The Drought Regime in Southern Africa: Long-Term Space-Time Distribution of Main Drought Descriptors
<p>Political map, ecoregions (<b>a</b>), and Köppen–Geiger climate type (<b>b</b>) in Southern Africa. Adapted from Olson et al. [<a href="#B28-climate-12-00221" class="html-bibr">28</a>] and Kottek et al. [<a href="#B24-climate-12-00221" class="html-bibr">24</a>], with the following: equatorial monsoon (Am); equatorial savannah with dry summer (As); equatorial savannah with dry winter (Aw), arid, steppe with hot arid (BSh); arid, steppe with cold arid (BSk); arid, desert with hot arid (BWh); arid, desert with cold arid (BWk); warm temperate, fully humid with hot summer (Cfa); warm temperate, fully humid with warm summer (Cfb); warm temperate, dry summer with hot summer (Csa); warm temperate, dry summer with warm summer (Csb); warm temperate, dry winter with hot summer (Cwa); and warm temperate, dry winter with warm summer (Cwb).</p> "> Figure 2
<p>Sum of the Drought Number (Sum DN, from (<b>a</b>–<b>d</b>)), Sum of the Drought Duration (Sum DD, panels (<b>e</b>–<b>h</b>)), Drought Severity (Sum DS, panels (<b>i</b>–<b>l</b>)) and Drought Intensity (Sum DI, panels (<b>m</b>–<b>p</b>)), and assessed based on the SPI for the 3-, 6-, 9- and 12-month timescales (from left to right), during the 1971–2020 period.</p> "> Figure 3
<p>Sum of the Drought Number (Sum DN) assessed with the SPI, at the 3-, 6-, 9- and 12-month timescales (panels left to right), during the 1971–2020 period for each Drought Class (DC), namely, abnormally dry (DC 1, panels (<b>a</b>–<b>d</b>)), mild drought (DC 2, panels (<b>e</b>–<b>h</b>)), moderate drought (DC 3, panels (<b>i</b>–<b>l</b>)), severe drought (DC 4, panels (<b>m</b>–<b>p</b>)) and extreme drought (DC 5, panels (<b>q</b>–<b>t</b>)).</p> "> Figure 4
<p>Interannual distribution of the Sum of Drought Months (SDM), Mean Drought Severity (MDS) and Mean Drought Extension (MDE) assessed with the SPI at timescales of 3, 6, 9 and 12 months (panels (<b>a</b>–<b>d</b>)), for the 1971–2020 period.</p> "> Figure 5
<p>Spatial distribution of the annual Sum of Drought Months (SDM) for 2018 (panels (<b>a</b>–<b>d</b>) and 2019 (panels (<b>e</b>–<b>h</b>)) and the Mean Drought Severity (MDS) also for 2018 (panels (<b>i</b>–<b>l</b>)) and 2019 (panels <b>m</b>–<b>p</b>)), computed with the SPI at timescales of 3, 6, 9 and 12 months (from left to right).</p> "> Figure 6
<p>Anomalies of the NDVI (panels (<b>a</b>–<b>d</b>)), the EVI (panels (<b>e</b>–<b>h</b>)) and the VCI (panels (<b>i</b>–<b>l</b>)) in Southern Africa during the rainy season, from the December 2018 to February 2019 period.</p> "> Figure 7
<p>Drought severity (DS) for November (panels (<b>a</b>–<b>d</b>)) and December (panels (<b>e</b>–<b>h</b>)) 2018, January (panels (<b>i</b>–<b>l</b>)) and February (panels (<b>m</b>–<b>p</b>)) 2019, computed with the SPI, for the timescales of 3, 6, 9 and 12 months (from left to right).</p> "> Figure 8
<p>The difference between the annual MDE evaluated with the SPEI (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>M</mi> <mi>D</mi> <mi>E</mi> </mrow> <mrow> <mi>S</mi> <mi>P</mi> <mi>E</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>) and the SPI (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>M</mi> <mi>D</mi> <mi>E</mi> </mrow> <mrow> <mi>S</mi> <mi>P</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>) at timescales of 3, 6, 9 and 12 months, in SA for the 1971–2020 period.</p> "> Figure 9
<p>Work and results flow diagram of this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- Total monthly averages of total precipitation (TP);
- Total monthly averages of 10 m wind speed (W10m);
- Total monthly averages of potential evaporation (PEV);
- Land–sea mask;
- Geopotential to computed Geopotential height (Z);
- Daily hourly data of 2 m maximum temperature (TMAX2m);
- Daily hourly data of 2 m minimum temperature (TMIN2m);
- Total cloud cover (CC).
