An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems
<p>The overall architecture of a wired wearable interactive system.</p> "> Figure 2
<p>Communication frame diagrams using different addressing approaches: (<b>a</b>) individual addressing, (<b>b</b>) group addressing.</p> "> Figure 3
<p>The format of a UART data block.</p> "> Figure 4
<p>The proposed protocol’s overhead reduction for the UART multiprocessor communication, with orange lines representing the use of idle blocks and green lines indicating the use of the address bit. Parameters: 1 group, 8 data bits, 0 parity bits, 1 start bit, and 1 stop bit per UART data block.</p> "> Figure 5
<p>Proposed schematic designs for network nodes: (<b>a</b>) sensor node. (<b>b</b>) Gateway.</p> "> Figure 6
<p>Proposed protocol packed structure: (<b>a</b>) preamble and header structure including synchronization word, address (Addr), type, and the low byte S_L and high byte S_H of the sequence number; (<b>b</b>) payload structure for sensor data readout; (<b>c</b>) payload structure for actuator feedback intensity setting (FI) for each node in the group.</p> "> Figure 7
<p>Characteristics of the adapted configuration of the proposed protocol used in the experimental setups: (<b>a</b>) overhead reduction ratio, (<b>b</b>) maximum achievable goodput (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>32</mn> </mrow> </semantics></math>).</p> "> Figure 8
<p>Interactive sensor jacket prototype: (<b>a</b>) node numbering and layout (components that are not visible from the beginning are shown with dashed lines); (<b>b</b>) gateway components: 1—USB connector, 2—battery charging and power management, 3—ESP32-WROOM-32E wireless module, 4—sensor/actuator network connector; (<b>c</b>) sensor/actuator node attachment point; (<b>d</b>) sensor/actuator node components: 5—connector for VCC, GND, Tx/Rx, 6—electrical field sensor circuit, 7—linear voltage regulator, 8—STM32C031G6U6 microcontroller unit, 9—BNO055 inertial measurement unit, 10—cylindrical vibration motor.</p> "> Figure 9
<p>The logical flowchart of the sensor firmware to provide group sensor data readout and feedback intensity settings.</p> "> Figure 10
<p>Oscilloscope signals used to measure the total delay of the experimental setup.</p> "> Figure 11
<p>Experimental setup for testing the proposed wired communication system: overview of the main components.</p> ">
Abstract
:1. Introduction
2. Literature Review
Wearable System | Type | Sensors | BSN Architecture * | Feedback | Sensor Latency | Claimed Update/ Sampling Rates, Hz |
---|---|---|---|---|---|---|
Hexoskin Astroskin [2] | Product | BP, IMU, TEMP, SpOx, ECG, BR | Mixed (n/a) | Visual | – | 256 |
Sensor Suit [7] | Prototype | 15 × IMU | Mixed (m-line) | Visual | – | 320 |
Sensor fabric [24] | Prototype | 63 × IMU | Mixed (line) | Visual | – | 166 |
Aqua suit [25] | Prototype | 5 IMU | Mixed (m-bus) | Visual | – | 20 |
iFeel Suit [26] | Prototype | 10 IMU | Mixed (m-bus) | Visual | – | 80 |
AiQS suit [29] | Product | 31 × | Mixed (n/a) | Visual | – | 200 |
Cometa Systems TrackX [30] | Product | 36 × IMU, EMG | Wireless | Visual | – | 400 |
Cometa Systems WaveTrack [31] | Product | IMU, EMG | Wireless | Visual | – | 280 |
