Differential Water Conservation Capacity in Broadleaved and Mixed Forest Restoration in Latosol Soil-Eroded Region, Hainan Province, China
<p>The <span class="html-italic">Wm</span>, <span class="html-italic">Qmax</span>, and <span class="html-italic">Qeff</span> in the undecomposed litter (UL) layer and semi-decomposed litter (SL) layer from the five plantation restoration types. (<b>A</b>) The maximum water holding capacity (<span class="html-italic">Wm</span>); (<b>B</b>) the maximum water retention capacity (<span class="html-italic">Qmax</span>); (<b>C</b>) the effective water retention capacity (<span class="html-italic">Qeff</span>). Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Comparison of water–holding rate of litter in different plantation restoration types: (<b>a</b>) un-decomposed layer (UL) and (<b>b</b>) semi-decomposed layer (SL) of <span class="html-italic">H. brasiliensis</span>, <span class="html-italic">A. mangium</span>, <span class="html-italic">E. robusta</span>, <span class="html-italic">Acacia–Eucalyptus</span>, and <span class="html-italic">Acacia–Hevea</span>.</p> "> Figure 3
<p>Comparison of water absorption rate of litter in different plantation restorations of un-decomposed litter (UL) layer for (<b>a</b>) <span class="html-italic">H. brasiliensis</span>, (<b>c</b>) <span class="html-italic">A. mangium</span>, (<b>e</b>) <span class="html-italic">E. robusta</span>, (<b>g</b>) <span class="html-italic">Acacia–Eucalyptus</span>, and (<b>i</b>) <span class="html-italic">Acacia–Hevea</span> and semi-decomposed litter (SL) layer for (<b>b</b>) <span class="html-italic">H. brasiliensis</span>, (<b>d</b>) <span class="html-italic">A. mangium</span>, (<b>f</b>) <span class="html-italic">E. robusta</span>, (<b>h</b>) <span class="html-italic">Acacia–Eucalyptus</span>, and (<b>j</b>) <span class="html-italic">Acacia–Hevea</span>.</p> "> Figure 4
<p>Comparison of cumulative water–loss ratio of litter in different plantation restoration types: (<b>a</b>) un-decomposed layer (UL) and (<b>b</b>) semi-decomposed layer (SL) of <span class="html-italic">H. brasiliensis</span>, <span class="html-italic">A. mangium</span>, <span class="html-italic">E. robusta</span>, <span class="html-italic">Acacia–Eucalyptus</span>, and <span class="html-italic">Acacia–Hevea</span>.</p> "> Figure 5
<p>Comparison of water loss rate of litter in different plantation restoration types of un-decomposed litter (UL) layer for (<b>a</b>) <span class="html-italic">H. brasiliensis</span>, (<b>c</b>) <span class="html-italic">A. mangium</span>, (<b>e</b>) <span class="html-italic">E. robusta</span>, (<b>g</b>) <span class="html-italic">Acacia–Eucalyptus</span>, and (<b>i</b>) <span class="html-italic">Acacia–Hevea</span> and semi-decomposed litter (SL) layer for (<b>b</b>) <span class="html-italic">H. brasiliensis</span>, (<b>d</b>) <span class="html-italic">A. mangium</span>, (<b>f</b>) <span class="html-italic">E. robusta</span>, (<b>h</b>) <span class="html-italic">Acacia–Eucalyptus</span>, and (<b>j</b>) <span class="html-italic">Acacia–Hevea</span>.</p> "> Figure 6
<p>Soil water holding capacity at depths of 0–10, 10–20, 20–40, and 40–60 cm for <span class="html-italic">A. mangium</span>, <span class="html-italic">E. robusta</span>, <span class="html-italic">H. brasiliensis</span>, <span class="html-italic">Acacia–Eucalyptus,</span> and <span class="html-italic">Acacia–Hevea</span>. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Locations and photos of the sampling sites at the Mahuangling Soil and Water Conservation Monitoring Station.</p> "> Figure 7 Cont.