2.3. Methods
2.3.1. Meteorological Drought Indices
2.3.2. Drought Occurrence and Characteristics
- The Drought Number () is defined as the number of droughts in a given location;
- The Drought Duration () is defined as , where is the end month of the drought (the month in which the index returns to be positive), and is the start month of the drought (the first month of the drought in which the index is negative);
- The Drought Severity () is the Sum of the drought index (e.g., SPI) during the drought, ;
- The Drought Intensity (DI) is the average over its duration, . We also calculated the Sum and average of these descriptors, for the entire study period, for each month of the year and each year of the study period.
2.3.3. Vegetation Index
2.3.4. Other Methods of Applied Statistical Climatology
3. Results
3.1. The Drought Regime in SA
3.1.1. The Spatial Distribution of Drought Descriptors
3.1.2. The Spatial Distribution of Drought Descriptors by Drought Class
3.1.3. Temporal Distribution of Drought Descriptors: The Intra-Annual Distribution
3.1.4. Temporal Distribution of Drought Descriptors: The Interannual Distribution
3.2. Vegetation Conditions During Drought Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAL | Water balance |
CC | Total cloud cover |
DC | Drought Class |
DD | Drought Duration |
DI | Drought Intensity |
DN | Drought Number |
DS | Drought Severity |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EVI | Enhanced Vegetation Index |
IQR | Interquartile range |
MDE | Mean Drought Extent |
MDS | Mean Drought Severity |
MK | Mann–Kendall |
NDVI | Normalised Difference Vegetation Index |
NIR | Near-infrared |
PET | Potential evapotranspiration |
PEV | Potential evaporation |
Q | Question |
SA | Southern Africa |
SDE | Sum Drought Extent |
SDM | Sum of Drought Months |
SPEI | Standardised Precipitation Evapotranspiration Index |
SPI | Standardised Precipitation Index |
TMAX2m | Maximum air temperature at 2 m |
TMIN2m | Minimum air temperature at 2 m |
TP | Total precipitation |
VCI | Vegetation Condition Index |
W10m | Wind speed and directions at 10 m |
W2m | Wind speed and directions at 10 m |
Z | Altitude (Geopotential height) |
References
- WMO; GWP. Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools Guidelines Series 2; WMO: Geneva, Switzerland, 2016; Volume 1, pp. 1068–1069. ISBN 9789263111739. [Google Scholar]
- Schwarz, M.; Landmann, T.; Cornish, N.; Wetzel, K.F.; Siebert, S.; Franke, J. A Spatially Transferable Drought Hazard and Drought Risk Modeling Approach Based on Remote Sensing Data. Remote Sens. 2020, 12, 237. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal Dynamics of Global Drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Drought A Glob. Assess. 2000, I, 3–18. [Google Scholar] [CrossRef]
- Sivakumar Mannava, V.K.; Motha, R.P.; Wilhite, D.A.; Wood, D.A. Agricultural Drought Indices. In Proceedings of the WMO/UNISDR Expert Group Meeting on Agricultural Drought Indices, Murcia, Spain, 2–4 June 2010; World Meteorological Organization: Geneva, Switzerland, 2011. AGM-11, WMO/TD No. 1572; WAOB-2011. 197p. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- WMO. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); Weather Climate Water; WMO: Geneva, Switzerland, 2021; ISBN 9789263112675. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Drought in Portugal: Current Regime, Comparison of Indices and Impacts on Extreme Wild Fi Res. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef]
- Oikonomou, P.D.; Karavitis, C.A.; Tsesmelis, D.E.; Kolokytha, E.; Maia, R. Drought Characteristics Assessment in Europe over the Past 50 Years. Water Resour. Manag. 2020, 34, 4757–4772. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H. Assessing Drought Conditions through Temporal Pattern, Spatial Characteristic and Operational Accuracy Indicated by SPI and SPEI: Case Analysis for Peninsular Malaysia. Nat. Hazards 2020, 103, 2071–2101. [Google Scholar] [CrossRef]
