Soybean Yield Modeling and Analysis with Weather Dynamics in the Greater Mississippi River Basin
<p>The study area of the Greater Mississippi Rivier Basin for soybean yield modeling.</p> "> Figure 2
<p>The schematic diagram for geographic data processing and yield modeling.</p> "> Figure 3
<p>Average soybean yield of four environmental regions over the years.</p> "> Figure 4
<p>The temporal pattern of VGM<sub>max</sub> (<b>a</b>) and three corresponding climatic factors: mean precipitation (<b>b</b>), minimum temperature (<b>c</b>), and maximum temperature (<b>d</b>).</p> "> Figure 5
<p>The relationship between the yield and four explanatory variables: VGM<sub>max</sub>, mean precipitation, maximum temperature, and minimum temperature at the county level in (<b>a</b>) Cold, (<b>b</b>) Hot Humid, (<b>c</b>) Mixed Humid, and (<b>d</b>) Very Cold regions.</p> "> Figure 6
<p>The temporal relationship between VGM<sub>max</sub> and yield, both normalized, over time in Cold (<b>a</b>), Hot Humid (<b>b</b>), Mixed Humid (<b>c</b>), and Very Cold (<b>d</b>) regions.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection
3.2. Geographic Data Processing
3.3. Correlation Analysis
3.4. Regression Models
4. Results and Discussions
4.1. Variable Statistics
4.2. Correlation Analysis
4.3. Yield Modeling and Prediction
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food Insecurity in the World 2024. 2024. Available online: https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/en (accessed on 1 April 2024).
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jiménez-Berni, J.A.; Fereres, E. Using NDVI for the Assessment of Canopy Cover in Agricultural Crops within Modelling Research. Comput. Electron. Agric. 2021, 182, 106038. [Google Scholar] [CrossRef]
- Waldner, F.; Horan, H.; Chen, Y.; Hochman, Z. High Temporal Resolution of Leaf Area Data Improves Empirical Estimation of Grain Yield. Sci. Rep. 2019, 9, 15714. [Google Scholar] [CrossRef] [PubMed]
- Shammi, S.A.; Meng, Q. Use Time Series NDVI and EVI to Develop Dynamic Crop Growth Metrics for Yield Modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.J.; Akhmedov, B.; Prueger, J.; Stern, A. Crop Condition and Yield Simulations Using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Wall, L.; Larocque, D.; Léger, P.M. The Early Explanatory Power of NDVI in Crop Yield Modelling. Int. J. Remote Sens. 2008, 29, 2211–2225. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Seo, B.; Lee, J.; Lee, K.; Hong, S.; Kang, S. Improving Remotely-Sensed Crop Monitoring by NDVI-Based Crop Phenology Estimators for Corn and Soybeans in Iowa and Illinois, USA. Field Crops Res. 2019, 238, 113–128. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting Crop Yield Using Remotely Sensed Vegetation Indices and Crop Phenology Metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Z.; Sun, L.; Shan, J.; Mao, L. Crop Growth Condition Monitoring and Analyzing in County Scale by Time Series MODIS Medium-Resolution Data. In Proceedings of the Second International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 12–16 August 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q. Monitoring Interannual Variation in Global Crop Yield Using Long-Term AVHRR and MODIS Observations. ISPRS J. Photogramm. Remote Sens. 2016, 114, 191–205. [Google Scholar] [CrossRef]
- Ines, A.V.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- Hansen, J.W.; Challinor, A.; Ines, A.; Wheeler, T.; Moron, V. Translating Climate Forecasts into Agricultural Terms: Advances and Challenges. Clim. Res. 2006, 33, 27–41. [Google Scholar] [CrossRef]
