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Abstract: Extremely severe cyclonic storms over the North Indian Ocean increased by approx-
imately 10% during the past 30 years. The climatological characteristics of tropical cyclones
for 38 years were assessed over the Bay of Bengal (BoB). A total of 24 ESCSs formed over the
BoB, having their genesis in the southeast BoB, and the intensity and duration of these storms
have increased in recent times. The Advanced Research version of the Weather Research and
Forecasting (ARW) model is utilized to simulate the five extremely severe cyclonic storms (ESCSs)
over the BoB during the past two decades using the Indian Monsoon Data Assimilation and
Analysis (IMDAA) data. The initial and lateral boundary conditions are derived from the IMDAA
datasets with a horizontal resolution of 0.12◦ × 0.12◦. Five ESCSs from the past two decades
were considered: Sidr 2007, Phailin 2013, Hudhud 2014, Fani 2019, and Amphan 2020. The
model was integrated up to 96 h using double-nested domains of 12 km and 4 km. Model
performance was evaluated using the 4 km results, compared with the available observational
datasets, including the best-fit data from the India Meteorological Department (IMD), the Tropical
Rainfall Measuring Mission (TRMM) satellite, and the Doppler Weather Radar (DWR). The results
indicated that IMDAA provided accurate forecasts for Fani, Hudhud, and Phailin regarding the
track, intensity, and mean sea level pressure, aligning well with the IMD observational datasets.
Statistical evaluation was performed to estimate the model skills using Mean Absolute Error
(MAE), the Root Mean Square Error (RMSE), the Probability of Detection (POD), the Brier Score,
and the Critical Successive Index (CSI). The calculated mean absolute maximum sustained wind
speed errors ranged from 8.4 m/s to 10.6 m/s from day 1 to day 4, while mean track errors ranged
from 100 km to 496 km for a day. The results highlighted the prediction of rainfall, maximum
reflectivity, and the associated structure of the storms. The predicted 24 h accumulated rainfall
is well captured by the model with a high POD (96% for the range of 35.6–64.4 mm/day) and a
good correlation (65–97%) for the majority of storms. Similarly, the Brier Score showed a value
of 0.01, indicating the high performance of the model forecast for maximum surface winds. The
Critical Successive Index was 0.6, indicating the moderate model performance in the prediction
of tracks. It is evident from the statistical analysis that the performance of the model is good
in forecasting storm structure, intensity and rainfall. However, the IMDAA data have certain
limitations in predicting the tracks due to inadequate representation of the large-scale circulations,
necessitating improvement.
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1. Introduction
Over the North Indian Ocean (NIO), the intensity and frequency of tropical cyclones

(TCs) are increasing [1–6], and the population density near the coastal belts has also in-
creased [7,8]. Hence, the risk associated with landfalling TCs over coastal regions in terms
of coastal vulnerability also increases [9]. Many studies suggest that the Indian subcontinent
is highly vulnerable to TCs compared to other regions, and the forecast accuracy of TCs is
lower compared to those in the North Atlantic and Pacific Oceans [10,11]. Extremely severe
cyclonic storms over the North Indian Ocean increased by approximately 10% during the
past 30 years (1996–2021) compared to the period 1972–1995 [6]. Observations also revealed
an increasing trend in the duration of the ESCS, stage, and wind speed over the NIO [5].
The present warming climate has significant impacts on the formation of tropical cyclones
over the Bay of Bengal (BOB) region, affecting densely populated coastal cities such as
Chennai, Visakhapatnam, Bhubaneswar, and Kolkata, which are close to the BoB [12]. As
a result, the projected global warming conditions and anticipated climate changes in the
near future are expected to lead to the intensification of extremely severe cyclonic storms
(ESCSs) under the tropical cyclone category [13–16]. Several researchers have indicated that
forecasting extremely severe cyclonic storms (ESCSs) is essential to provide early warning
forecasts of storm surges and coastal inundation, evacuate coastal communities, and ensure
implementation of the preparedness strategies to save lives and property from climate
change impacts [17]. Therefore, there is a need to improve the forecasting skill of intense
TCs over the NIO. In the last two decades, the forecast accuracy of TCs has increased by
using high-resolution regional and global numerical weather prediction models [18–22]
and proper representation of physical parameterization schemes [23–28]. Additionally,
TC forecast accuracy has been enhanced by using advanced data assimilation techniques
such as 3D/4D variational techniques as well as hybrid and ensemble methods [5,29–43].
Previous studies have indicated that although track forecasts have improved, intensity
forecasts are still limited. It is essential to test the performance of a modeling system in
forecasting TCs for a period of 96 h, including track, intensity, and landfall by comparing
several cases developed over the Bay of Bengal region in a high-resolution modeling system.
It has been highlighted that increasing the horizontal resolution in the HWRF model has a
larger impact on predicting intense cyclones than low-intensity cyclones [44]. Addition-
ally, increased horizontal resolution provides a better forecast of warm core structures
and secondary circulations [45,46]. Several studies have also documented that improved
model horizontal resolutions positively impact the forecast of track and intensity [47,48].
Reanalysis datasets are provided by various meteorological centers based on numerical
weather prediction systems, with significant improvements in models and data assimi-
lation schemes [49]. These datasets represent various advancements in the prediction of
TC characteristics. The European Centre for Medium-Range Weather Forecasts (ECMWF)
fifth-generation global atmospheric reanalysis (ERA5), with a horizontal resolution of 31
km, resolves higher radial pressure gradients and stronger TC winds for smaller TC sizes.
However, it underestimates these features for larger TC sizes. Similarly, the National Cen-
tres for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and
the ECMWF Interim Reanalysis (ERAI) datasets overestimate stronger winds for smaller
TC sizes and underestimate them for larger sizes. Lee et al. (2023) reported that reanaly-
sis datasets, such as the NCAR 20th-Century Reanalysis Version 3 dataset (20CRv3), the
Japanese 55-Year Reanalysis dataset (JRA55), the National Centers for Environmental Pre-
diction and National Center for Atmospheric Research (NCEP/NCAR) Reanalysis dataset
(NCAR), the European Centre for Medium-Range Weather Forecasts Reanalysis Interim
dataset (ERAI), the Fifth Generation of Atmospheric Reanalysis dataset (ERA5), and the
20th-Century Reanalysis of the European Centre for Medium-Range Weather Forecasts
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(ERA20C), have different assimilation methods, model resolutions, and TC treatments,
leading to variations in large-scale flow, frequency, accurate location, sea level pressure, and
wind distribution around TCs [50]. In addition, they reported that reanalysis datasets failed
to capture the low TC genesis years between 1998 and 2014. Ref. [51] analyzed the regional
IMDAA reanalysis dataset over the North Indian Ocean (NIO) considering 197 storms
during the period 1979–2018, and they reported that TC tracks are well represented, but the
intensity and associated properties of TCs are not well captured. Ref. [52] analyzed ERAI,
the Global Forecast System (GFS) analysis, JRA55, the Modern-Era Retrospective Analysis
for Research and Applications Version 2 (MERRA2), NCEP Climate Forecast System Re-
analysis (CFSR), and ERA5 for the representation of track, intensity, and structure of 28 TCs
over the NIO. They reported that the GFS dataset provided a better representation of TC
structures compared to other datasets but showed overprediction and early intensification
for high-intensity category TCs.

