Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater
<p>Concentrations of the phytotoxic elements, Na<sup>+</sup>, Cl<sup>−</sup>, and B in the water resources used during the experimental work (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). The dashed line in the figure determines the phytotoxicity threshold suggested for Na<sup>+</sup> [<a href="#B26-plants-13-00781" class="html-bibr">26</a>], Cl<sup>−</sup> [<a href="#B27-plants-13-00781" class="html-bibr">27</a>,<a href="#B28-plants-13-00781" class="html-bibr">28</a>,<a href="#B29-plants-13-00781" class="html-bibr">29</a>], and B [<a href="#B16-plants-13-00781" class="html-bibr">16</a>]. Data were taken between July 2019 and December 2022. Each point represents the average of four samples. * <span class="html-italic">p</span> < 0.05; *** <span class="html-italic">p</span> < 0.001; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 2
<p>Evolution of the concentration of water-soluble Na<sup>+</sup> and Cl<sup>−</sup> and the extractable B in soil samples collected at the 0–0.50 m depth and at 0.30 m from the emitter. The dashed line in the figure determines the phytotoxicity threshold suggested for Na<sup>+</sup> [<a href="#B29-plants-13-00781" class="html-bibr">29</a>], Cl<sup>−</sup> [<a href="#B29-plants-13-00781" class="html-bibr">29</a>], and B [<a href="#B33-plants-13-00781" class="html-bibr">33</a>]. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). Data were recorded between October 2019 and December 2022. Each point represents the average of six samples. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 3
<p>Effect of the irrigation water on the evolution of the concentration of Na<sup>+</sup> in old leaves (2019–2020), spring bud leaves (average of 2020–2022), and roots (May 2021). The dashed line in the figure determines the phytotoxicity threshold suggested for Na<sup>+</sup> [<a href="#B26-plants-13-00781" class="html-bibr">26</a>]. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 4
<p>Effects of the irrigation water on the Na<sup>+</sup>/Ca<sup>2+</sup>, Na<sup>+</sup>/Mg<sup>2+</sup>, and Na<sup>+</sup>/K<sup>+</sup> ratios in old and spring bud leaves, and in roots. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). Data were averaged from samples taken between November 2019 and November 2020 for old leaves, and samples taken between June 2020 and December 2022 for spring bud leaves. Roots were sampled in May 2021. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. In each tissue, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 5
<p>Effect of the irrigation water on the evolution of the concentration of Cl<sup>−</sup> in old leaves (2019–2020), spring bud leaves (average of 2020–2022), and roots (May 2021). The dashed line in the figure determines the phytotoxicity threshold suggested for Cl<sup>−</sup> [<a href="#B38-plants-13-00781" class="html-bibr">38</a>]. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 6
<p>Effect of the irrigation water on the evolution of the concentration of boron in old leaves (2019–2020), spring bud leaves (average of 2020–2022), and roots (May 2021). The dashed line in the figure determines the phytotoxicity threshold suggested for B [<a href="#B26-plants-13-00781" class="html-bibr">26</a>,<a href="#B40-plants-13-00781" class="html-bibr">40</a>]. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 7
<p>Effect of the irrigation water on the evolution of the midday stem water potential (Ψ<sub>stem</sub>), leaf water potential (Ψ<sub>leaf</sub>), osmotic potential (Π), and leaf turgor in spring bud leaves (average of 2020, 2021, and 2022) throughout the experiment. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 8
<p>Effect of the irrigation water on the evolution of the proline, quaternary ammonium compounds (QACs), and total chlorophyll concentration in mature leaves (average of 2020, 2021 for proline and chlorophyll, and 2021 for QACs). Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 9
<p>Effect of the irrigation water on the evolution of net photosynthesis (A), stomatal conductance (g<sub>s</sub>), transpiration rate (E), and intrinsic water use efficiency (A/g<sub>s</sub>) in mature leaves (average of 2020, 2021, and 2022) throughout the experiment. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 10
