Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes
<p>Simplification of the general management optimization procedure of FlorNExT Pro<sup>®</sup>.</p> "> Figure 2
<p>FlorNExT Pro<sup>®</sup> interface (in Portuguese) of the general restrictions (<b>a</b>) and management alternatives generator (<b>b</b>). General restrictions (<span class="html-italic">Restrições gerais</span>) include: minimum age for felling (<span class="html-italic">Corte final: Idade mínima</span>), minimum and maximum age for thinning (<span class="html-italic">Desbastes: Idade mínima; Idade máxima</span>), and number of days with more than 1 mm of rain for thinning (<span class="html-italic">Desbastes: Dias com mais de 1mm de chuva ao ano</span>). The management alternatives generator (<span class="html-italic">Configuração de alternativas</span>) requires definition of: number of periods (<span class="html-italic">Número de períodos</span>), maximum number of thinnings (<span class="html-italic">Número máximo de desbastes</span>), interval between operations (<span class="html-italic">Intervalo entre operações</span>), starting year (<span class="html-italic">Início</span>), and amplitude.</p> "> Figure 3
<p>Example of spatial data manipulation capacities in FlorNExT Pro<sup>®</sup>: polygon editing based on photointerpretation of an aerial photograph in the region showing the location of polygon vertices that can be moved or deleted by the user (<b>above</b>) and tabular identification of these vertices (<b>below</b>). Translation: <span class="html-italic">Pontos do polígono em edição—</span>points of the edited polygon.</p> "> Figure 4
<p>Section of the FlorNExT Pro<sup>®</sup> interface (in Portuguese) showing the choices of criteria available to be addressed in the multi-objective problem formulation. In this example, the objectives “maximize volume growth in stands”, “maximize carbon fixation” and “minimize losses due to fire” have been selected with associated weights of 1, 0.9, and 1, respectively. Translations (in the main folder): <span class="html-italic">Otimização—</span>optimization; <span class="html-italic">Maximizar o VAL—</span>maximize net present value (NPV); <span class="html-italic">Preço médio em desbastes—</span>mean price from thinning; <span class="html-italic">Preço médio em corte final—</span>mean price from felling; <span class="html-italic">Taxa de desconto—</span>discount rate; <span class="html-italic">Maximizar o crescimento de volume nas parcelas—</span>maximize volume growth in stands; <span class="html-italic">Maximizar a fixação de carbono—</span>maximize carbon fixation; <span class="html-italic">Minimizar perdas por incêndios—</span>minimize losses due to fire.</p> "> Figure 5
<p>General structure of the forest management optimization tool FlorNExT Pro<sup>®</sup>.</p> "> Figure 6
<p>Volume extracted and average probability of fire occurrence (<b>top</b>) and volume extracted by thinning and harvesting (<b>bottom</b>) for each of the 28 management objectives scenarios tested in the Lomba ZIF, Portugal.</p> "> Figure 6 Cont.
<p>Volume extracted and average probability of fire occurrence (<b>top</b>) and volume extracted by thinning and harvesting (<b>bottom</b>) for each of the 28 management objectives scenarios tested in the Lomba ZIF, Portugal.</p> "> Figure 7
<p>Net present value in million Euro (M€) for maritime pine stands the overall area under management for the 28 management objective scenarios tested in the Lomba ZIF, Portugal.</p> "> Figure 8
<p>Mean volume growth rate (m<sup>3</sup>/ha/year) for maritime pine stands in the overall area under management according to each of the 28 management objective scenarios tested in the Lomba ZIF, Portugal.</p> "> Figure 9
<p>Average carbon storage (Mg) in maritime pine stands in the Lomba ZIF, Portugal, in each of the 28 management objective scenarios tested.</p> "> Figure 10
<p>Temporal patterns of wood extraction for contrasting scenarios: (<b>a</b>) Scenario 1; (<b>b</b>) Scenario 14; (<b>c</b>) Scenario 17; (<b>d</b>) Scenario 20; (<b>e</b>) Scenario 23; and (<b>f</b>) Scenario 27. Bars indicate level of extraction in m<sup>3</sup> for time intervals 0 to 10.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. FlorNExT Pro®
- Number of periods: number of management periods (moments in time in which management operations—thinning, felling, or no-treatment—are applied);
- Maximum number of thinnings: maximum number of thinnings in each management unit or stand;
- Interval between operations: number of periods without management operations in each management unit or stand;
- Starting: year at which optimization starts;
- Amplitude: length of a management period, in years.
2.2. Application
- Data gathering and input;
- Definition of management restrictions, constraints and alternatives;
- Optimization; and
- Analysis of outputs.