E-TeCS [32] | Prototype | 34 × TEMP, IMU | Mixed (m-bus) | Visual | – | - |
Nandi X Yoga pants [33] | Product | IMU | Mixed (n/a) | Visual, Audio | – | - |
Nansense [34] | Product | 50 × IMU | Mixed (n/a) | Visual | 30 ms | 240 |
Noraxon ultium motion [35] | Product | 16 × IMU | Wireless | Visual | – | 400 |
OWO Game Haptic Suit [36] | Product | – | Mixed (n/a) | Haptic | – | - |
Perception Neuron 3 [37] | Product | 17 × IMU | Wireless | Visual | – | 60 |
Perception Neuron Studio [38] | Product | 17 × IMU | Wireless | Visual | – | 240 |
Rokoko Smart Suit Pro II [39] | Product | 19 × IMU | Mixed (m-line/bus) | Visual | 15 ms | 200 |
Shadow Motion [40] | Product | 17 × IMU | Mixed (m-line/bus) | Visual | 20 ms | 400 |
STT Systems iSen [41] | Product | 16 × IMU | Wireless | Visual | – | 400 |
Teslasuit [42] | Product | 14 × IMU, PPG | Mixed (n/a) | Vibration, EMS, TENS, FES, visual | – | 100 |
Wireless motion capture [43] | Prototype | 10 × IMU | Wireless | Visual | – | 59 |
Xsens Awinda [44] | Product | 20 × IMU | Wireless | Visual | 30 ms | 60 |
Xsens Link [45] | Product | 17 × IMU | Mixed (m-line/bus) | Visual | 20 ms | 240 |
3. The Proposed Approach
3.1. Overall Architecture
3.2. Proposed Protocol
- Sensor Data Latency is measured from the moment data are sampled until they are available for processing. Referring to the frame diagram in Figure 2b, a convenient choice for synchronizing sensor sampling is immediately after the group addressing block (AG). In this configuration, the sensor data latency for a particular sensor depends on the baud rate S and the amount of data sent by the sensors preceding it. Consequently, the highest sensor data latency occurs for the last sensor.
- Action Latency is measured from the moment feedback data become available until they are received by the feedback node. In scenarios where feedback data are transmitted to the entire group of nodes, the action latency for a particular node depends on the baud rate S, the length of the addressing block, and the amount of broadcast data for the preceding sensors. Consequently, the highest action latency occurs for the last sensor.
3.3. Node Architectures
4. Experimental Setups and Results
4.1. The Adaption of the Proposed Protocol
4.2. Interactive Jacket
4.3. Long Cable Test
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STD | Standard deviation |
BSN | Body sensor network |
MCU | Microcontroller unit |
I2C | Inter-integrated circuit protocol |
UART | Universal asynchronous receiver–transmitter |
SPI | Serial Peripheral Interface |
IMU | Inertial measurement unit |
EMG | Electromyography |
PPG | Photoplethysmogram |
TEMP | Temperature |
BP | Blood pressure |
OX | Pulse oximetry |
ECG | Electrocardiogram |
BR | Breathing rate |
EMS | Electrical muscle stimulation |
TENS | Transcutaneous electrical nerve stimulation |
FES | Functional electrical stimulation |
References
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Astroskin—The Most Advanced Ambulatory Vital Signs Monitoring Platform for Medical Research in the World. Available online: https://hexoskin.com/pages/astroskin-vital-signs-monitoring-platform-for-advanced-research (accessed on 7 November 2024).
