; Xia, X.; Feng, Z.; Wang, J.; Guo, Y.; Gao, D. The fatigue mechanism and a new defect-based life prediction model for se-lective laser melted Al-Mg-Sc-Zr alloy. Int. J. Fatigue 2024, 190, 108590. [Google Scholar] [CrossRef]
- Afazov, S.; Serjouei, A.; Hickman, G.J.; Mahal, R.; Goy, D.; Mitchell, I. Defect-based fatigue model for additive manufacturing. Prog. Addit. Manuf. 2023, 8, 1059–1066. [Google Scholar] [CrossRef]
- Nadot, Y. Fatigue from Defect: Influence of Size, Type, Position, Morphology and Loading. Int. J. Fatigue 2022, 154, 106531. [Google Scholar] [CrossRef]
- Teschke, M.; Moritz, J.; Tenkamp, J.; Marquardt, A.; Leyens, C.; Walther, F. Defect-based characterization of the fatigue behavior of additively manufactured titanium aluminides. Int. J. Fatigue 2022, 163, 107047. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Eng. Fract. Mech. 2021, 244, 107541. [Google Scholar] [CrossRef]
- Wu, Z.; He, Z.; Wu, S.; Gao, X.; Lei, L.; Liu, C.; Chen, B.; Dong, C. Rotating bending fatigue mechanisms of L-PBF manufactured Ti-6Al-4V alloys using in situ X-ray tomography. Int. J. Fatigue 2023, 176, 107876. [Google Scholar] [CrossRef]
- Dragonfly. O. R. S. O. Inc. Montreal, Canada. 2021. Available online: https://dev.theobjects.com/dragonfly_2021_1_release/contents.html (accessed on 3 September 2024).
- Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Singh, S.N.; Deoghare, A.B. Microstructure, micro-hardness and tensile properties of Ti6Al4V manufactured by high lay-er-thickness wire-feed multi-laser directed energy deposition. Mater. Lett. 2023, 340, 134207. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.; Huang, W.; Zhang, W.; Qian, X. Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy. Int. J. Fatigue 2020, 130, 105260. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.E.; Zhang, W.; Qian, X.; Huang, W.; Wang, Z. Effects of the Build Direction on Mechanical Performance of Laser Powder Bed Fusion Additively Manufactured Ti6Al4V under Different Loadings. Adv. Eng. Mater. 2021, 23, 2100611. [Google Scholar] [CrossRef]
(%) | |||||||
Ti | Al | V | Fe | C | H | O | N |
balance | 5.5–6.75 | 3.5–4.5 | ≤0.30 | ≤0.08 | ≤0.015 | ≤0.20 | ≤0.05 |
Types | Build Direction | Geometry of Tested Sample | Defects | Porosity (%) | ||
---|---|---|---|---|---|---|
Diameter (103 µm) | Height (103 µm) | Total Volume (107 µm3) | Counts | |||
As-built | 0° | 3.0 | 2.9 | 3.6 | 930 | 0.180 |
45° | 2.9 | 3.0 | 2.9 | 649 | 0.152 | |
90° | 2.9 | 4.3 | 3.1 | 1426 | 0.108 | |
Heat-treated | 0° | 2.8 | 2.9 | 3.8 | 362 | 0.210 |
45° | 2.9 | 2.8 | 2.9 | 335 | 0.155 | |
90° | 3.0 | 4.6 | 11.4 | 1160 | 0.360 |
Types | Build Direction | Fitted Parameters | R-Square | |||||
---|---|---|---|---|---|---|---|---|
x0 | y1 | A1 | A2 | t1 | t2 | |||
As-built | 0° | 0.31995 | −0.0032 | 6.62282 × 10−9 | 0.01062 | 0.03782 | 0.17359 | 0.99975 |
45° | −0.03338 | −0.00738 | 2.36731 × 10−4 | 2.04758 × 10−4 | 0.13768 | 0.13768 | 0.99426 | |
90° | −0.04092 | −0.00615 | 3.41384 × 10−4 | 8.86687 × 10−5 | 0.13855 | 0.13855 | 0.99818 | |
Heat-treated | 0° | 0.38115 | −0.00621 | 1.44019 × 10−10 | 0.01877 | 0.0277 | 0.18715 | 0.99941 |
45° | 0.02805 | 0.01209 | 0.00231 | −0.002 | 0.12565 | 0.12565 | 0.98283 | |
90° | −0.06787 | −0.001701 | 0.00187 | 0.00364 | 0.23569 | 0.23568 | 0.98934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Ma, Y.; Li, P.; Moumni, Z.; Zhang, W. Effects of Build Direction and Heat Treatment on the Defect Characterization and Fatigue Properties of Laser Powder Bed Fusion Ti6Al4V. Aerospace 2024, 11, 854. https://doi.org/10.3390/aerospace11100854
Sun W, Ma Y, Li P, Moumni Z, Zhang W. Effects of Build Direction and Heat Treatment on the Defect Characterization and Fatigue Properties of Laser Powder Bed Fusion Ti6Al4V. Aerospace. 2024; 11(10):854. https://doi.org/10.3390/aerospace11100854
Chicago/Turabian StyleSun, Wenbo, Yu’e Ma, Peiyao Li, Ziad Moumni, and Weihong Zhang. 2024. "Effects of Build Direction and Heat Treatment on the Defect Characterization and Fatigue Properties of Laser Powder Bed Fusion Ti6Al4V" Aerospace 11, no. 10: 854. https://doi.org/10.3390/aerospace11100854
APA StyleSun, W., Ma, Y., Li, P., Moumni, Z., & Zhang, W. (2024). Effects of Build Direction and Heat Treatment on the Defect Characterization and Fatigue Properties of Laser Powder Bed Fusion Ti6Al4V. Aerospace, 11(10), 854. https://doi.org/10.3390/aerospace11100854