- Johnson, D.M. An Assessment of Pre-and Within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Frieler, K.; Schauberger, B.; Arneth, A.; Balkovič, J.; Chryssanthacopoulos, J.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C. Understanding the Weather Signal in National Crop Yield Variability. Earth’s Future 2017, 5, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Wart, J.; Grassini, P.; Cassman, K.G. Impact of Derived Global Weather Data on Simulated Crop Yields. Glob. Change Biol. 2013, 19, 3822–3834. [Google Scholar] [CrossRef] [PubMed]
- Shammi, S.A.; Meng, Q. Modeling Crop Yield Using NDVI-Derived VGM Metrics Across Different Climatic Regions in the USA. Int. J. Biometeorol. 2023, 67, 1051–1062. [Google Scholar] [CrossRef]
- Beeri, O.; Peled, A. Geographical Model for Precise Agriculture Monitoring with Real-Time Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2009, 64, 47–54. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving Winter Wheat Yield Estimation by Assimilation of the Leaf Area Index from Landsat TM and MODIS Data into the WOFOST Model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31, pp. 4559–4565. [Google Scholar]
- Gandhi, N.; Armstrong, L.J.; Petkar, O.; Tripathy, A.K. Rice Crop Yield Prediction in India Using Support Vector Machines. In Proceedings of the 13th International Joint Conference on Computer Science and Software Engineering, Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5. [Google Scholar]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate Prediction of Sugarcane Yield Using a Random Forest Algorithm. Agron. Sustain. Dev. 2016, 36, 27. [Google Scholar] [CrossRef]
- Bose, P.; Kasabov, N.K.; Bruzzone, L.; Hartono, R.N. Spiking Neural Networks for Crop Yield Estimation Based on Spatiotemporal Analysis of Image Time Series. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6563–6573. [Google Scholar] [CrossRef]
- Wang, A.X.; Tran, C.; Desai, N.; Lobell, D.; Ermon, S. Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, Menlo Park and San Jose, CA, USA, 20–22 June 2018; pp. 1–5. [Google Scholar]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN-RNN Framework for Crop Yield Prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter Wheat Yield Prediction Using Convolutional Neural Networks from Environmental and Phenological Data. Sci. Rep. 2022, 12, 3215. [Google Scholar] [CrossRef]
- Baechler, M.C. High-Performance Home Technologies: Guide to Determining Climate Regions by County; US Department of Energy: Washington, DC, USA, 2015; Volume 7.3.
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Weisstein, E.W. Statistical Correlation. MathWorld. 2021. Available online: http://mathworld.wolfram.com (accessed on 1 April 2024).
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. Adv. Neural Inf. Process. Syst. 1997, 28, 779–784. [Google Scholar]
- USDA-NASS. Field Crops Usual Planting and Harvesting Dates. In Agricultural Handbook; United States Department of Agriculture: Washington, DC, USA, 2010; Volume 628. [Google Scholar]
- Papadimitriou, S.; Sun, J.; Philip, S.Y. Local Correlation Tracking in Time Series. In Proceedings of the Sixth International Conference on Data Mining, Hong Kong, China, 18–22 December 2006; pp. 456–465. [Google Scholar]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop Yield Assessment from Remote Sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global Scale Climate–Crop Yield Relationships and the Impacts of Recent Warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Lizumi, T.; Furuya, J.; Shen, Z.; Kim, W.; Okada, M.; Fujimori, S.; Hasegawa, T.; Nishimori, M. Responses of Crop Yield Growth to Global Temperature and Socioeconomic Changes. Sci. Rep. 2017, 7, 7800. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale. Remote Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef]