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mori Akira, S.; Lertzman Kenneth, P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Lambini, C.K.; Nguyen, T.T.; Abildtrup, J.; Pham, V.D.; Tenhunen, J.; Garcia, S. Are ecosystem services complementary or competitive? An econometric analysis of cost functions of private forests in vietnam. Ecol. Econ. 2018, 147, 343–352. [Google Scholar] [CrossRef]
- Sil, Â.; Rodrigues, A.P.; Carvalho-Santos, C.; Nunes, J.P.; Honrado, J.; Alonso, J.; Marta-Pedroso, C.; Azevedo, J.C. Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mt. Res. Dev. 2016, 36, 452–464. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, J.; Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 2014, 17, 79–86. [Google Scholar] [CrossRef]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Vacik, H.; Borges, J.; Garcia-Gonzalo, J.; Eriksson, L.-O. Decision support for the provision of ecosystem services under climate change: An editorial. Forests 2015, 6, 3212–3217. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Kessler, W.B.; Salwasser, H.; Cartwright, C.W.; Caplan, J.A. New perspectives for sustainable natural-resources management. Ecol. Appl. 1992, 2, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Ribeiro, S.M.; Lovett, A.; O’Riordan, T. Multifunctional forest management in northern Portugal: Moving from scenarios to governance for sustainable development. Land Use Policy 2010, 27, 1111–1122. [Google Scholar] [CrossRef]
- Boyce, S.G. Landscape Forestry; John Wiley & Sons: New York, NY, USA, 1995; p. 239. [Google Scholar]
- Rauscher, H.M. Ecosystem management decision support for federal forests in the united states: A review. For. Ecol. Manag. 1999, 114, 173–197. [Google Scholar] [CrossRef]
- Nobre, S.; Eriksson, L.-O.; Trubins, R. The use of decision support systems in forest management: Analysis of forsys country reports. Forests 2016, 7, 72. [Google Scholar] [CrossRef]
- Packalen, T.; Marques, A.; Rasinmäki, J.; Rosset, C.; Mounir, F.; Rodriguez, L.C.E.; Nobre, S.R. Review. A brief overview of forest management decision support systems (FMDSS) listed in the FORSYS wiki. For. Syst. 2013, 22, 263–269. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Royston, G. The past, present and futures of behavioral operational research. In Behavioral Operational Research. Theory, Methodology and Practice; Mander, C., Malpass, J., White, L., Eds.; Palgrave Macmillan: Basingstoke, UK, 2016; p. 395. [Google Scholar]
- Morse, M.P.; Kimball, G.E. Methods of Operations Research; MIT Press: Cambridge, MA, USA, 1951. [Google Scholar]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—The approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag. 2008, 255, 3222–3241. [Google Scholar] [CrossRef]
- Pukkala, T. Multi-Objective Forest Planning; Springer: Dordrecht, The Netherlands, 2002; p. 208. [Google Scholar]
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Merry, K.; Cieszewski, C. Optimisation in forest management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Pukkala, T. Optimising the management of even-aged pinus sylvestris l. Stands in Galicia, north-western Spain. Ann. For. Sci. 2007, 64, 787–798. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Pukkala, T.; Rojo Alboreca, A. Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire. Int. J. Wildland Fire 2010, 19, 937–948. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.; Borges, J. A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests 2015, 6, 65–87. [Google Scholar] [CrossRef]
- Giménez, J.C.; Bertomeu, M.; Diaz-Balteiro, L.; Romero, C. Optimal harvest scheduling in eucalyptus plantations under a sustainability perspective. For. Ecol. Manag. 2013, 291, 367–376. [Google Scholar] [CrossRef]
- Kašpar, J.; Marušák, R.; Hlavatý, R. A forest planning approach with respect to the creation of overmature reserved areas in managed forests. Forests 2015, 6, 328–343. [Google Scholar] [CrossRef]
- De Pellegrin Llorente, I.; Hoganson, H.; Windmuller-Campione, M.; Miller, S. Using a marginal value approach to integrate ecological and economic objectives across the Minnesota landscape. Forests 2018, 9, 434. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z.; Qin, H. Spatial forest harvest scheduling for areas involving carbon and timber management goals. Forests 2015, 6, 1362–1379. [Google Scholar] [CrossRef]