From the above, it is clear that using a high-resolution modeling system provides a
better forecast of the track, structure, and intensity of TCs. However, in most of these stud-
ies, the initial conditions and boundary conditions of tropical storms are derived mainly
from the NCEP Final Analysis (FNL; 1.0◦ × 1.0◦ resolution), Global Forecast System (GFS;
0.5◦ × 0.5◦ resolution), and ECMWF Reanalysis Interim/ERA5 (0.25◦ × 0.25◦ resolution)
datasets. In recent days, a very high-resolution regional reanalysis dataset, namely Indian
Monsoon Data Assimilation and Analysis (IMDAA), is available, which is used for the pre-
diction of monsoon and precipitation intensity over the Indian subcontinent. The IMDAA
data, prepared using the 4D-Var data assimilation method, integrates surface and upper-air
observations, satellite, and radar data with a horizontal resolution of 12 km at 6 h intervals.
This emphasized that the significant role of horizontal resolution during data assimilation is
to improve TC intensity forecasts [44]. A higher horizontal resolution enhances the accuracy
of initial conditions by capturing small-scale features of the cyclone, such as the eyewall
and inner-core dynamics. This improvement leads to better representation of updrafts and
condensation processes, resulting in stronger adiabatic heating in the cyclone’s eyewall and
an increase in intensity. The enhanced resolution ensures better initialization of key cyclone
characteristics, such as the position and strength of the low-pressure vortex, which are
critical for accurate forecasts. It is necessary to test the performance of the high-resolution
weather forecasting model using the regional dataset in the forecast of intense tropical
cyclones over the Bay of Bengal region.

In addition, the literature highlights a significant increase in approximately 26% in
ESCSs over the North Indian Ocean in the past 30 years. Also, recent observations indicate
a rising trend in the duration of the ESCS stage and wind speed. The cumulative effects of
these ESCSs contribute to elevated storm surge heights and increased inundation along
the coast, resulting in devastating damage to lives and property in coastal regions. In the
future, the anticipated increase in global warming and human-induced climate change
may lead to the formation of numerous ESCSs over the BoB and globally. Identifying
these research gaps has motivated the development of a customized high-resolution WRF
modeling system to forecast the ESCSs over the BoB.

A customized high-resolution ARW modeling system utilizing the high-resolution
IMDAA reanalysis dataset will provide a more accurate forecast for various TCs, instilling
confidence in the model’s predictability. Hence, the performance of the IMDAA datasets in
a high-resolution ARW model was tested to forecast five different land-falling TCs over
the region under varying environmental conditions. The purpose of this study was to
evaluate the model’s efficiency in simulating five extremely severe cyclonic storms (ESCSs;
wind speed exceeding 90 knots) using the IMDAA datasets under diverse environmental
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conditions. These storms developed over the Bay of Bengal region and made landfall in
different parts of the Indian subcontinent.

The structure is organized as follows: In Section 2, the methodology, this study’s
datasets and the numerical experiments are detailed. In Section 3, the results from the
nested domain of 4 km are presented and discussed. The last section provides a discussion
of this study’s results and conclusions.

2. Methodology and Data
This study utilized the Advanced Research version of the Weather Research and Forecasting

(ARW) model, specifically ARW (V 4.2). This model consists of features like non-hydrostatic,
terrain-following sigma coordinates as vertical coordinates, a time integration scheme using the
Runge-Kutta 3rd order, and various choices for dynamics, numeric, and physics components [53].
The ARW model is configured with two nesting domains: an outer domain with a resolution
of 12 km (355 × 430 grid points, covering approximately 65◦ E–110◦ E and 10◦ S–40◦ N) and
an inner domain with a resolution of approximately 4 km (523 × 682 grid points, covering
approximately 78.42◦ E–100.06◦ E and 0.11◦ N–27.07◦ N). This setup encompasses the Bay of
Bengal and its regions (Figure 1). This improves the representation of the topographic features
of the terrain and other atmospheric processes [54–58]. The model has 51 unequal vertical
levels with a model top at 10 hPa. Physical settings for this study were selected from previous
modeling studies over the Bay of Bengal region, demonstrating improved forecasts of tropical
cyclones [24,25,31,59–61]. These selected physics included microphysics, cumulus, planetary
boundary layer, long/short-wave radiations, and land surface models. Table 1 provides details
of the selected model configuration used in this study.
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Table 1. Model configuration used in this study for the 5 ESCS simulations.

Dynamical Core ARW, Non-Hydrostatic

Horizontal grid distance Domain 1: 12 km
Domain 2: 4 km

Initial and lateral boundary conditions IMDAA reanalysis

Boundary conditions updated 6 h

Number of vertical levels 51

Integration time step 60 s (D1) and 20 s (D2)

Microphysical scheme Lin [62,63]

Cumulus parameterization Kain-Fritsch [64] (D1)

PBL scheme YSU [65]

Radiation schemes LW-RRTM [66] and SW-Dudhia [67]

Land surface model Noah [68]

Table 2 presents information on five extremely severe cyclonic storms (ESCSs) selected
for simulations, including details on formation, landfall position, and initialization time.
Notably, each experiment had a forecast length of 96 h. The model’s initial and lateral
boundary conditions for simulating ESCSs over the Bay of Bengal region were derived from
the Indian Monsoon Data Assimilation and Analysis reanalysis (IMDAA) of the North Indian
Ocean. This reanalysis dataset has a horizontal resolution of 0.12◦ × 0.12◦ over the Indian
subcontinent [69–71] with 63 vertical levels to reach a height of approximately 40 km, covering
the region between 30◦ to 120◦ E and 15◦ S to 45◦ N over the North Indian Ocean. The Indian
Monsoon Data Assimilation and Analysis (IMDAA) system utilizes the Four-Dimensional
Variational Data Assimilation (4D-Var) technique. This data assimilation approach employs a
minimization approach to generate reanalysis data by incorporating background forecasts
and observational data. Considering the associated uncertainties, the method aims to strike a
balance between model predictions and available recorded observations. Several experiments
were conducted using different configurations, including model resolutions of 15 km and 5 km,
as well as 12 km and 4 km resolutions. These experiments involved varying initial conditions,
such as 00 UTC and 12 UTC, and change in the reported best physical parameterization
schemes over the study region to assess the model forecast sensitivity with the IMDAA
regional reanalysis dataset. Finally, the WRF model was integrated with a time step of 60 s for
a 12 km resolution in Domain 1 (D1) and 20 s for a 4 km in Domain 2 (D2). The boundary
conditions were applied at 6 h intervals using the IMDAA regional reanalysis dataset. To
assess the ARW modeling system’s capability of using the IMDAA reanalysis datasets as
initial and boundary conditions, five extremely severe cyclonic storms (ESCSs)—Sidr 2007,
Phailin 2013, Hudhud 2014, Fani 2019, and Amphan 2020—were selected for simulations.
These five ESCSs events, selected from the climatological period of 2007–2020 (~14 years),
represent the increasing intensity of storms in the region. These events highlight their effects
on rising storm surges and coastal flooding. Table 2 provides the initialization times for
each cyclone, and the model initialization techniques involve selecting different stages of the
formation of a low-pressure system, such as the depression and cyclone stages, by covering a
forecast duration of 96 h.
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Table 2. Details of extremely severe cyclonic storms considered in this study.