- Chen, Q.; Timmermans, J.; Wen, W.; van Bodegom, P.M. A Multi-Metric Assessment of Drought Vulnerability across Different Vegetation Types Using High Resolution Remote Sensing. Sci. Total Environ. 2022, 832, 154970. [Google Scholar] [CrossRef]
- Oksal, N.G.S. Comparative Analysis of the Influence of Temperature and Precipitation on Drought Assessment in the Marmara Region of Turkey: An Examination of SPI and SPEI Indices. J. Water Clim. Chang. 2023, 14, 3096–3111. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The Role of Climate Change and Its Sensitivity on Long-Term Standardized Precipitation Evapotranspiration Index, Vegetation and Drought Changing Trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Abiodun, B.J.; Makhanya, N.; Abatan, A.; Oguntunde, P.G. Future Projection of Droughts over Major River Basins in Southern Africa at Specific Global Warming Levels. Theor. Appl. Climatol. 2019, 137, 1785–1799. [Google Scholar] [CrossRef]
- Ujeneza, E.L.; Abiodun, B.J. Drought Regimes in Southern Africa and How Well GCMs Simulate Them. Clim. Dyn. 2015, 44, 1595–1609. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, H. Changes in Drought Characteristics over China during 1961–2019. Front. Earth Sci. 2023, 11, 1138795. [Google Scholar] [CrossRef]
- Hoffmann, D.; Gallant, A.J.E.; Arblaster, J.M. Uncertainties in Drought From Index and Data Selection. J. Geophys. Res. Atmos. 2020, 125, e2019JD031946. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate Trends and Behaviour of Drought Indices Based on Precipitation and Evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Chivangulula, F.M.; Amraoui, M.; Pereira, M.G. The Drought Regime in Southern Africa: A Systematic Review. Climate 2023, 11, 147. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Kamble, D.B.; Gautam, S.; Bisht, H.; Rawat, S.; Kundu, A. Drought Assessment for Kharif Rice Using Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI). J. Agrometeorol. 2019, 21, 182–187. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D.; NASA Eearth Observatory. Vegetation Measurement (NDVI & EVI). Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_4.php (accessed on 29 March 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Mupangwa, W.; Chipindu, L.; Ncube, B.; Mkuhlani, S.; Nhantumbo, N.; Masvaya, E.; Ngwira, A.; Moeletsi, M.; Nyagumbo, I.; Liben, F. Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa. Climate 2023, 11, 84. [Google Scholar] [CrossRef]
- Geppert, M.; Hartmann, K.; Kirchner, I.; Pfahl, S.; Struck, U.; Riedel, F. Precipitation Over Southern Africa: Moisture Sources and Isotopic Composition. J. Geophys. Res. Atmos. 2022, 127, e2022JD037005. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 15 May 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (accessed on 20 May 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Martin, S. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998. [Google Scholar]
- Didan, K. University of Arizona, Alfredo Huete - University of Technology Sydney and MODAPS SIPS—NASA. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid. NASA LP DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 9 June 2024).
- Dai, A.; National Center for Atmospheric Research Staff (Eds.) Last Modified 2023-08-19 “The Climate Data Guide: Palmer Drought Severity Index (PDSI)”. 2023. Available online: https://Climatedataguide.Ucar.Edu/Climate-Data/Palmer-Drought-Severity-Index-Pdsi (accessed on 2 December 2024).
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale Differences Between SC-PDSI and SPEI for Drought Monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Keyantash, J. National Center for Atmospheric Research Staff NCAR. Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi (accessed on 29 February 2024).