- Zengin, H.; Asan, Ü.; Destan, S.; Engin Ünal, M.U.; Yeşil, A.; Bettinger, P.; Değermenci, A.S. Modeling harvest scheduling in multifunctional planning of forests for longterm water yield optimization. Nat. Resour. Model. 2015, 28, 59–85. [Google Scholar] [CrossRef]
- Gómez-García, E.; Azevedo, J.C.; Pérez-Rodríguez, F. A compiled project and open-source code to generate web-based forest modelling simulators. Comput. Electron. Agric. 2018, 147, 1–5. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Azevedo, J.C.; Menéndez-Miguélez, M. Resource communication: Apkfor©, an android open-source project for research and technology transfer in forest management. For. Syst. 2018, 26. [Google Scholar] [CrossRef]
- Pérez, F.; Nunes, L.; Sil, A.; Azevedo, J. Flornext®, a cloud computing application to estimate growth and yield of maritime maritime pine (Pinus pinaster Ait.) in north-eastern Portugal. For. Syst. 2016, 25. [Google Scholar] [CrossRef]
- Borges, J.G.; Falcão, A.; Miragaia, C.; Marques, P.; Marques, M. A decision support system for forest resources management in Portugal. In System Analysis in Forest Resources; Arthaud, G.J., Barrett, T.M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 155–163. [Google Scholar]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.-M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Garcia-Gonzalo, J.; Silva, A.; Borges, J.G. Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur. J. For. Res. 2017, 136, 527–542. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.F.; Borges, J.G.; Garcia-Gonzalo, J. Addressing wildfire risk in a landscape-level scheduling model: An application in Portugal. For. Sci. 2015, 61, 266–277. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.; Borges, J.G. A stochastic approach to optimize maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann. Oper. Res. 2014, 219, 359–377. [Google Scholar] [CrossRef]
- Fonseca, T.F.; Cerveira, A.; Mota, A. An integer programming model for a forest harvest problem in Pinus pinaster stands. For. Syst. 2012, 21, 272–283. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Palma, J.; Freire, J.; Tomé, M.; Mateus, R.; Rodriguez, L.C.E.; Bushenkov, V.; Borges, J.G. A decision support system for a multi stakeholder’s decision process in a Portuguese national forest. For. Syst. 2013, 22, 359–373. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Pukkala, T.; Borges, J.G. Integrating fire risk in stand management scheduling. An application to maritime pine stands in Portugal. Ann. Oper. Res. 2014, 219, 379–395. [Google Scholar] [CrossRef]
- Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing multicriteria forest management with pareto frontier methods: An application in Portugal. For. Sci. 2014, 60, 63–72. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Rojo Alboreca, A.; Castedo-Dorado, F.; Álvarez González, J.G.; Barrio-Anta, M.; Crecente-Campo, F.; González González, J.M.; Pérez-Cruzado, C.; Rodríguez Soalleiro, R.; López-Sánchez, C.A.; et al. Herramientas Selvícolas Para la Gestión Forestal Sostenible en Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2009. [Google Scholar]
- Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tome, M.; Oliveira, M.M. Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. For. Syst. 2012, 21, 111–120. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bacao, F.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Alfranca, O.; Bertomeu, M.; Ezquerro, M.; Giménez, J.C.; González-Pachón, J.; Romero, C. Using quantitative techniques to evaluate and explain the sustainability of forest plantations. Can. J. For. Res. 2016, 46, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Lawler, E.L.; Wood, D.E. Branch-and-bound methods: A survey. Oper. Res. 1966, 14, 699–719. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Nunes, L.; Sil, A.; Azevedo, J.C. Flornext Pro. Intellectual Property Rights registration no. 03/2016/571. 2016. Available online: http://hdl.handle.net/10198/13070 (accessed on 15 October 2018).
- Oliveira, A.; Pereira, J.S.; Correia, A.V. A Silvicultura do Pinheiro Bravo; Centro Pinus: Porto, Portugal, 2000; p. 111. [Google Scholar]
- ICNF. Tabela de Taxas e Preços Bens e Serviços. Available online: http://www2.icnf.pt/portal/icnf/serv/resource/doc/tax-serv/20180920-Tabela-precos.pdf (accessed on 31 May 2018).