Name of Cyclone Initialization
Stage Landfall Location Initialization Time

Amphan (May 2020) Cyclonic West Bengal coast,
[21.65 N, 88.3 E] 00 UTC on 17 May 2020

Fani (April 2019) Cyclonic Puri, Odisha,
[19.75 N, 85.7 E] 00 UTC on 29 April 2019

Hudhud (October 2014) Cyclonic Vishakhapatnam, AP,
[17.7 N, 83.3 E] 00 UTC on 9 October 2014

Phailin (October 2013) Deep depression Gopalpur, Odisha,
[19.2 N, 84.9 E] 00 UTC on 09 October 2013

Sidr (November 2007) Deep depression Bangladesh coast,
[21.8 N, 89.8 E] 00 UTC on 12 November 2007

This study presents simulations of cyclone movement, intensity (maximum surface
wind and minimum central pressure), 24 h wind speed and direction changes, daily
accumulated rainfall, maximum reflectivity, and discussion on derived parameters like
time series of warm core structure and frozen hydrometeors for the ESCSs. To validate
the rainfall pattern and distribution, the simulated results were compared with IMD-
best-fit track, the Doppler weather radar from IMD, and rainfall data from the Tropical
Rainfall Measuring Mission (TRMM; daily accumulated precipitation combined microwave-
IR (GPM_3IMERGDF v06)), with a spatial resolution of 0.1◦ × 0.1◦. Additionally, the
model’s forecasted warm core structure was compared to AMSU satellite-derived data [72].
The best-track is defined as the track of a cyclone throughout its lifecycle, determined
through post-event analysis, providing accurate information about its position, intensity,
landfall location, and other characteristics at regular time intervals. This is provided by
the India Meteorological Department (IMD), Government of India, at 6-hourly intervals
(https://rsmcnewdelhi.imd.gov.in/report.php, accessed on 14 January 2023). This includes
data from automatic weather stations, buoy observations, ship observations, satellite data,
and radar observations [73,74]. This is used to validate model-simulated tracks, intensity,
and landfall locations for five ESCSs over the Bay of Bengal, and to estimate track errors and
biases in cyclonic parameters. We made a preliminary assessment of the IMDAA reanalysis
dataset with other global reanalysis datasets, such as FNL and ECMWF, to evaluate the
strength of the data for storm prediction and details are presented in Table 3.

Table 3. Comparison of IMDAA regional reanalysis data with the ERA-Interim and NCEP FNL global
reanalysis datasets for five ESCSs over the Bay of Bengal.

Cyclone

Initial Position Error (km)
Compared to IMD Data Surface Wind Speed (m/s) Relative Humidity (%) Vertical Wind Shear (m/s)

Between 850 and 200 hPa

ERA-
Interim FNL IMDAA ERA-

Interim FNL IMDAA ERA-
Interim FNL IMDAA ERA-

Interim FNL IMDAA

Amphan 46 44 87 26 24 16 83 83 74 4.8 6.4 3.7

Fani 234 60 35 15 28 24 81 77 79 0.5 2.8 3.9

Hudhud 123 22 47 13 25 18 82 85 88 2.4 3.4 3.1

Phailin 489 89 120 10 16 12 78 84 84 0.77 5.0 2.3

Sidr 78 85 127 12 13 20 74 76 81 0.7 1.5 1.1

Statistical analysis was performed on forecasted cyclonic parameters, including cyclone
track errors, maximum surface wind speed, 24 h accumulated rainfall, and landfall locations
of ESCSs, using various statistical methods. These methods include track error (TE), the Mean
Absolute Error (MAE), the Root Mean Square Error (RMSE), and skill scores such as the

https://rsmcnewdelhi.imd.gov.in/report.php
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Probability of Detection (POD), the Brier Score (BS), and the Critical Success Index (CSI) to
evaluate the performance of the WRF modeling system with the IMDAA dataset.

Track error (TE) was calculated as the difference between the forecasted track and
the best-track data from IMD at specific times, with the angular difference converted to
distance by multiplying by 111 km (distance of each degree of latitude and longitude). The
MAE was estimated from differences in maximum surface wind speeds between forecasted
and observational data [75]. The RMSE was calculated to quantify error patterns between
the model-forecasted parameters and observations [76].

TE (in km) =

√
(∆lat)2 + (∆lon)2 × 111 (1)

MAE =
∑|Oi − Pi|

n
(2)

RMSE =

√
∑(Pi − Oi)

2

n
(3)

where n is the total sample size, Pi is the predicted value and Oi is the observed value for
the ith sample.

To evaluate the model skill score, the Probability of Detection (POD) was used to
compare model-predicted rainfall from IMDAA data with observations from TRMM and
174 automatic weather stations across Odisha during Cyclone Phailin. The analysis focused
on rainfall intensities between 64.5 and 115.5 mm/day, calculated using a 2 × 2 contingency
table with values of 1 and 0, indicating “good” and “poor” predictions, respectively [77].

The Brier Score is another skill scoring method used to measure the mean squared error
between forecast probability and observed frequency [78]. This is presented as follows:

BS =
1
N ∑N

i=1(Pi − Oi)
2 (4)

where N is the total sample size, Pi is the forecast probability and Oi is the observed
frequency for the ith sample. Therefore, a Bias Score (BS) value of 0 represents the closest
accuracy. This skill score metric evaluates model performance in forecasting storm intensity.

The Critical Success Index (CSI) is another metric for measuring the accuracy of severe
weather predictions, following the procedure outlined by [79]. The CSI value ranges from
0 to 1, where a value of 1 indicates a perfect forecast by the model. This metric is used to
evaluate the accuracy of a model forecast for landfall location.

3. Results and Discussions
This section elaborates the climatological changes in the tropical cyclones regarding

the genesis, intensity and their trends over the BoB. The role of the IMDAA datasets in
forecasting five extremely severe cyclonic storms (ESCSs) that developed over the Bay of
Bengal region and made landfall along different parts of the eastern coast of India and
Bangladesh is highlighted using WRF model. The results primarily focus on the forecasted
track, maximum surface wind (MSW), central sea level pressure (CSLP), storm structure,
and rainfall during the 96-h simulation and the warm core structure of the storms.

3.1. Climatological Analysis of Tropical Cyclones over the Bay of Bengal

The climatological analysis of tropical cyclones over the Bay of Bengal (BoB) is shown
in Figure 2. The data indicate that the frequency and intensity of tropical cyclones (TCs)
have gradually increased over the BoB in the North Indian Ocean (NIO) over the past four
decades [74]. Genesis and landfall occurrences of TCs were estimated using the India Mete-
orological Department (IMD) best-track data, showing that 109 TCs made landfall over the
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BoB from 1982 to 2020 (Figure 2a,b). Observations indicate that twenty-four extremely severe
cyclonic storms and four super cyclonic storms were formed over the BoB (Figure 2a). TCs,
formed over the BoB, had the highest landfall rates along the coasts of Odisha and West Bengal
in the northwest BoB, followed by Andhra Pradesh along the west-central BoB. Hotspot analy-
sis identifies statistically significant areas of TC genesis. This analysis aggregates points of TC
occurrence into polygons or clusters of points in close proximity based on calculated distances.
The southeast BoB has been identified as a potential hotspot for TC genesis in the past 40 years.
Specifically, for extremely severe cyclonic storms, the southeast BoB has been identified as a
potential genesis region (Figure 2c). The tracks of ESCSs are displayed in Figure 2d, showing
the transformation from very severe cyclonic storms into ESCSs near coastal areas, which
significantly affected coastal communities in terms of property damage and loss of life. Rapid
intensification (RI), defined as an increase in surface wind speed of 30 knots (15.4 m/s) or
more within 24 h, was assessed for TCs using IMD best-track data. Findings show that 99%
of ESCSs are rapidly intensifying cyclones. ESCSs that experienced RI from 1990 to 2021 are
shown in Figure 2e. They reported trends in global tropical cyclone activity from 1990 to
2021 and highlighted the increasing trend of hurricane activity [80]. However, their study
did not present linear trends of intense cyclones over the North Indian Ocean due to a lack
of significant datasets. The present study highlights that the increasing number of intense
tropical cyclones and the rising RI trend (1 per decade) of ESCSs over the North Indian Ocean
are well correlated with them [80]. The ESCSs that have rapidly intensified in the recent
decade are highlighted with red circles. These were analyzed in this study using the mesoscale
WRF model and the IMDAA dataset for performance evaluation. According to [5,22], the
duration and intensity of ESCSs over the BoB have shown an increasing trend over the past
three decades (Figure 2f). This climatological analysis of ESCSs over the BoB highlights the
need for a comprehensive study of these storms to enhance and customize the WRF model
system at a mesoscale.
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Figure 2. Climatological analysis of tropical cyclones over the Bay of Bengal (BoB) during 1982–2020,
representing: (a) different categories of TCs and their frequency (CS: cyclonic storm, SCS: severe
cyclonic storm, VSCS: very severe cyclonic storm, ESCS: extremely severe cyclonic storm, SUCS:
super cyclonic storm), (b) genesis locations of ESCSs (Marked in Red), (c) hotspots of TCs genesis
locations, (d) tracks of ESCSs, (e) rapid intensification of ESCSs (red ovals—Amphan, 18 May 2020 at
00UTC; Fani, 30 April 2019 at 03UTC; Hudhud, 11 October 2014 at 06UTC; Phailin, 10 October 2013
at 06UTC; Sidr, 13 November 2007 at 00UTC), and (f) trend analysis of ESCS duration and intensity
(Source: [5,22]).
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3.2. Key Synoptic Features During the Life Cycle of Tropical Storms