- Farahmand, A.; AghaKouchak, A. A Generalized Framework for Deriving Nonparametric Standardized Drought Indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global Integrated Drought Monitoring and Prediction System. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A Multi-Scale Daily SPEI Dataset for Drought Characterization at Observation Stations over Mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Uml, M.J.; Kim, Y.; Park, D.; Kim, J. Effects of Different Reference Periods on Drought Index (SPEI) Estimations from 1901 to 2014. Hydrol. Earth Syst. Sci. 2017, 21, 4989–5007. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Faisal, M.; Almanjahie, I.M.; Ahmad, I.; Khan, D.M.; Grzegorczyk, M.; Qamar, S. A Probabilistic Weighted Joint Aggregative Drought Index (PWJADI) Criterion for Drought Monitoring Systems. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1588584. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future Changes in Drought Characteristics: Regional Analysis for South Korea under CMIP5 Projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Vicente-Serrano; Sergio, M.; National Center for Atmospheric Research Staff (Eds.) Vicente Serrano e NCAR. Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (accessed on 29 February 2024).
- Gad, H.; El-Gayar, S.M. Climate Parameters Used to Evaluate the Evapotranspiration in Delta Central Zone of Egypt. In Proceedings of the Fourteenth International Water Technology Conference, Cairo, Egypt, 21–23 March 2010. [Google Scholar]
- Xu, C.; Wang, W.; Hu, Y.; Liu, Y. Evaluation of ERA5, ERA5-Land, GLDAS-2.1, and GLEAM Potential Evapotranspiration Data over Mainland China. J. Hydrol. Reg. Stud. 2024, 51, 101651. [Google Scholar] [CrossRef]
- Lee, S.; Moriasi, D.N.; Danandeh Mehr, A.; Mirchi, A. Sensitivity of Standardized Precipitation and Evapotranspiration Index (SPEI) to the Choice of SPEI Probability Distribution and Evapotranspiration Method. J. Hydrol. Reg. Stud. 2024, 53, 101761. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Sorman, A.U.; Kahya, E.; Hesami Afshar, M. Climate Change Impacts on Meteorological Drought Using SPI and SPEI: Case Study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- Singh, O.; Saini, D.; Bhardwaj, P. Characterization of Meteorological Drought over a Dryland Ecosystem in North Western India. Nat. Hazards 2021, 109, 785–826. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Heath, J.T.; Chafer, C.J.; Bishop, T.F.A.; van Ogtrop, F.F. Post-Fire Recovery of Eucalypt-Dominated Vegetation Communities in the Sydney Basin, Australia. Fire Ecol. 2016, 12, 53–79. [Google Scholar] [CrossRef]
- Yamamoto, H.; Miura, T.; Tsuchida, S. Advanced Spaceborne Thermal Emission and Reflection Radometer (ASTER) Enhanced Vegetation Index (EVI) Products from Global Earth Observation (GEO) Grid: An Assessment Using Moderate Resolution Imaging Spectroradiometer (MODIS) for Synergistic Applications. Remote Sens. 2012, 4, 2277–2293. [Google Scholar] [CrossRef]
- Moreira, A.A.; Guasselli, L.A.; Silva Filho, L.C.P.; Andrade, A.C.F.; Arruda, D.C. de Índice de Condição Da Vegetação (VCI) Para Mapeamento de Seca No Norte Do Estado de Minas Gerais. In Anais XVII Simpósio Brasileiro de Sensoriamento Remoto–SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015; INPE: São José dos Campos, Brazil, 2015; pp. 1686–1692. [Google Scholar]
- Kogan, F.N. Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Marsick, A.; André, H.; Khelf, I.; Leclère, Q.; Antoni, J. Benefits of Mann–Kendall Trend Analysis for Vibration-Based Condition Monitoring. Mech. Syst. Signal Process. 2024, 216, 111486. [Google Scholar] [CrossRef]