- Dheman, K.; Giordano, M.; Thomas, C.; Schilk, P.; Magno, M. I-CardiAx: Wearable IoT-Driven System for Early Sepsis Detection Through Long-Term Vital Sign Monitoring. In Proceedings of the 2024 IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation (IoTDI), Hong Kong, China, 13–16 May 2024; pp. 97–109. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, Y.; Yan, H.; Wang, Y.; Dong, M.; Ota, K.; Ren, F.; Ji, Y. Wital: A COTS WiFi Devices Based Vital Signs Monitoring System Using NLOS Sensing Model. IEEE Trans. Hum.-Mach. Syst. 2023, 53, 629–641. [Google Scholar] [CrossRef]
- Sethuraman, S.C.; Kompally, P.; Mohanty, S.P.; Choppali, U. MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring. IEEE Trans. Consum. Electron. 2021, 67, 214–222. [Google Scholar] [CrossRef]
- Neseem, M.; Nelson, J.; Reda, S. AdaSense: Adaptive Low-Power Sensing and Activity Recognition for Wearable Devices. arXiv 2020, arXiv:2006.05884. [Google Scholar]
- Ancans, A.; Greitans, M.; Cacurs, R.; Banga, B.; Rozentals, A. Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare. Sensors 2021, 21, 2068. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wang, F.; Fan, A.; Zhao, W.; Yao, W.; Yang, P. Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation. Sensors 2023, 23, 4229. [Google Scholar] [CrossRef] [PubMed]
- Linnamo, V. Sensor Technology for Sports Monitoring. Sensors 2023, 23, 572. [Google Scholar] [CrossRef] [PubMed]
- Arlotti, J.S.; Carroll, W.O.; Afifi, Y.; Talegaonkar, P.; Albuquerque, L.; Burch, R.F.; Ball, J.E.; Chander, H.; Petway, A. Benefits of IMU-based Wearables in Sports Medicine: Narrative Review. Int. J. Kinesiol. Sports Sci. 2022, 10, 36–43. [Google Scholar] [CrossRef]
- Seckin, A.C.; Ates, B.; Seckin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Morais, J.E.; Oliveira, J.P.; Sampaio, T.; Barbosa, T.M. Wearables in Swimming for Real-Time Feedback: A Systematic Review. Sensors 2022, 22, 3677. [Google Scholar] [CrossRef]
- Islam, M.S.; Lim, S. Vibrotactile feedback in virtual motor learning: A systematic review. Appl. Ergon. 2022, 101, 103694. [Google Scholar] [CrossRef]
- Caserman, P.; Garcia-Agundez, A.; Gobel, S. A Survey of Full-Body Motion Reconstruction in Immersive Virtual Reality Applications. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3089–3108. [Google Scholar] [CrossRef] [PubMed]
- Hajar, M.S.; Al-Kadri, M.O.; Kalutarage, H.K. A survey on wireless body area networks: Architecture, security challenges and research opportunities. Comput. Secur. 2021, 104, 102211. [Google Scholar] [CrossRef]
- IEEE Std 802.15.6-2012; IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks. IEEE: Piscataway, NJ, USA, 2012. [CrossRef]
- Ancans, A.; Ormanis, J.; Cacurs, R.; Greitans, M.; Saoutieff, E.; Faucorr, A.; Boisseau, S. Bluetooth Low Energy Throughput in Densely Deployed Radio Environment. In Proceedings of the 2019 23rd International Conference Electronics, Palanga, Lithuania, 17–19 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hassan, W.H.W.; Ali, D.M.; Sultan, J.M.; Kassim, M. A review of wireless body area networks. Indones. J. Electr. Eng. Comput. Sci. 2024, 33, 167–178. [Google Scholar] [CrossRef]
- Preethichandra, D.; Piyathilaka, L.; Izhar, U.; Samarasinghe, R.; De Silva, L.C. Wireless Body Area Networks and Their Applications—A Review. IEEE Access 2023, 11, 9202–9220. [Google Scholar] [CrossRef]
- Xiang, H.; Li, Y.; Liao, Q.; Xia, L.; Wu, X.; Zhou, H.; Li, C.; Fan, X. Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing. Energies 2024, 17, 2627. [Google Scholar] [CrossRef]
- Nie, M.; Li, B.; Hsieh, Y.L.; Fu, K.K.; Zhou, J. Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano 2022, 16, 19810–19839. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yu, P.; Li, B.; Xuan, F.; Zhao, J. Direct wire writing technique benefitting the flexible electronics. Virtual Phys. Prototyp. 2023, 19, e2286514. [Google Scholar] [CrossRef]
- Dang, C.; Wang, Z.; Hughes-Riley, T.; Dias, T.; Qian, S.; Wang, Z.; Wang, X.; Liu, M.; Yu, S.; Liu, R.; et al. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem. Soc. Rev. 2024, 53, 8790–8846. [Google Scholar] [CrossRef] [PubMed]