We have analyzed key synoptic features, such as atmospheric and large-scale flows
in terms of geopotential height (m), relative humidity (%), and wind vectors at 850 hPa
from ERA5 data at 00 UTC, during the life cycle of five ESCSs over the North Indian Ocean
(Figure 3). In the case of Cyclone Amphan, the low-pressure trough gradually increases
from the pre-cyclonic stage to the intensification stage, as indicated by the closed geopoten-
tial contours. This signifies the development of a well-defined core structure of the cyclone.
High relative humidity (>80%) is observed from the formation stage to the intensification
stage. The strong wind flows are observed from the south and southwest to the northeast,
transporting moist air to fuel the storm’s convection (Figure 3(a1–a5)). For Cyclone Fani,
a strong low-pressure trough is observed during the intensification stage, along with the
dynamic variations in the radius of the cyclonic eye. Strong winds flow from the southwest,
carrying significant moisture to sustain the convection process. A well-defined circulation
is also observed on the right side of the cyclone’s center (Figure 3(b1–b5)). In the cases
of Cyclones Hudhud and Phailin, the low-pressure systems originate near the Andaman
Islands and gradually move toward the east coast of India. This movement is accompanied
by increased relative humidity near the storm centers and strong circulation flows from the
southeast. Additionally, a high-pressure system located northeast of the storms influences
their movement toward the east coast of India, dynamically altering the radius of the
cyclonic eyes (Figure 3(c1–c5,d1–d5)). Similarly, for Cyclone Sidr, the low-pressure system
moves from the southeast to the northeast, as indicated by the concentric closed contours of
geopotential height, with relative humidity of 90%. Strong, large-scale flows, represented
by wind vectors, are observed northeast of the storm area (Figure 3(e1–e5)). The synoptic
features clearly showed the progression of the storms from the depression stage to the
landfall stage, characterized by strong circulation features, high relative humidity, and
dynamic variations in the storm eyes. This analysis highlights the critical role of large-scale
forcing in predicting cyclonic tracks and shows how high relative humidity at lower levels
facilitates the intensification of storms by deep moisture transport.

3.3. The Performance of Model Forecast

Figure 4 displays the initial low-pressure vortex of five ESCSs: Amphan, Fani, Hudhud,
Phailin, and Sidr. This was derived from the IMDAA dataset and compared with the IMD
best-fit track data, with the location indicated by a weather symbol. Additionally, initial
positional errors were calculated and are represented in the bar graph (Figure 2). This study
revealed minor errors concerning IMD data in predicting the low-pressure vortex locations
of storms, Amphan, Fani, and Hudhud (86.6 km, 35 km, and 47 km, respectively). But,
the errors for Phailin (120 km) and Sidr (127 km) were major ones. Several reasons could
account for these large errors, as listed below:

• IMDAA data have a limitation in capturing fine-scale features, such as the location
and structure of the low-pressure vortex, due to its horizontal resolution of 12 km at
the initial stage.

• IMDAA data are prepared using 4D-Var data assimilation, and its initial conditions
depend on the availability, density, and quality of observational data over the TC
genesis locations. These large errors may be caused by a lack of observational data
over the genesis locations in the Bay of Bengal.

• The temporal resolution of the IMDAA data is available at 6 h intervals, which might
result in the loss of rapid changes in the cyclone’s position and structural features.
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Figure 3. Synoptic features in terms of atmospheric conditions and large-scale flows, including
geopotential height (in contours), relative humidity (shaded), and wind vectors at 850 hPa from
ERA5 analysis at 00 UTC during the life cycle of cyclonic storms: (a1–a5) Amphan; (b1–b5) Fani;
(c1–c5) Hudhud; (d1–d5) Phailin; (e1–e5) Sidr.

Figure 5 presents the model’s simulated tracks of the five ESCSs using the IMDAA
dataset compared with the IMD best-fit track. The results showed that the simulated
tracks of Hudhud, Phailin, and Fani, using the IMDAA dataset, were well captured and
comparable to the IMD best-track data throughout the simulation period. In contrast,
the simulated track of Amphan with the IMDAA dataset deviated to the right of the
IMD track as it moved toward the northeast. Similarly, in the case of Cyclone Sidr, the
model’s simulated track for 96 h deviated more than other cyclones’ tracks compared to
the observational data. This deviation may be due to an initial positional error of the
low-pressure vortex. Overall, results regarding tracks of five ESCSs suggest that the model
performance has a good agreement with IMD best-track data with the least error in all
cases. This good agreement is attributed to the better initial conditions in terms of the
initial low-pressure vortex positional errors of approximately 47 km, 120 km, and 35 km
for Hudhud, Phailin, and Fani cyclones, respectively. Though Cyclone Phailin had a high
initial position error of low-pressure vortex, model simulated the better track compared
to IMD best-track due to a minimal difference of 3 m/s wind speed between IMDAA
data and the observational data at the model’s initial state, lower values of vertical wind
shear which triggers the initiation of a cyclonic storm in later stages, and high values
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of relative humidity of approximately 90% in the mid-tropospheric level. In addition,
the synoptic features showed a better representation of the cyclone’s eye, formation of
low-pressure system, structure and large-scale flows at the initial state. In contrast, other
cyclones, such as Amphan and Sidr showed higher track simulation errors. The WRF
model’s failure to simulate the tracks of Amphan and Sidr was due to maximum positional
errors of IMDAA data at initial time of model simulations. The maximum surface wind
speeds (MSW, in m/s) of Amphan and Sidar cyclones at the model’s initial state were
approximately 16 m/s and 20 m/s from the IMDAA dataset, whereas the MSWs of the
IMD data were approximately 26 m/s and 15 m/s, respectively. This clearly indicates
the underestimation and overestimation of MSW for both cyclones compared to the IMD
best-fit track data. It was also observed that the vertical profile of horizontal wind speed
showed major differences between the lower and upper atmosphere. Additionally, the
vertical profile of relative humidity variations at 600 hPa was inconsistent at the initial
state of both cyclones. Furthermore, limitations in the physical parameterization schemes,
including the optimization of schemes better suited for simulations of TCs over the Bay
of Bengal and the configuration of domain size, may have restricted upper-atmosphere
circulations. The significant variations in the atmospheric parameters at the initial state
contributed to the failure in simulating the tracks of the Amphan and Sidr cyclones.
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indicating the location in the terms of the weather symbol.
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Figure 5. Model-simulated tracks of five ESCSs: (a) Amphan, (b) Fani, (c) Hudhud, (d) Phailin, and
(e) Sidr along with IMD best-fit tracks.