- Vannest, K.J.; Parker, R.I.; Davis, J.L.; Soares, D.A.; Smith, S.L. The Theil-Sen Slope for High-Stakes Decisions from Progress Monitoring. Behav. Disord. 2012, 37, 271–280. [Google Scholar] [CrossRef]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic Patterns Associated with Large Summer Forest Fires in Portugal. Agric. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Pereira, M.G.; Gonçalves, N.; Amraoui, M. The Influence of Wildfire Climate on Wildfire Incidence: The Case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Amraoui, M.; Pereira, M.G.; DaCamara, C.C.; Calado, T.J. Atmospheric Conditions Associated with Extreme Fire Activity in the Western Mediterranean Region. Sci. Total Environ. 2015, 524–525, 32–39. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Tonini, M. Space-Time Clustering Analysis of Wildfires: The Influence of Dataset Characteristics, Fire Prevention Policy Decisions, Weather and Climate. Sci. Total Environ. 2016, 559, 151–165. [Google Scholar] [CrossRef]
- Pereira, C.A.; Martins, J.P.M.; Fink, A.H.; Ramos, A.M.; Pinto, J.G. Drivers of Seasonal Rainfall Variability over the Angolan and Namibian Plateaus; AME Asociación Meteorológica Españila, Ed.; XXXVI Jornadas Científicas de la Asociación Meteorológica Española y el XXII Encuentro Hispano–Luso de Meteorolo-gía-COMPENDIO DE RESÚMENES: Cádiz y San Fernando, Spain, 2024; pp. 52–53. [Google Scholar]
- Jury, M.R. Climate Trends in Southern Africa. S. Afr. J. Sci. 2013, 109, 1–11. [Google Scholar] [CrossRef]
- Lawal, S.; Hewitson, B.; Egbebiyi, T.S.; Adesuyi, A. On the Suitability of Using Vegetation Indices to Monitor the Response of Africa’s Terrestrial Ecoregions to Drought. Sci. Total Environ. 2021, 792, 148282. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Modi, A.T. Preparedness or Repeated Short-Term Relief Aid? Building Drought Resilience through Early Warning in Southern Africa. Water SA 2019, 45, 75–85. [Google Scholar] [CrossRef]
- Mateus, N.P.A.; Marengo, J.A.; Cunha, A.P.M.A.; Diogo, A.M.; António, J.F. Spatial–Temporal Characterization of Droughts in Angola. Int. J. Climatol. 2024, 44, 370–392. [Google Scholar] [CrossRef]
- Limones, N.; Marzo-artigas, J.; Wijnen, M. Evaluating Drought Risk in Data-Scarce Contexts. The Case of Southern Angola. J. Water Clim. Chang. 2020, 11, 44–67. [Google Scholar] [CrossRef]
- Kamara, J.K.; Sahle, B.W.; Agho, K.E.; Renzaho, A.M.N. Governments’ Policy Response to Drought in Eswatini and Lesotho: A Systematic Review of the Characteristics, Comprehensiveness, and Quality of Existing Policies to Improve Community Resilience to Drought Hazards. Discret. Dyn. Nat. Soc. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Moreira, E.E.; Martins, D.S.; Pereira, L.S. Assessing Drought Cycles in SPI Time Series Using a Fourier Analysis. Nat. Hazards Earth Syst. Sci. 2015, 15, 571–585. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of Agricultural Drought in Rajasthan (India) Using Remote Sensing Derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Van Tuan, N.; Van Hieu, N.; Bang, N.K.; Hai, P.H.; Van, N.K.; Ha, L.V.; Hoa, T.T.; Hiếu, L.T. Spatio-Temporal Analysis of Drought in the North-Eastern Coastal Region of Vietnam Using the Standardized Precipitation Index (SPI). Atmos. Clim. Sci. 2023, 13, 175–200. [Google Scholar] [CrossRef]
- Nooni, I.K.; Hagan, D.F.T.; Ullah, W.; Lu, J.; Li, S.; Prempeh, N.A.; Gnitou, G.T.; Sian, K.T.C.L.K. Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture 2022, 12, 495. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and Spatial Extent of Droughts in Southern Africa. Geophys. Res. Lett. 2005, 32, 2–5. [Google Scholar] [CrossRef]
- Tyson, P.D.; Cooper, G.R.J.; McCarthy, T.S. Millennial to Multi-Decadal Variability in the Climate of Southern Africa. Int. J. Climatol. 2002, 22, 1105–1117. [Google Scholar] [CrossRef]
- Wilhite, D.; Sivakumar, M.; Wood, D.; Ambeje, P.G. Early Warning Systems for Drought Preparedness and Drought Management. In Proceedings of the An Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; World Meteorological Organization: Lisbon, Portugal, 2000. ISBN 2013206534. [Google Scholar]