Weather Regions | Maximum Local Correlation (10-Year Scale) | Maximum Local Correlation (5-Year Scale) |
---|---|---|
Cold | 0.686 (2008–2017) | 0.909 (2013–2017) |
Hot Humid | 0.735 (2008–2017) | 0.830 (2010–2014) |
Mixed Humid | 0.823 (2012–2021) | 0.935 (2012–2016) |
Very Cold | 0.935 (2008–2017) | 0.988 (2013–2017) |
Weather Regions | Yield and Climatic Factors | Maximum Local Correlation (10-Year Scale) | Maximum Local Correlation (5-Year Scale) |
---|---|---|---|
Cold | Yield vs. Precipitation | 0.699 (2009–2018) | 0.970 (2009–2013) |
Yield vs. Max Temp | 0.175 (2008–2017) | 0.912 (2013–2017) | |
Yield vs. Min Temp | 0.600 (2012–2021) | 0.944 (2014–2018) | |
Hot Humid | Yield vs. Precipitation | 0.444 (2010–2019) | 0.590 (2010–2014) |
Yield vs. Max Temp | −0.845 (2011–2020) | −0.964 (2011–2015) | |
Yield vs. Min Temp | −0.606 (2012–2021) | −0.935 (2016–2020) | |
Mixed Humid | Yield vs. Precipitation | 0.663 (2012–2021) | 0.771 (2012–2016) |
Yield vs. Max Temp | −0.408 (2012–2021) | −0.779 (2016–2020) | |
Yield vs. Min Temp | 0.277 (2008–2017) | −0.781 (2016–2020) | |
Very Cold | Yield vs. Precipitation | 0.360 (2008–2017) | 0.428 (2008–2012) |
Yield vs. Max Temp | 0.717 (2008–2017) | 0.939 (2013–2017) | |
Yield vs. Min Temp | 0.868 (2008–2017) | 0.966 (2012–2016) |
Weather Region | Best Linear Models |
---|---|
Cold | |
Hot Humid | |
Mixed Humid | |
Very Cold |
Weather Region | Best Quadratic Models |
---|---|
Cold | |
Hot Humid | |
Mixed Humid | |
Very Cold |
Models | Performance | Cold | Hot Humid | Mixed Humid | Very Cold |
---|---|---|---|---|---|
Linear Regression | Adj R2 | 0.57 | 0.61 | 0.57 | 0.59 |
RMSE | 5.68 | 6.22 | 6.20 | 4.43 | |
NRMSE | 0.11 | 0.12 | 0.14 | 0.10 | |
Nonlinear Quadratic Regression | Adj R2 | 0.58 | 0.68 | 0.60 | 0.64 |
RMSE | 5.45 | 5.52 | 5.91 | 4.13 | |
NRMSE | 0.11 | 0.12 | 0.13 | 0.10 | |
SVM Regression | Adj R2 | 0.68 | 0.93 | 0.82 | 0.91 |
RMSE | 4.78 | 2.50 | 3.99 | 2.00 | |
NRMSE | 0.10 | 0.06 | 0.09 | 0.05 | |
RF Regression | Adj R2 | 0.84 | 0.84 | 0.85 | 0.82 |
RMSE | 3.43 | 3.89 | 3.67 | 2.96 | |
NRMSE | 0.07 | 0.09 | 0.08 | 0.07 |
Models | Performance | Cold | Hot Humid | Mixed Humid | Very Cold |
---|---|---|---|---|---|
Linear Regression | Adj R2 | 0.54 | 0.55 | 0.57 | 0.62 |
RMSE | 5.91 | 6.62 | 6.12 | 4.25 | |
NRMSE | 0.12 | 0.14 | 0.14 | 0.12 | |
Nonlinear Quadratic Regression | Adj R2 | 0.60 | 0.60 | 0.61 | 0.68 |
RMSE | 5.52 | 5.85 | 5.72 | 3.81 | |
NRMSE | 0.11 | 0.12 | 0.13 | 0.09 | |
SVM Regression | Adj R2 | 0.61 | 0.60 | 0.67 | 0.69 |
RMSE | 5.42 | 6.10 | 5.20 | 3.75 | |
NRMSE | 0.11 | 0.13 | 0.12 | 0.09 | |
RF Regression | Adj R2 | 0.62 | 0.61 | 0.66 | 0.58 |
RMSE | 5.35 | 5.76 | 5.28 | 4.52 | |
NRMSE | 0.11 | 0.12 | 0.12 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Huang, Y.; Meng, Q. Soybean Yield Modeling and Analysis with Weather Dynamics in the Greater Mississippi River Basin. Climate 2025, 13, 33. https://doi.org/10.3390/cli13020033
Xie W, Huang Y, Meng Q. Soybean Yield Modeling and Analysis with Weather Dynamics in the Greater Mississippi River Basin. Climate. 2025; 13(2):33. https://doi.org/10.3390/cli13020033
Chicago/Turabian StyleXie, Weiwei, Yanbo Huang, and Qingmin Meng. 2025. "Soybean Yield Modeling and Analysis with Weather Dynamics in the Greater Mississippi River Basin" Climate 13, no. 2: 33. https://doi.org/10.3390/cli13020033
APA StyleXie, W., Huang, Y., & Meng, Q. (2025). Soybean Yield Modeling and Analysis with Weather Dynamics in the Greater Mississippi River Basin. Climate, 13(2), 33. https://doi.org/10.3390/cli13020033