Model simulations were conducted for a forecast period of 96 h. Along-track and
across-track errors were calculated as the longitudinal and lateral distances, respectively,
between the predicted track and the IMD best-track. These forecasted errors were then
compared with the IMD best-track, representing the model’s real-time forecast accuracy
within this region. Figure 6 displays the model-predicted along- and across-track errors for
five ESCSs, highlighting that the along-track error is consistently higher than the across-
track error for all cyclones. Along-track errors for Fani, Hudhud, and Phailin varied
between 50 and 300 km. But Amphan and Sidr along-track error varied between 50 and
1100 km. Across-track errors varied between 30 and 150 km for Fani, Hudhud, and Phailin
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and between 50 to 700 km for Amphan and Sidr. Along- and across-track errors are more in
the day 4 forecast of Amphan and Sidr. The model predictions indicated that across-track
errors of all storms are lower compared to along-track errors. This can be attributed to
synoptic features of atmospheric flow patterns and the nature of steering currents.
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Figure 7 shows the temporal evolution of the model-simulated maximum sustained
surface wind speed (MSW) using the IMDAA dataset for the five ESCSs and their compari-
son with the IMD best-fit track dataset. In the case of Cyclone Amphan, predicted MSW
showed an underestimation of Cyclone Amphan intensity for periods between 0–48 h and
72–96 h. This also overestimated the storm’s peak intensity during the 48–72 h forecast
period. Similarly, in the Fani storm, simulated MSW initially over-predicted the intensity
for the first 72 h and subsequently under-predicted it until its dissipation. For Cyclone
Hudhud, the forecasted MSW followed a similar pattern to the IMD up to 72 h. In the case
of Cyclone Phailin, the predicted intensity well followed the IMD track data for the first
24 h. After that, the cyclone intensity was under-predicted. Finally, during Cyclone Sidr,
the model-simulated MSW is well matched with the IMD throughout its forecast period
compared to the other cyclones. It was concluded that there is good agreement between
model predictions in intensity forecasts and IMD best-track data in most cases.

Figure 8 displays the simulated wind fields during the intensification of five ESCSs,
highlighting an apparent variation in wind speed around the eye of the cyclones ranging
from 35 m/s to 70 m/s for all cyclones, except for the Sidr cyclone. The model-simulated
wind fields during intensification were compared to the IMD best-track data. They were
evaluated statistically using absolute bias, which varied from 3 to 11 m/s (Table 4). The
statistical analysis revealed that the absolute bias is less than 10 m/s for all cyclones
compared to the IMD dataset, indicating a good agreement between model predictions and
the IMD dataset.
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Table 4. Model-simulated wind fields during the intensity stage and before the landfall stage and
their absolute bias with the IMD dataset for five ESCSs over the BoB.

Cyclone
Wind Fields (m/s) During Intensity Stage Wind Fields (m/s) Before Landfall

IMD Model Absolute
Bias IMD Model Absolute

Bias

Amphan 66.87 77 10.13 45 70 25

Fani 59.15 62 2.85 57.5 48 9.5

Hudhud 51.4 62 10.6 50 55 5

Phailin 59.15 51 8.2 57.5 51 6.5

Sidr 59 62 3 57.5 49 8.5

Figure 9 displays the simulated wind fields before the landfall of five ESCSs, highlight-
ing a clear variation in wind speed ranging from 25 m/s to 50 m/s for all cyclones, except
for Cyclone Amphan. The model-simulated wind fields before landfall were then compared
to the IMD best-track data and evaluated statistically using absolute bias, ranging from 5 to
25 m/s (Table 4). The statistical analysis revealed that the absolute bias is less than 10 m/s
for most cyclones compared to the IMD dataset, indicating a good agreement. The discrep-
ancy is that the updated lateral boundary data at 6 h intervals may not have adequately
captured the evolving synoptic features of the atmosphere, leading to discrepancies in the
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evaporation transport, radiative flux exchange, and overall intensity predictions. Further,
there are limitations in the physical parameterization schemes, including the optimization
of schemes better suited for simulations of TCs over the Bay of Bengal and the domain size
configuration, which may have restricted upper-atmosphere circulations.
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Table 5 details the comparison between the model-simulated Radius of Maximum
Winds (RMW) and the IMD data. This illustrates that the RMW values were higher than
those in the IMD dataset during day 1, gradually decreasing from day 1 to day 4. Notably,
the RMW on day 3 is more comparable to the IMD dataset. It can be inferred that the
prediction of RMW is generally comparable to the IMD. In the case of Cyclone Hudhud,
the RMW difference exceeding 25% is attributed to the early intensification, formation of a
small-sized eye, and occurrence of early landfall.
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Figure 9. Simulated wind fields (m/s) before landfall of ESCSs: (a) Amphan; (b) Fani; (c) Hudhud;
(d) Phailin; and (e) Sidr.

Table 5. Comparison between model-simulated RMW in km, and the IMD datasets for five ESCSs
over the BoB.

Cyclone
RMW in km Rmw

Mean IMD Mean
Day 1 Day 2 Day 3 Day 4

Amphan 36.6 20.7 42.3 LF* 33.2 32.9

Fani 25.1 22.7 22.3 44.0 28.5 30.5

Hudhud 31.7 28.9 27.1 LF* 29.2 37.4

Phailin 50.5 45.6 28.8 49.5 43.4 38.8

Sidr 25.7 26.1 22.0 37.8 27.9 35.6
LF*—landfall occurred.
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The model simulated the rapid intensification (>15.4 m/s) and dissipation (−15.4 m/s)
of the five cyclones in a 24 h period using IMDAA data (Figure 10). This was compared
with IMD’s estimated intensification from their best-fit track data. The model simulation for
Cyclone Amphan overestimated the rapid intensification phase for 48 h and underestimated
the rapid dissipation phase during 72–96 h. Similarly, in the case of Cyclones Fani, Hudhud,
and Sidr, model simulations reasonably well captured the trend of rapid intensification
and dissipation. Cyclone Phailin was under-predicted for the first 70 h, but thereafter, it
was over-predicted rapid dissipation. One major reason why the model simulation fails
to capture Phailin’s rapid intensification is the lack of significant development in vertical
wind shear between 850 and 200 hPa. This is attributed to the model’s inability to resolve
the storm’s internal structure and the eye of the cyclone. This is also associated with the
influence of diabatically driven circulations interacting with the trough–jet storm system.
Overall, the results suggested that the model can capture the rapid intensification well with
IMD in most of the cyclones.
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Figure 11 shows the temporal variation in model-simulated central sea level pressure
(CSLP) using the IMDAA dataset for the five ESCSs and their comparison with IMD CSLP.
It is observed that the model-predicted CSLP is well matched with IMD in Cyclones Fani,
Hudhud, and Sidr. On the other hand, the model showed a trend of over-prediction and
under-prediction in Cyclones Amphan and Phailin, respectively. Finally, it is concluded
that the good agreement with the IMD best-track data in predicting CSLP for most cyclones
was primarily due to the model’s precise depiction of the initial low-pressure system’s
vortex, which minimized deviations from the actual storm evolution. The minimal distance
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errors of low-pressure vortices may be attributed to improved prediction of pressure drop
and reduced track errors.
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Figure 11. Temporal variation in model-simulated central sea level pressure (CSLP) for five ESCSs:
(a) Amphan, (b) Fani, (c) Hudhud, (d) Phailin, and (e) Sidr, along with the IMD best-fit track dataset.