- Zeidler, J.; Chunga, R. Drought Hazard and Land Management in the Drylands of Southern Africa. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Tanzania Meteorological Agency (TMA) United NationsConventiontoCombatDesertification (UNCCD) World Meteorological Organization (WMO): Geneva, Switzerland, 2007; p. 309. ISBN 9783540724377. [Google Scholar]
- Lyon, B. Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior. J. Clim. 2009, 22, 6033–6046. [Google Scholar] [CrossRef]
- Toreti, A.; Bavera, D.; Acosta Navarro, J.; Acquafresca, L.; Asega, C.; Barbosa, P.; Collivignarelli, F.; Combere, W.S.; De Jager, A.; Fioravanti, G.; et al. Drought in Southern Africa. Joint Res. Cent. (JRC) 2024. [Google Scholar] [CrossRef]
- Mtilatila, L.; Bronstert, A.; Bürger, G.; Vormoor, K. Meteorological and Hydrological Drought Assessment in Lake Malawi and Shire River Basins (1970–2013). Hydrol. Sci. J. 2020, 65, 2750–2764. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Anderson, M.C.; Verdin, J.P. Innovative Monitoring Approaches. In Remote Sensing of Drought; Wilhete Donald, A., Ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012; p. 422. ISBN 9781439835609. [Google Scholar]
- Fraga, H.; Amraoui, M.; Malheiro, A.C.; Moutinho-Pereira, J.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Examining the Relationship between the Enhanced Vegetation Index and Grapevine Phenology. Eur. J. Remote Sens. 2014, 47, 753–771. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Russo, A.C.; Bojariu, R.; Vicente-Serrano, S.M.; Trigo, R.M. Drought Impacts on Vegetation in Southeastern Europe. Remote Sens. 2020, 12, 2156. [Google Scholar] [CrossRef]
- Lawal, S.; Lennard, C.; Jack, C.; Wolski, P.; Hewitson, B. The Observed and Model-Simulated Response of Southern African Vegetation to Drought. Agric. Meteorol. 2019, 279, 107698. [Google Scholar] [CrossRef]
- Verhoeve, S.L.; Keijzer, T.; Kaitila, R.; Wickama, J.; Sterk, G. Vegetation Resilience under Increasing Drought Conditions in Northern Tanzania. Remote Sens. 2021, 13, 4592. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. A Comprehensive Assessment of Remote Sensing and Traditional Based Drought Monitoring Indices at Global and Regional Scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Nieves, A.; Contreras, J.; Pacheco, J.; Urgilés, J.; García, F.; Avilés, A. Assessment of Drought Time-Frequency Relationships with Local Atmospheric-Land Conditions and Large-Scale Climatic Factors in a Tropical Andean Basin. Remote Sens. Appl. 2022, 26, 100760. [Google Scholar] [CrossRef]
- Zhou, K.; Li, J.; Zhang, T.; Kang, A. The Use of Combined Soil Moisture Data to Characterize Agricultural Drought Conditions and the Relationship among Different Drought Types in China. Agric. Water Manag. 2021, 243, 106479. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation Response to Precipitation Anomalies under Different Climatic and Biogeographical Conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed]
Drought Class | SPI Values | SPEI Values |
---|---|---|
Abnormally dry conditions | ||
Mild drought | ||
Moderate drought | ||
Severe drought | ||
Extreme drought |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivangulula, F.M.; Amraoui, M.; Pereira, M.G. The Drought Regime in Southern Africa: Long-Term Space-Time Distribution of Main Drought Descriptors. Climate 2024, 12, 221. https://doi.org/10.3390/cli12120221
Chivangulula FM, Amraoui M, Pereira MG. The Drought Regime in Southern Africa: Long-Term Space-Time Distribution of Main Drought Descriptors. Climate. 2024; 12(12):221. https://doi.org/10.3390/cli12120221
Chicago/Turabian StyleChivangulula, Fernando Maliti, Malik Amraoui, and Mário Gonzalez Pereira. 2024. "The Drought Regime in Southern Africa: Long-Term Space-Time Distribution of Main Drought Descriptors" Climate 12, no. 12: 221. https://doi.org/10.3390/cli12120221
APA StyleChivangulula, F. M., Amraoui, M., & Pereira, M. G. (2024). The Drought Regime in Southern Africa: Long-Term Space-Time Distribution of Main Drought Descriptors. Climate, 12(12), 221. https://doi.org/10.3390/cli12120221