<p>Effect of the irrigation water on the evolution of the efficiency of the antennas from PSII (F’<sub>v</sub>/F’<sub>m</sub>), photochemical efficiency of PSII (Φ<sub>PSII</sub>), photochemical quenching (qP), and A/Φ<sub>PSII</sub> ratio in spring bud leaves (average of 2020 and 2021) throughout the experiment. Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns: not significant. For each date, different letters indicate significant differences according to Duncan’s multiple range test at the 95% confidence level.</p> "> Figure 11
<p>Effect of the irrigation water on the evolution of the canopy volume of the trees throughout the experiment (from November 2019 to December 2022). Initials represent the four irrigation treatments (FW: fresh water; MW: mixed water; DSW: desalinated seawater; and DSW–B: DSW with reduced boron). ns: not significant at the 95% confidence level.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Irrigation Water Quality
2.2. Evolution of Toxic Elements in the Soil
2.3. The Accumulation and Partitioning of Phytotoxic Elements in the Trees
2.4. Plant Water Status and Physiological Responses
2.5. Plant Growth and Fruit Yield
3. Materials and Methods
3.1. Experimental Plot, Vegetal Material, and Crop Management
3.2. Treatments and Experimental Design
3.3. Water Quality and Soil Analysis
3.4. Plant Mineral Analysis
3.5. Plant Water Relations
3.6. Gas Exchange Parameters and Chlorophyll Fluorescence
3.7. Osmolytes and Chlorophyll Determinations
3.8. Vegetative Growth and Yield Fruit
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Alvarez, V.; Imbernón-Mulero, A.; Gallego-Elvira, B.; Soto-García, M.; Maestre-Valero, J.F. Multidisciplinary assessment of the agricultural supply of desalinated seawater in south-eastern Spain. Desalination 2023, 548, 116252. [Google Scholar] [CrossRef]
- Martinez-Mate, M.A.; Martin-Gorriz, B.; Martínez-Alvarez, V.; Soto-García, M.; Maestre-Valero, J.F. Hydroponic system and desalinated seawater as an alternative farm-productive proposal in water scarcity areas: Energy and greenhouse gas emissions analysis of lettuce production in southeast Spain. J. Clean. Prod. 2018, 172, 1298–1310. [Google Scholar] [CrossRef]
- Maestre-Valero, J.F.; Martínez-Álvarez, V.; Jódar-Conesa, F.J.; Acosta, J.A.; Martin-Gorriz, B.; Robles, J.M.; Pérez-Pérez, J.G.; Navarro, J.M. Short-term response of young mandarin trees to desalinated seawater irrigation. Water 2020, 12, 159. [Google Scholar] [CrossRef]
- Pellicer-Martinez, F.; Martínez-Paz, J.M. Climate change effects on the hydrology of the headwaters of the Tagus River: Implications for the management of the Tagus-Segura transfer. Hydrol. Earth Syst. Sci. 2018, 22, 6473–6491. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Use of Freshwater Resources in Europe. 2022. Available online: www.eea.europa.eu/airs/2018/resource-efficiency-and-low-carbon-economy/freshwater-use (accessed on 19 January 2023).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Informe Anual de Indicadores, Agricultura Pesca y Alimentación. 2021. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/iai2021_version_final_web_tcm30-626537.pdf (accessed on 2 February 2023).
- Martínez-Álvarez, V.; Martin-Gorriz, B.; Soto-García, M. Seawater desalination for crop irrigation—A review of current experiences and revealed key issues. Desalination 2016, 381, 58–70. [Google Scholar] [CrossRef]
- Redondo-Orts, J.A.; López-Ortiz, M.I. The economic impact of drought on the irrigated crops in the Segura River Basin. Water 2020, 12, 2955. [Google Scholar] [CrossRef]
- Martínez-Álvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. The use of desalinated seawater for crop irrigation in the Segura River Basin (south-eastern Spain). Desalination 2017, 422, 153–164. [Google Scholar] [CrossRef]
- Hilal, N.; Kim, G.J.; Somerfield, C. Boron removal from saline water: A comprehensive review. Desalination 2011, 273, 23–35. [Google Scholar] [CrossRef]
- Navarro, L. The Spanish citrus industry. Acta Hortic. 2015, 1065, 41–48. [Google Scholar] [CrossRef]