Model-simulated Convective Available Potential Energy (CAPE) is computed as the
area-averaged value over a 4◦ × 4◦ latitude–longitude box centered on the cyclone’s
position. Similarly, model-simulated vorticity is computed at the 850 hPa pressure level,
averaged over the same 4◦ × 4◦ latitude–longitude region around the cyclone center. Table 6
presents the model-simulated CAPE (J/kg), vorticity (s−1), and a comparison with the
IMDAA dataset. The percentage difference in CAPE between the model-simulated and
IMDAA datasets distinctly reveals that Sidr and Hudhud exhibited higher values (112%
and 62%, respectively) compared to other storms. Similarly, when examining the vorticity
(s−1) for the Fani storm, the comparison between the model-simulated and IMDAA datasets
revealed a notable percentage difference (30%) compared to other cyclonic storms. Overall,
the comparison of CAPE and vorticity parameters between the model-simulated and
IMDAA datasets showed a close match with most cyclonic storms.

3.4. Evaluation of Model Predictions Using Statistical Methods

Table 7 presents the daily estimated errors in the model simulation for five cyclones
using IMDAA data. This includes track errors (in km), the absolute error of maximum
surface wind (MSW) (in m/s), and the absolute error of central sea level pressure (CSLP)
(in hPa). On day 1, all cyclones showed minimal errors in track prediction, whereas high
errors in MSW and CSLP were observed. Thereafter, MSW and CSLP showed minimal
errors on day 2 and day 3 compared to day 1. Mainly, the track errors of Fani, Hudhud,
and Phailin showed the least errors from day 1 to day 4 compared to Amphan and Sidr.
However, errors consistently increased day by day in Amphan and Sidr, as presented in
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Table 7. The mean track errors using 3 h data for five ESCSs were approximately 356 km,
132 km, 165 km, 101 km, and 392 km, respectively. It is concluded that Fani, Hudhud, and
Phailin predicted with fewer errors due to minimal deviations in their initial low-pressure
cyclonic vortex position from the IMD data.

Table 6. The comparison model-simulated CAPE (J/kg) and vorticity (s−1) with IMDAA dataset for
five ESCSs.

Cyclone

CAPE (J/kg) Vorticity (10−5 s−1)

Model IMDAA
Absolute

Difference
in %

Model IMDAA
Absolute

Difference
in %

Amphan 2175.80 1785.50 21 4.68 4.24 10

Fani 1938.66 2347.80 17 3.59 2.75 30

Hudhud 1994.20 1229.47 62 4.09 3.99 2

Phailin 1548.25 1175.56 31 3.95 3.44 14

Sidr 1497.81 705.44 112 3.26 2.63 23

Table 7. Model-simulated track errors (in km), absolute MSW error (in m/s) and absolute CSLP
errors (in hPa) for all five ESCSs.

Day 1 Day 2 Day 3 Day 4
Mean Errors

(Using 3
Hourly Data)

Track errors (in km)

Sidr 2007 53 196 489 1282 356

Phailin 2013 175 72 74 105 132

Hudhud 2014 77 94 269 285 165

Fani 2019 150 138 25 129 101

Amphan 2020 114 393 677 677 392

Mean errors 114 179 307 496 229

MSW errors (in m/s)

Sidr 2007 0.7 1.7 5.9 18.5 7

Phailin 2013 1.8 27.5 10.1 8.5 13.9

Hudhud 2014 10.1 7.4 0.4 3.5 6.7

Fani 2019 12 6.1 6.9 21 9.1

Amphan 2020 17.4 3.7 11.8 1.5 12.9

Mean Absolute Errors 8.4 9.3 7 10.6 9.9

CSLP errors (in hPa)

Sidr 2007 8 9 22 39 14.6

Phailin 2013 4 40 14 3 17

Hudhud 2014 13 2 4 4 7.7

Fani 2019 13 10 6 23 10.6

Amphan 2020 23 7 14 12 19.1

Mean Absolute Errors 12.2 13.6 12 16.2 13.8

The absolute error of MSW (in m/s) calculated daily is presented in Table 7. The
results show that in most cyclones, absolute wind errors were decreasing from day 1 to
day 3 compared with the mean error of MSW for most of the cyclones. However, on day
2, Phailin was predicted with a higher error value (27.5 m/s). The mean absolute wind
speed errors from day 1 to day 4 for five ESCSs were 8.4 m/s, 9.3 m/s, 7 m/s, and 10.6 m/s,
respectively. It is seen that the model produced less error on day 3 compared to other
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days, showing a better forecast in terms of intensity. It is concluded that the IMDAA data
performed well regarding the MSW.

Table 7 also shows the absolute error of the CSLP (in hPa) every 24 h. It is seen that
the simulated CSLP errors are decreasing compared to day 1 for most storms and are
calculated as an average value over 24 h. This clearly indicates that CSLP errors decreased
when the depression stage transformed into an intense storm. However, Phailin and Sidr
produced higher error values on days 2 and 4. The mean absolute CSLP errors from day
1 to day 4 for five ESCSs were 12.2 hPa, 13.6 hPa, 12 hPa, and 16.2 hPa, respectively. It
is observed that day 3 showed negligible error. In case of Phailin, the MSW and CSLP
errors during Days 1–2 can be attributed to inaccuracies in the representation of the storm’s
structure on day 2, the low-pressure vortex position at initial state and minor difference
of wind speed. Additionally, the updated lateral boundary data at 6 h intervals may not
have adequately captured the evolving synoptic features of the atmosphere, leading to
discrepancies in the evaporation transport, radiative flux exchange, and overall intensity
predictions. These factors possibly contributed to errors in MSW and CSLP estimates
during the early forecast period. Overall, regarding the CSLP, the IMDAA data performed
better and more accurately for most cyclones.

The model’s performance was also evaluated from the outcome of the 4 km horizontal
resolution of model simulations using a Taylor diagram, considering the Root Mean Square
Error (RMSE), the Normalized Standard Deviation (NSD), and the Correlation Coefficient
(CC). This evaluation was conducted for parameters such as MSW and CSLP of five
ESCSs by comparing the model forecasts with IMD best-track data. The Taylor diagrams
(Figure 12a–e) depict the relative skill of the model’s forecasted MSW for the 5 ESCSs
compared to IMD best-track data. The CC of MSW predicted by model simulations ranged
between 0.9 and 0.7 for all the cyclones, except Cyclone Fani, where the CC of MSW
prediction differed. The NSD of simulated MSW (below 1.0 m/s) is approximately equal
to the observed NSD (around 1 m/s) for cyclones Fani, Hudhud, Phailin, and Sidr, except
Amphan (1.5 m/s). Simulated MSW exhibited a high correlation with IMD data and a low
RMSE for most cyclones. Similarly, the Taylor diagrams (Figure 12f–j) for the simulated
CSLP using the IMDAA dataset showed high correlation values between 0.7 and 0.9 in
all cases. The NSD of simulated CSLP (between 0.6 hPa and 1.5 hPa) with the IMDAA
dataset was highly significant in comparison to the observed NSD for cyclones Hudhud
and Sidr. At the same time, the observed NSD was lower for other cyclones, Amphan, Fani,
and Phailin. Simulated cyclones exhibited low RMSE values (between 0.4 and 0.6 hPa) for
most cyclones. The analysis of the Taylor diagram clearly showed the model’s performance
through the evaluation of the RMSE, CC, and NSD for the parameters of MSW and CSLP for
five ESCSs over the Bay of Bengal. The CC values for MSW and CSLP varied from 0.7 to 0.9,
indicating that the model predictions are in good agreement with the IMD best-track data.
Similarly, the Normalized Standard Deviation (NSD) of MSW and CSLP parameters was
below 1 for most storms, whereas higher values (approximately 1.5) were observed for
a few storms, such as Cyclones Amphan and Sidr. This highlights the variability in the
model’s ability to capture the wind and pressure fields for different cyclones. The RMSE
values in the Taylor diagram ranged between 0.4 and 0.7, indicating that the model captures
cyclone intensity with minimal deviation from observed data. The Taylor diagram, along
with the analysis of time-series tracks, maximum sustained wind speed, and central sea
level pressure, demonstrated high model reliability. This also identified areas for further
refinement to enhance accuracy, as evidenced by the high correlation, low RMSE, and
minor deviations in NSD for specific cyclones.
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The simulation skill was calculated for the intensity and landfall in terms of the Brier
Score (BS) and the Critical Success Index (CSI). The results pointed out that the BS was
approximately 0.014 (BS = 0 is good indicator) and indicated a very good performance,
while the simulated CSI score is approximately 0.67 (CSI = 1 is a good indicator), indicating
a moderate prediction of landfall.