- Hermanis, A.; Cacurs, R.; Greitans, M. Acceleration and Magnetic Sensor Network for Shape Sensing. IEEE Sens. J. 2016, 16, 1271–1280. [Google Scholar] [CrossRef]
- Marta, G.; Pedrocchi, A.; Ferrante, S.; Costa, A.; Bortolotti, D.; Sorti, S.; Vitale, F.; Bocciolone, M.; Braghin, F.; Masiero, S. Wearable Biofeedback Suit to Promote and Monitor Aquatic Exercises: A Feasibility Study. IEEE Trans. Instrum. Meas. 2020, 69, 1219–1231. [Google Scholar] [CrossRef]
- Sortino, D.M.; Rapetti, L.; Valli, E.; Pucci, D. Towards a real-world application of wearable sensors for musculoskeletal disorders prevention: The iFeel Wired Suit. In Proceedings of the 2023 IEEE 19th International Conference on Body Sensor Networks (BSN), Boston, MA, USA, 9–11 October 2023. [Google Scholar] [CrossRef]
- Mourkani, S.S. IMU-Based Suit for Strength Exercises: Design, Calibration and Tracking. Doctoral Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2021. [Google Scholar] [CrossRef]
- Hermanis, A.; Cacurs, R.; Nesenbergs, K.; Greitans, M. Efficient real-time data acquisition of wired sensor network with line topology. In Proceedings of the 2013 IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, 2–4 December 2013; pp. 133–138. [Google Scholar] [CrossRef]
- AiQ.Synertial Products. Available online: https://www.synertial.com/products (accessed on 7 November 2024).
- TrackX Inertial System—The Ultimate Solution for Inertial Motion Tracking. Available online: https://www.cometasystems.com/trackx-inertial-system/ (accessed on 7 November 2024).
- Wave Track Inertial System—Complete, High Performance IMU Sensor Synchronised with EMG. Available online: https://www.cometasystems.com/wavetrack-inertial-system/ (accessed on 7 November 2024).
- Wicaksono, I.; Tucker, C.I.; Sun, T.; Guerrero, C.A.; Liu, C.; Woo, W.M.; Pence, E.J.; Dagdeviren, C. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flex. Electron. 2020, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Nandi X—How It Works. Available online: https://www.wearablex.com/pages/how-it-works (accessed on 7 November 2024).
- Nansense—Suits & Full Body Tracking. Available online: https://nansense.com/suits/ (accessed on 7 November 2024).
- Ultium Motion—Wearable 3D Motion Capture. Available online: https://www.noraxon.com/our-products/ultium-motion/ (accessed on 7 November 2024).
- Owogame Technology—Feel Different Worlds with the OWO Skin. Available online: https://owogame.com/technology/ (accessed on 7 November 2024).
- Perception Neuron 3—A Mocap Suit You Can Take Anywhere. Available online: https://neuronmocap.com/pages/perception-neuron-3 (accessed on 7 November 2024).
- Perception Neuron Studio—Professional and Precise Motion Capture System. Available online: https://neuronmocap.com/pages/perception-neuron-studio-system (accessed on 7 November 2024).
- Rokoko Smartsuit Pro II Full Performance Capture Bundle. Available online: https://www.voosestore.com/en/studio/rokoko-smartsuit-pro-ii?srsltid=AfmBOorlaJcToNzn_KsxFXGY-m6P2NKhe9plsRBnF6q81Rg-pNr2rGg- (accessed on 7 November 2024).
- Shadow Motion—Technical Data. Available online: https://www.motionshadow.com/specs (accessed on 7 November 2024).
- iSen Inertial Motion Capture—The Solution for Motion Capture and Analysis with Inertial Sensors. Available online: https://motio.stt-systems.com/isen-inertial-motion-capture-and-analysis/ (accessed on 7 November 2024).
- Tesla Suit—A Breakthrough in Human Performance Training. Available online: https://teslasuit.io (accessed on 7 November 2024).
- Lee, K.; Tang, W. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis. Sensors 2021, 21, 4051. [Google Scholar] [CrossRef] [PubMed]
- MTw Awinda—Specifications. Available online: https://www.movella.com/products/wearables/xsens-mtw-awinda#specs (accessed on 7 November 2024).
- Xsens Link—Specifications. Available online: https://www.movella.com/products/motion-capture/xsens-mvn-link#specifications (accessed on 7 November 2024).