- Ben Amor, R.; de Miguel Gomez, M.D. Competitiveness of Spanish orange sector in the Mediterranean area. Acta Hortic. 2020, 1292, 23–30. [Google Scholar] [CrossRef]
- Voutchkov, N.; Semiat, R. Seawater desalination. In Advanced Membrane Technology and Applications, 1st ed.; Li, N.N., Fane, A.G., Ho, W.W., Matsuura, T., Eds.; John Wiley &Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 47–86. [Google Scholar]
- Nable, R.O.; Banuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Storey, R.; Walker, R.R. Citrus and salinity. Sci. Hort. 1999, 78, 39–81. [Google Scholar] [CrossRef]
- Maas, E.V. Salinity and citriculture. Tree Physiol. 1993, 12, 195–216. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Jifon, J.; Carvajal, M.; Syvertsen, J.P. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl− accumulation in ‘Sunburst’ mandarin grafted on different rootstock. Plant Sci. 2002, 162, 705–712. [Google Scholar] [CrossRef]
- Garcia-Sanchez, F.; Syvertsen, J.P. Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedling is affected by CO2 enrichment during growth. J. Am. Soc. Hortic. Sci. 2006, 131, 24–31. [Google Scholar] [CrossRef]
- Mesquita, G.L.; Zambrosi, F.C.B.; Tanaka, F.A.O.; Boaretto, R.M.; Quaggio, J.A.; Ribeiro, R.V.; Mattos, D., Jr. Anatomical and physiological responses of citrus trees to varying boron availability are dependent on rootstock. Front. Plant Sci. 2016, 7, 224. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Antolinos, V.; Robles, J.M.; Botía, P. Citrus irrigation with desalinated seawater under a climate change scenario. Front. Plant Sci. 2022, 13, 909083. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Antolinos, V.; Botía, P.; Robles, J.M. Deficit irrigation applied to lemon trees grafted on two rootstocks and irrigated with desalinated seawater. Plants 2023, 12, 2300. [Google Scholar] [CrossRef] [PubMed]
- Vera, A.; Moreno, J.L.; García, C.; Nicolás, E.; Bastida, F. Agro-physiological and soil microbial responses to desalinated seawater irrigation in two crops. Ecotoxicol. Environ. Saf. 2023, 250, 114507. [Google Scholar] [CrossRef] [PubMed]
- Imbernón-Mulero, A.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Martin-Gorriz, B.; Molina-del-Toro, R.; Jodar-Conesa, F.J.; Maestre-Valero, J.F. Boron removal from desalinated seawater for irrigation with an on-farm reverse osmosis system in southeastern Spain. Agronomy 2022, 12, 611. [Google Scholar] [CrossRef]
- Murugaiyan, K.; Sivakumar, K. Seasonal variation in elemental composition of Stoechospermum marginatum (Ag.) Kutz and Sargassum wightii (Greville Mscr.) J.G. Agardh in relation to chemical composition of seawater. Colloids Surf. B 2008, 64, 140–144. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Grattan, S.R.; Diaz, F.J.; Pedrero, F.; Vivaldi, G.A. Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions. Agric. Water Manag. 2015, 157, 48–58. [Google Scholar] [CrossRef]
- Levy, Y.; Syvertsen, J. Irrigation water quality and salinity effects in citrus trees. Hortic. Rev. 2004, 30, 37–82. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; 174p. [Google Scholar]
- Hanson, B.; Grattan, S.; Fulton, A. Agricultural Salinity and Drainage; Water Management Series Publication No. 3375; University of California: Davis, CA, USA, 2006; p. 157. [Google Scholar]
- Dydo, P.; Turek, M.; Milewski, A. Removal of boric acid, monoborate and boron complexes with polyols by reverse osmosis membrane. Desalination 2013, 334, 39–45. [Google Scholar] [CrossRef]
- Martínez-Álvarez, V.; Maestre-Valero, J.F.; González-Ortega, M.J.; Gallego-Elvira, B.; Martin-Gorriz, B. Characterization of the agricultural supply of desalinated seawater in southeastern Spain. Water 2019, 11, 1233. [Google Scholar] [CrossRef]
- Díaz, F.J.; Tejedor, M.; Jiménez, C.; Grattan, S.R.; Dorta, M.; Hernández, J.M. The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain. Agric. Water Manag. 2013, 116, 62–72. [Google Scholar] [CrossRef]
- Allison, L.E.; Brown, J.W.; Hayward, H.E.; Richards, L.A.; Bernstein, L.; Fireman, M.; Pearson, G.A.; Wilcox, L.V.; Bower, C.A.; Hatcher, J.T.; et al. Diagnosis and Improvement of Saline and Alkali Soils; Agriculture Handbook 60; United States Department of Agriculture: Washington, DC, USA, 1954; p. 160.