3.5. Evaluation of the Rainfall and Structure of Storm Forecasts

Model simulations were performed to forecast the 24 h accumulated rainfall for five
ESCSs and were compared with the 24 h accumulated rainfall of TRMM data (Figure 13).
The model predicted that the 24 h accumulated rainfall varies between 100 and 650 mm/day,
and the spatial distribution is well matched with the TRRM data at the particular period of
the individual storms.
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The 24 h accumulated rainfall (in mm/day) from Day 1 to Day 4 for all ESCSs is
described in Supplementary Figures S1–S5. The accumulated rainfall results were com-
pared with the high-resolution (11 km) TRMM datasets (https://giovanni.gsfc.nasa.gov/
giovanni/ accessed on 14 January 2023). In the case of Super Cyclone Amphan (Supplemen-
tary Figure S1), the WRF model resolved well the magnitude of maximum rainfall. Still,
the spatial distribution differed from Day 1 onwards due to the cyclone’s movement. After
Day 1, the simulated track deviated to the right of the observed track, causing the spatial
distribution of daily rainfall to veer towards the side of the TRMM accumulated rainfall.
The simulated accumulated rainfall is also slightly higher than the TRMM values. On Day
2 and Day 3 (19 May and 20 May 2020), the observed maximum rainfall was approximately
600 mm, resolving well in the WRF model and presenting more than 600 mm of rainfall
with a broader spatial coverage and higher magnitude.

For Cyclone Fani (Supplementary Figure S2), the model captured well the magnitude and
spatial distribution of maximum rainfall from day 1 to day 3. However, on day 4, the simulated
track deviated to the left of the observed track, resulting in the spatial distribution of daily
rainfall deviating to the left of the TRMM accumulated rainfall. The simulated accumulated
rainfall was slightly higher than the TRMM values on day 2. On day 2 (1 May 2019). The
observed maximum rainfall was approximately 800 mm, which is well resolved in the WRF
model, showing slightly more than 800 mm of rainfall. On day 3 (2 May 2019), two peaks of
maximum rainfall observed in TRMM data are well matched in the model simulation.

For Cyclone Hudhud (Supplementary Figure S3), the spatial distribution of maximum
rainfall is well captured in the model from day 1 to day 4, mainly due to a better track
forecast. However, from day 1 to day 4, the magnitude of simulated accumulated rainfall
was slightly higher compared to TRMM. On day 4, the simulated accumulated rainfall
was observed over Andhra Pradesh and adjoining areas of Odisha and Chhattisgarh. In
contrast, rain was observed over the coastal region of Andhra Pradesh and adjoining areas
of Odisha. Day 3 (12 October 2014) results showed that TRMM accumulated rainfall was at
a maximum, approximately 650 mm, well resolved in the WRF model. On day 1 and day
2 (10 and 11 October 2014), the simulated rainfall was higher compared to TRMM, but on
day 3 and day 4, the model provided a better simulation in terms of space and magnitude.

Similarly, Supplementary Figures S4 and S5 show the accumulated rainfall for Cy-
clones Phailin and Sidr, respectively. In the case of Cyclone Phailin, the simulated results
provided a better forecast on each day except the day 2. The observed maximum accumu-
lated rainfall was approximately 550 mm on day 4 (13 October 2013), well resolved in the
WRF model, but showed heavier rainfall over the state of Odisha compared to TRMM. The
rainfall pattern, spatial coverage, and magnitude were well resolved on day 3 (12 October
2013) in both model and observations. However, for Sidr, model-simulated rainfall in terms
of spatial distribution was good on day 1 and day 2 (13 and 14 November 2007) and had a
higher magnitude compared to TRMM. On day 3 and day 4, the model failed to capture the
spatial rainfall due to higher track error. Overall, the model simulation of the accumulated
rainfall of Cyclone Hudhud matched with the TRMM observational data for most of the
days, compared to the other cyclones.

A statistical evaluation was performed between the model-predicted precipitation and
the TRMM dataset for five ESCSs during the 96 h forecast (Table 8). The model-predicted
precipitation for Cyclones Amphan, Fani, Hudhud, and Phailin was 60% above the TRMM
datasets. In contrast, the Sidr cyclone showed less than 50% agreement due to the deviation
of the track. This indicated that the model predictions showed good agreement compared
to the TRMM datasets.

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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Table 8. Statistical evaluation of the model predicted precipitation with the TRMM dataset for five
ESCSs over the BoB for a forecast period of 96 h.

Cyclone
Precipitation in mm for the

Forecast Period of 96 h RMSE SD Correlation
Model TRMM

Amphan 562.50 425.00 152.06 184.84 0.97

Fani 700.00 637.50 114.56 125.00 0.67

Hudhud 687.50 487.50 220.45 143.61 0.66

Phailin 470.00 437.50 105.94 75.00 0.82

Sidr 712.50 500.00 438.03 204.12 0.23

The statistical metric, the Probability of Detection (POD), is calculated to evaluate the
performance of the model’s simulated rainfall. For the Phailin cyclone, POD was calculated
for the rainfall parameter by comparing forecasted rainfall with AWS observations across
174 locations. The POD value was 96% for moderate rainfall (defined as 35.6–64.4 mm/day)
and 80% for heavy rainfall (defined as 64.5–124.4 mm/day). A similar analysis was
performed for other storms, comparing model forecast rainfall with the TRMM dataset, and
similar results were obtained. This metric indicates that the model outperforms predicting
rainfall using the IMDAA dataset.

Figure 14 shows the temperature anomaly obtained from model simulation and satel-
lite observations for all ESCSs. Amphan was considered at 00 UTC on 19 May 2020, Fani
at 03 UTC on 2 May 2019, Hudhud at 12 UTC on 11 October 2014, Phailin at 12 UTC on
11 October 2013, and Sidr at 03 UTC on 15 November 2007. The positive (negative) anomaly
indicates the temperature is warmer (cooler) than the normal temperature. For the model,
it is calculated as the temperature at a given time minus the average temperature during
the entire simulation period [58].

From satellite observation, it is noticed that in most cyclone cases, the maximum warm
core height varies from 9 km to 15 km. In model simulation, this phenomenon is observed at
height between 4 km and 14 km. In the Amphan case, the maximum temperature anomaly
was approximately 7 ◦C at approximately 12 km height, but in the model simulation, the
anomaly was approximately 9 ◦C at approximately 10 km height. For Fani 2019, this value in
observation was approximately 6 ◦C, but in the model simulation, the maximum temperature
anomaly was approximately 8 ◦C. Similarly, this pattern in Hudhud-2019, Phailin 2013, and
Sidr 2007 was noticed, with approximately 5 ◦C, 4 ◦C, and 4 ◦C in the observations and
approximately 4 ◦C, 4 ◦C, and 10 ◦C in the model simulations, respectively. Results also
highlighted that the model-simulated anomaly is stronger than observation. Overall, results
suggest that the model’s warm core structure was well resolved. However, the warm core
structure was observed at a slightly lower level compared to the satellite observations.