- Gu, C.; Lin, W.; He, X.; Zhang, L.; Zhang, M. IMU-based motion capture system for rehabilitation applications: A systematic review. Biomim. Intell. Robot. 2023, 3, 100097. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef]
- Franček, P.; Jambrošić, K.; Horvat, M.; Planinec, V. The Performance of Inertial Measurement Unit Sensors on Various Hardware Platforms for Binaural Head-Tracking Applications. Sensors 2023, 23, 872. [Google Scholar] [CrossRef]
No. | Requirements | Rationale |
---|---|---|
1. | Multiple sensor/actuator nodes distributed throughout the body, grouped based on their sampling rate. | Based on the sensors listed in Table 1. BSNs have many similar nodes but are placed on different body parts. |
2. | Flexible wire routing to nodes, allowing for optimized wire usage or redundant connections to enhance reliability. | Approaches reviewed in Section 2 often resulted in overlapping cables to connect all nodes on the body [7,39,45]. |
3. | Centralized power supply and a single wireless gateway to enable communication with external devices without limiting freedom of movement | Common approach for mixed BSN architectures listed in Table 1. |
Node | L, m | , | , | , | , V | , V | , V |
---|---|---|---|---|---|---|---|
G | 0 | 0 | 0 | 0 | 0 | 5.48 | 5.48 |
S0 | 0.62 | 0.85 | 1.49 | 1.45 | 0.31 | 4.84 | 4.53 |
S1 | 0.68 | 0.98 | 1.75 | 1.67 | 0.36 | 4.68 | 4.32 |
S2 | 0.76 | 1.06 | 2.03 | 1.9 | 0.41 | 4.58 | 4.17 |
S3 | 0.91 | 1.28 | 2.42 | 2.44 | 0.45 | 4.51 | 4.06 |
S4 | 1.27 | 1.73 | 3.27 | 3.45 | 0.5 | 4.41 | 3.91 |
S5 | 1.56 | 2.11 | 4 | 4.28 | 0.52 | 4.37 | 3.85 |
S6 | 0.91 | 1.33 | 2.44 | 2.23 | 0.46 | 4.52 | 4.06 |
S7 | 1.27 | 1.74 | 3.23 | 3.15 | 0.51 | 4.42 | 3.91 |
S8 | 1.56 | 2.08 | 3.95 | 3.91 | 0.53 | 4.39 | 3.86 |
Node | , s | , s | , ms | *, ms | STD *, ms |
---|---|---|---|---|---|
S0 | 106.67 | 30 | 0.99 | 2.251 | 0.44 |
S1 | 213.33 | 33.33 | 0.99333 | 2.272 | 0.4503 |
S2 | 320 | 36.67 | 0.99667 | 2.247 | 0.4457 |
S3 | 426.67 | 40 | 1 | 2.254 | 0.4386 |
S4 | 533.33 | 43.33 | 1.00333 | 2.267 | 0.4472 |
S5 | 640 | 46.67 | 1.00667 | 2.263 | 0.4459 |
S6 | 746.67 | 50 | 1.01 | 2.262 | 0.4454 |
S7 | 853.33 | 53.33 | 1.01333 | 2.28 | 0.4432 |
S8 | 960 | 56.67 | 1.01667 | 2.27 | 0.4452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancans, A.; Greitans, M.; Kagis, S. An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems. J. Sens. Actuator Netw. 2025, 14, 4. https://doi.org/10.3390/jsan14010004
Ancans A, Greitans M, Kagis S. An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems. Journal of Sensor and Actuator Networks. 2025; 14(1):4. https://doi.org/10.3390/jsan14010004
Chicago/Turabian StyleAncans, Armands, Modris Greitans, and Sandis Kagis. 2025. "An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems" Journal of Sensor and Actuator Networks 14, no. 1: 4. https://doi.org/10.3390/jsan14010004
APA StyleAncans, A., Greitans, M., & Kagis, S. (2025). An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems. Journal of Sensor and Actuator Networks, 14(1), 4. https://doi.org/10.3390/jsan14010004