- Tomé, M.; Ribeiro, F.; Páscoa, F.; Silva, R.; Tavares, M.; Palma, A.; Paulo, M.J.C. Growth trends in Portuguese forests: An exploratory analysis. In Growth Trends in European Forests: Studies from 12 Countries; Spiecker, H., Mielikäinen, K., Köhl, M., Skovsgaard, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 329–353. [Google Scholar]
- Luis, J.F.S.; Fonseca, T.F. The allometric model in the stand density management of Pinus pinaster Ait. Ann. For. Sci. 2004, 61, 807–814. (In Portugal) [Google Scholar] [CrossRef]
- Alegria, C. Simulation of silvicultural scenarios and economic efficiency. For. Syst. 2011, 20, 361–378. [Google Scholar] [CrossRef]
- Del Río, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, R.; Cañellas, I.; Herrero, C.; Montero, G.; Moreno-Fernández, D.; Ruiz-Peinado, R.; Bravo, F. Mediterranean pine forests: Management effects on carbon stocks. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 301–327. [Google Scholar]
- Sil, Â.; Fonseca, F.; Gonçalves, J.; Honrado, J.; Marta-Pedroso, C.; Alonso, J.; Ramos, M.; Azevedo, J.C. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecol. Serv. Manag. 2017, 13, 82–104. [Google Scholar] [CrossRef]
- Barreiro, S.; Rua, J.; Tomé, M. StandsSIM-MD: A Management Driven forest SIMulator. For. Syst. 2016, 25. [Google Scholar] [CrossRef]
- Pretzsch, H. Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions. Forstwiss. Cent. 2002, 121, 28–51. [Google Scholar]
- Nagel, J.; Schmidt, M. The silvicultural decision support system BWINPro. In Sustainable Forest Management: Growth Models for Europe; Hasenauer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 59–63. [Google Scholar]
- Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; de Coligny, F. Capsis: An open software framework and community for forest growth modelling. Ann. For. Sci. 2012, 69, 221–233. [Google Scholar] [CrossRef]
Scenario | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Management Objective | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 * | 21 * | 22 * | 23 | 24 | 25 * | 26 | 27 * | 28 |
Maximization of NPV | NO | NO | NO | YES (10) | YES (10) | YES (5) | YES (2) | YES (8) | YES (4) | NO | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | YES (10) | YES (10) | NO | YES (10) | YES (10) | YES (10) |
Average wood price (€) | ||||||||||||||||||||||||||||
—Thinning | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 30 | 30 | 50 | 15 | 15 | 15 | 15 | 50 | 30 | 15 | 15 | 15 | ||||||||
—Felling | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 50 | 50 | 30 | 26 | 26 | 26 | 26 | 30 | 50 | 26 | 26 | 26 | ||||||||
Discount rate (%) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||
Maximization of volume growth | NO | NO | YES (10) | YES (10) | NO | YES (5) | YES (2) | YES (8) | YES (4) | YES (10) | NO | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | NO | NO | NO | NO | YES | YES | |
Maximization of carbon sequestered | NO | YES (10) | YES (10) | YES (10) | NO | YES (5) | YES (8) | YES (8) | YES (6) | NO | YES (10) | NO | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | YES (10) | NO | NO | YES (10) | NO | NO | YES (10) | YES (10) | YES (10) | NO | |
Minimization of losses due to fire | YES (10) | YES (10) | YES (10) | YES (10) | NO | YES (5) | YES (8) | YES (1) | YES (6) | NO | NO | YES (10) | NO | NO | YES (10) | YES (10) | YES (10) | NO | NO | NO | NO | NO | NO | NO | NO | YES (10) | YES (10) | YES (10) |
Scenario | Extracted Volume (m3) | Pfire | NPV (M€) | C (Mg/ha) | Growth (m3/ha/Year) | Evenness of Harvest Volumes | Wood Prices/Discount Rate |
---|---|---|---|---|---|---|---|
Four objectives (NPV, growth, C, Pfire) | |||||||
4 | 235,314.2 | 0.00697 | 2.511 | 141.1 | 9.121 | No | Standard |
6 | 235,314.2 | 0.00697 | 2.511 | 141.1 | 9.121 | No | Standard |
7 | 294,214.6 | 0.00664 | 3.138 | 126.6 | 8.530 | No | Standard |
8 | 232,473.4 | 0.00742 | 2.484 | 142.0 | 9.288 | No | Standard |
9 | 242,438.3 | 0.00691 | 2.587 | 139.6 | 9.056 | No | Standard |
27 | 193,862.4 | 0.00775 | 2.781 | 126.8 | 8.612 | Yes | Standard |
15 | 203,823.8 | 0.00701 | 1.761 | 142.6 | 9.179 | No | Above standard |
16 | 235,314.2 | 0.00697 | 4.830 | 141.1 | 9.121 | No | Above standard |
17 | 238,715.9 | 0.04554 | 3.012 | 140.7 | 9.108 | No | Above standard |
Three objectives | |||||||
26 (NPV, C, Pfire) | 310,697.7 | 0.00661 | 3.315 | 123.6 | 8.403 | No | Standard |
28 (NPV, growth, Pfire) | 243,418.5 | 0.00695 | 2.598 | 140.3 | 9.089 | No | Standard |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rodríguez, F.; Nunes, L.; Azevedo, J.C. Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate 2018, 6, 81. https://doi.org/10.3390/cli6040081
Pérez-Rodríguez F, Nunes L, Azevedo JC. Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate. 2018; 6(4):81. https://doi.org/10.3390/cli6040081
Chicago/Turabian StylePérez-Rodríguez, Fernando, Luís Nunes, and João C. Azevedo. 2018. "Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes" Climate 6, no. 4: 81. https://doi.org/10.3390/cli6040081
APA StylePérez-Rodríguez, F., Nunes, L., & Azevedo, J. C. (2018). Solving Multi-Objective Problems for Multifunctional and Sustainable Management in Maritime Pine Forest Landscapes. Climate, 6(4), 81. https://doi.org/10.3390/cli6040081