Figure 15 depicts the model-simulated maximum reflectivity (in dBZ) for the Hudhud
cyclone valid at 1500 UTC, 1800 UTC, and 2100 UTC on 11 October 2014. This was compared
with DWR images obtained from the IMD Visakhapatnam DWR station. The forecasted
intensity in terms of the MSW of Cyclone Hudhud showed a better prediction compared to
the other ESCSs. Hence, the Hudhud case was selected to evaluate the performance of the
model in simulating storm structure and size.
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Figure 14. Temperature anomaly for five ESCSs, namely (a) Amphan at 00 UTC on 19 May 2020,
(b) Fani at 03 UTC on 2 May 2019, (c) Hudhud at 12 UTC on 11 October 2014, (d) Phailin at 12 UTC
on 11 October 2013, and (e) Sidr at 03 UTC on 15 November 2007 obtained from model-forecasted
(left panel) and compared with satellite observations (f–j, right panel), respectively.

According to the report of the Regional Specialized Meteorological Centre (RSMC),
it is suggested that at 1500 UTC, 1800 UTC, and 2100 UTC, the shape of the eye is closed.
The size of the eye is approximately 38.1 km, 40.6 km, and 40.8 km, respectively, which
approximately matches the model forecast with a slight deviation. The model simulations
capture the eyewall cloud and spiral rain band well, as observed in DWR reflectivity images.
Results from DWR images point out that the maximum convective bands in the wall cloud
region were limited, starting from the west sector to the adjoining northwest sector around
the center of the storm Hudhud during this period. It is also noted that the outer rain band
is vital for rainfall activity along the region over the coastal region of Andhra Pradesh and
the adjoining coastal region of Odisha. In the model simulation, the movement of the storm
was slightly faster compared to the observed, and hence, the cloud band covers most of
the coastal Andhra Pradesh and the adjoining coastal region of Odisha. In conclusion, the
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model predictions demonstrate the storm’s maximum reflectivity in terms of the size of the
eye, eyewall, and rain bands, which are well resolved in the WRF model using the IMDAA
reanalysis datasets.
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The climatological characteristics of tropical cyclones were analyzed in the present
study, which highlighted the frequency of extremely severe cyclonic storms gradually
increasing in recent decades. This trend is clearly supported by the observations of [74],
who demonstrated the statistical significance of high-intensity storms by showing an
increase in track length and residence time over the North Indian Ocean basin. They also
highlighted a decreasing trend in the translational speed of high-intensity storms, estimated
at approximately 2.5 km/h in recent decades. The performance of high-resolution (4 km)
model simulations showed a better prediction of the track during the initial forecast
days and improved intensity forecasting for most events. However, for a few events,
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the track simulations were less accurate due to limitations in initial and lateral boundary
conditions as well as the physical parameterization of the schemes [51,78]. Additionally,
the tracking error of extremely severe cyclonic storms (ESCSs) gradually increased over
the forecast period, which can be attributed to the inadequate representation of upper-air
circulations and the updated lateral boundary conditions in the IMDAA data [81]. The
IMDAA reanalysis data demonstrated good capability in capturing the mean, interannual,
and intra seasonal variability of rainfall [71]. This is fairly reflected in the model-simulated
precipitation, which correlates approximately 60% with TRMM rainfall data.

This study had a few limitations in predicting the operational parameters due to the
deviations in the position of the low-pressure vortex and the initial intensity of the low-
pressure system. Deviations in the initial position of the low-pressure vortex and biases
in the storm’s intensity may result in significant errors in forecasting ESCSs during the
forecast period. Achieving accurate forecasts involves sensitizing the model configuration,
particularly in terms of resolution, and providing accurate regional and global reanalysis
datasets, as initial and lateral boundary conditions over the focused study region can
improve storm simulations’ accuracy and overall forecasting capabilities.

4. Summary and Conclusions
In this study, we conducted a climate analysis of tropical cyclones. We evaluated the

performance of the mesoscale WRF modeling system using the IMDAA regional reanalysis
dataset in predicting five extremely severe cyclonic storms (Sidr, Phailin, Hudhud, Fani,
and Amphan) that developed over the Bay of Bengal during 2007–2020. A double-nested
domain with a finer resolution of approximately 4 km in the WRF model was used for
simulation, with a forecast period of 96 h. The simulated results are discussed using
finer domains, validated with the IMD best-fit track datasets, TRMM daily accumulated
precipitation, and satellite, AWS and Doppler weather radar observations. The outcomes
of the present work are summarized as follows:

• Climatological analysis assessment showed that a total of 24 ESCSs formed over the
BoB during the past three decades, and their trends in duration and intensity over the
coastal regions are gradually increasing.

• This study revealed that the ESCSs’ simulated tracks performed reasonably well
for Fani 2019, Hudhud 2014, and Phailin 2013, but the model failed to capture the
movement of the storms Amphan 2020 and Sidr 2007. This is due to the variations in
dynamic and thermodynamic parameters such as the state of the initial low-pressure
vortex, maximum sustained wind speed, vertical profiles of horizontal wind speed,
and vertical profiles of relative humidity at the initial state of the storms. Furthermore,
limitations in the adopted physical parameterization schemes for model simulations
and domain size configuration may restrict upper-atmosphere circulations

• The mean track errors in the forecasted tracks of the five ESCSs from day 1 to day
4 using the IMDAA reanalysis datasets were approximately 114 km, 179 km, 307 km,
and 496 km, respectively.

• The simulated MSW intensity of MSW was better for Fani 2019, Hudhud 2014, and Sidr
2007, with Mean Absolute Errors of approximately 9.1 m/s, 6.7 m/s, and 7 m/s, respectively.

• Mean Absolute Errors from day 1 to day 4 for MSW were 8.4 m/s, 9.3 m/s, 7 m/s,
and 10.6 m/s, respectively, and were 12.2 hPa, 13.6 hPa, 12 hPa, 16.2 hPa, respectively,
for CSLP with reference to the best-fit track data of IMD. The discrepancy might be in
the updated lateral boundary data at 6 h intervals and inadequate capturing of the
evolving synoptic features of the atmosphere, leading to differences in the evaporation
transport, and radiative flux exchange.
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• The simulated forecast of RI (wind speed changes approximately 15 m/s in 24 h) was
better for Fani 2019, Hudhud 2014, and Sidr 2007. However, in the case of Phailin, the
model was unable to capture RI due to the lack of significant development in vertical
wind shear between 850 and 200 hPa and the evolution of the storm’s internal structure
and the eye of the cyclone. This is also associated with the influence of diabatically
driven circulations interacting with the trough–jet storm system.

• Forecasted daily rainfall by the WRF model simulations in terms of the structure and
magnitude of the five ESCSs was closer to the accuracy.

• In the case of ESCS Sidr 2007 and Amphan 2020, the forecast from day 2 onwards
showed a lower spatial distribution of the accumulated rainfall forecast due to more
significant errors in the track.
The overall performance of the model forecast was assessed for using skill score
metrics, including POD, the Brier Score, and the Critical Success Index. These metrics
showed values of 96% for rather heavy rainfall (35.6–64.4 mm/day) and 80% for heavy
rainfall (64.5–124.4 mm/day), 0.014 for the Brier Score, and 0.67 for the Critical Success
Index. It was concluded that the model performance is good.

• The warm core structure varies from 4 km to 12 km in most of the simulated cases,
while in the observation, it varied from 10 km to 14 km.

• The maximum reflectivity of Cyclone Hudhud was well predicted in terms of space
and magnitude using the WRF model simulations. In addition, eye, eye size, eyewall,
and rain band were well forecasted.

It was concluded in the present study that the simulations of cyclonic parameters,
such as track, intensity, rapid intensification, precipitation, and storm structures, performed
well with the IMDAA reanalysis datasets during the passage of the majority of ESCSs over
the Bay of Bengal region. In addition, this is expected to have several practical implications
for forecasting and advancing disaster management strategies in the Bay of Bengal region.
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