- de Abreu, C.A.; van Raij, B.; de Abreu, M.F.; González, A.P. Routine soil testing to monitor heavy metals and boron. Sci. Agric. 2005, 62, 564–571. [Google Scholar] [CrossRef]
- Eaton, F.M. Deficiency, toxicity and accumulation of boron in plants. J. Agric. Res. 1944, 69, 237–277. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Törökfalvy, E.; Walker, R.R. Effects of salinity on ionic content, water relations, and gas exchange parameters in some citrus scion-rootstock combinations. Sci. Hort. 1986, 28, 105–116. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Nortes, P.A.; Pedrero, F.; Mounzer, O.; Alarcón, J.J.; Bayona, J.M.; Nicolás, E. Assessment of the viability of using saline reclaimed water in grapefruit in medium to long term. Span. J. Agric. Res. 2014, 12, 1137–1148. [Google Scholar] [CrossRef]
- Maas, E. Crop salt tolerance. In Salinity Assessment and Management; Tanji, K.K., Ed.; American Society of Civil Engineers: New York, NY, USA, 1990. [Google Scholar]
- Embleton, T.W.; Jones, W.W.; Labanauskas, C.K.; Reuther, W. Leaf analysis as a diagnostic tool and guide to fertilization. In The Citrus Industry; Reuther, V., Ed.; University of California Press: Berkeley, CA, USA, 1973; Volume III, pp. 183–210. [Google Scholar]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Alfosea-Simón, M.; Cámara-Zapata, J.M.; Fernández-Zapata, J.C.; García-Sánchez, F. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicol. Environ. Saf. 2019, 173, 322–330. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Boron toxicity in Clementine mandarin plants on two rootstocks. Plant Sci. 2004, 166, 539–547. [Google Scholar] [CrossRef]
- Gimeno, V.; Simon, I.; Nieves, M.; Martinez, V.; Camara-Zapata, J.M.; Garcia, A.L.; García-Sánchez, F. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 2012, 26, 1513–1526. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Ruiz, M.C.; Alarcón, J.J.; Torrecillas, A. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Machado, E.C.; Santos, M.G.; Oliveira, R.F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 2009, 66, 203–211. [Google Scholar] [CrossRef]
- Veste, M.; Ben-Gal, A.; Shani, U. Impact of thermal tress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. Acta Hortic. 2000, 531, 143–149. [Google Scholar] [CrossRef]
- Macho-Rivero, M.A.; Herrera-Rodríguez, M.B.; Brejcha, R.; Schäffner, A.R.; Tanaka, N.; Fujiwara, T.; González-Fontes, A.; Camacho-Cristóbal, J.J. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 2018, 59, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-H.; Cai, Z.-J.; Wen, S.-X.; Guo, P.; Ye, X.; Lin, G.-Z.; Chen, L.-S. Effects of boron toxicity on root and leaf anatomy in two Citrus species differing in boron tolerance. Trees 2014, 28, 1653–1666. [Google Scholar] [CrossRef]
- Cakmak, I.; Römheld, V. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil. 1997, 193, 71–83. [Google Scholar] [CrossRef]
- Rhoades, J.D. Soluble salts. In Methods of Soil Analysis Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Kenney, D.R., Eds.; Agronomy Monograph; Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 167–178. [Google Scholar]
- McCutchan, H.; Shackel, K.A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Turner, N.C. Measurements of plant water status by pressure chamber technique. Irrig. Sci. 1988, 9, 289–308. [Google Scholar] [CrossRef]
- Sinclair, T.T.; Allen, L.H. Carbon dioxide and water vapour exchange of leaves on field-grown citrus trees. J. Exp. Bot. 1982, 33, 1166–1175. Available online: https://www.jstor.org/stable/23690488 (accessed on 15 January 2023).
- Bates, L.; Waldren, R.; Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Grieve, C.; Grattan, S. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficient of chlorophyll a and b in N,N-Dimethylformamide and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef]
- Turrell, F.M. Growth and photosynthesis area of citrus. Bot. Gaz. 1961, 122, 284–298. [Google Scholar] [CrossRef]
Water Source | EC | Ca2+ | Mg2+ | K+ | NO3− | PO43− | SO42− |
---|---|---|---|---|---|---|---|
FW | 1.23 d | 71.4 d | 42.7 d | 5.88 b | 4.92 b | 0.88 bc | 209.2 c |
MW | 1.00 c | 45.8 c | 20.4 c | 6.22 b | 2.57 c | 1.15 c | 90.6 b |
DSW | 0.89 b | 24.5 b | 5.3 b | 6.89 b | 1.31 d | 0.36 ab | 7.4 a |
DSW–B | 0.17 a | 2.7 a | 1.0 a | 0.41 a | 0.78 a | 0.16 a | 1.3 a |
ANOVA | *** | *** | *** | *** | *** | ** | *** |
[Na+]water | [Na+]soil | [Na+]leaf | [Cl−]water | [Cl−]soil | [Cl−]leaf | [B]water | [B]soil | [B]leaf | |
---|---|---|---|---|---|---|---|---|---|
[Na+]water | - | 0.525 *** | 0.180 | 0.982 *** | 0.547 *** | 0.187 | 0.661 *** | 0.365 * | 0.129 |
[Na+]soil | 0.525 *** | - | 0.107 | 0.517 ** | 0.725 *** | 0.021 | 0.720 *** | 0.812 ** | 0.521 ** |
[Na+]leaf | 0.180 | 0.107 | - | 0.234 | 0.0756 | 0.203 | 0.236 | 0.245 | 0.529 *** |
[Cl−]water | 0.982 *** | 0.517 ** | 0.234 | - | 0.526 *** | 0.204 | 0.691 *** | 0.380 * | 0.113 |
[Cl−]soil | 0.547 *** | 0.725 *** | 0.076 | 0.526 *** | - | −0.244 | 0.425 ** | 0.588 *** | 0.439 ** |
[Cl−]leaf | 0.187 | 0.021 | 0.203 | 0.204 | −0.244 | - | 0.293 | 0.024 | 0.135 |
[B]water | 0.661 *** | 0.720 *** | 0.236 | 0.691 *** | 0.420 ** | 0.293 | - | 0.725 *** | 0.302 |
[B]soil | 0.365 * | 0.812 ** | 0.245 | 0.380 * | 0.588 *** | 0.024 | 0.725 *** | - | 0.570 *** |
[B]leaf | 0.129 | 0.521 ** | 0.529 *** | 0.113 | 0.439 ** | 0.135 | 0.302 | 0.570 *** | - |
Water Source | Yield (kg tree−1) | Fruit Number | Fruit Weight (g) |
---|---|---|---|
FW | 85.1 ± 4.2 | 229.5 ± 16.1 | 380.5 ± 13.7 |
MW | 81.0 ± 6.2 | 222.0 ± 15.4 | 367.6 ± 5.9 |
DSW | 91.5 ± 4.7 | 246.5 ± 16.7 | 382.8 ± 22.8 |
DSW–B | 90.4 ± 6.6 | 248.4 ± 18.4 | 368.8 ± 22.8 |
ANOVA | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, J.M.; Imbernón-Mulero, A.; Robles, J.M.; Hernández-Ballester, F.M.; Antolinos, V.; Gallego-Elvira, B.; Maestre-Valero, J.F. Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater. Plants 2024, 13, 781. https://doi.org/10.3390/plants13060781
Navarro JM, Imbernón-Mulero A, Robles JM, Hernández-Ballester FM, Antolinos V, Gallego-Elvira B, Maestre-Valero JF. Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater. Plants. 2024; 13(6):781. https://doi.org/10.3390/plants13060781
Chicago/Turabian StyleNavarro, Josefa M., Alberto Imbernón-Mulero, Juan M. Robles, Francisco M. Hernández-Ballester, Vera Antolinos, Belén Gallego-Elvira, and José F. Maestre-Valero. 2024. "Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater" Plants 13, no. 6: 781. https://doi.org/10.3390/plants13060781
APA StyleNavarro, J. M., Imbernón-Mulero, A., Robles, J. M., Hernández-Ballester, F. M., Antolinos, V., Gallego-Elvira, B., & Maestre-Valero, J. F. (2024). Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater. Plants, 13(6), 781. https://doi.org/10.3390/plants13060781