<p>Locations and photos of the sampling sites at the Mahuangling Soil and Water Conservation Monitoring Station.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Litter Thickness and Mass
2.2. Wm, Qeff, and Qmax
2.3. Water–Holding Rate of Litter
2.4. Water Absorption Rate of Litter
2.5. Recovery Characteristics of Water Holding Capacity of Litter
2.6. Soil Water Holding Capacity
2.7. Comprehensive Evaluation of Water Conservation Capacity
3. Discussion
4. Materials and Methods
4.1. Study Sites
4.2. Collection of Litter and Soil Samples
4.3. Laboratory Analyses
4.4. Comprehensive Evaluation of Water Conservation Capacity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, L.; Shangguan, Z.; Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Guo, Q.; Hao, Y.; Liu, B. Rates of soil erosion in China: A study based on runoff plot data. Catena 2015, 124, 68–76. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Chen, L.; Zeng, Y.; Hu, Y.; Lei, P.; Fang, X.; Deng, X. Regulation mechanisms of forest vegetation restoration on water and soil erosion in mountainous and hilly area of Southern China. J. Soil Water Conserv. 2021, 35, 1–9. [Google Scholar] [CrossRef]
- Tian, P.; Yu, T.; Mao, M.; Gong, Y.; Yu, H. Research progress on estimation methods of vegetation factors in commonly used soil erosion models in red soil area. Soil Water Conserv. China 2023, 4, 53–59. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, D.; Zhang, B.; Yuan, Y.; Zhang, W. Litter storage and its water-holding capacity of Populus plantations in Lhasa River Valley. Arid Zone Res. 2021, 38, 1674–1682. [Google Scholar] [CrossRef]
- Wang, T.; Meng, Z.; Dang, X.; Li, H.; Fu, D.; Zhao, F.; Yang, P. Study on litter and soil hydrological effects of artificial understory shelterbelts in Kubuqi Desert. Ecol. Environ. Sci. 2021, 30, 700–707. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Lu, Y. Characteristics of litter and soil water-holding of two types forest stand in upstream of Woken River. Res. Soil Water Conserv. 2021, 28, 235–241. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Qian, F. Differences in interception storage capacities of undecomposed broad-leaf and needle-leaf litter under simulated rainfall conditions. For. Ecol. Manag. 2019, 446, 135–142. [Google Scholar] [CrossRef]
- Wen, L.; Deng, W.; Peng, Y.; Bai, T.; Zheng, X.; Ding, Y.; Liu, Y. The hydrological functions of litter and soil surface of three forest restoration modes in degraded red soil area of Jiangxi Province. J. Soil Water Conserv. 2020, 34, 158–163. [Google Scholar] [CrossRef]
- Zhou, Y.; Bai, Y.; Yao, L.; Ai, X.; Zhu, J.; Guo, Q. Litter and soil water-holding capacity of five typical forest stands in Southwest Hubei Province. Bull. Soil Water Conserv. 2023, 43, 77–86. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ma, C.; Wang, Y.; Li, T.; Dai, Z.; Wang, L.; Qi, Z.; Hu, Y. The hydrological and mechanical effects of forests on hillslope soil moisture changes and stability dynamics. Forests 2023, 14, 507. [Google Scholar] [CrossRef]
- An, S.; Darboux, F.; Cheng, M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma 2013, 209, 75–85. [Google Scholar] [CrossRef]
- Yu, P.; Wang, Y.; Wu, X.; Dong, X.; Xiong, W.; Bu, G.; Wang, S.; Wang, J.; Liu, X.; Xu, L. Water yield reduction due to forestation in arid mountainous regions, northwest China. Int. J. Sediment Res. 2010, 25, 423–430. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Guo, Q.; Wu, S. Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sediment Res. 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.; Shi, Y.; Zhan, X. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.; Lin, X.; Yang, Y.; Fang, X.; Yi, Z. Effects of vegetation restoration on soil iron-aluminum oxides and physical and chemical properties in the eroded red soil area. J. Fujian Agric. For. Univ. 2020, 49, 386–391. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, Q. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi. Acta Ecol. Sin. 2014, 34, 5142–5152. [Google Scholar] [CrossRef]
- Shu, C.; Shen, Y.; Liu, G.; Zhang, Q.; Xu, J.; Guo, Z. Impacts of Eucalyptus plantation on soil and water losses in a typical small watershed in mountainous area of southern China. Chin. J. Appl. Ecol. 2023, 34, 1015–1023. [Google Scholar] [CrossRef]
- Wang, B.; Liu, G.; Xue, S. Effect of black locust (Robinia pseudoacacia) on soil chemical and microbiological properties in the eroded hilly area of China’s Loess Plateau. Environ. Earth Sci. 2011, 65, 597–607. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, S.; Ruan, D.; Chen, Z.; Huang, Y.; Chen, J. Differential hydrological properties of forest litter layers in artificial afforestation of eroded areas of latosol in China. Sustainability 2022, 14, 14869. [Google Scholar] [CrossRef]
- Li, Y.; Song, D.; Wang, Z.; Zhang, F. Research on water storage of litter and soil layer in the rare earth ore mining site in Southern Jiangxi. J. Soil Water Conserv. 2020, 34, 153–158. [Google Scholar] [CrossRef]
- Xuan, L.; Kang, F.; Gu, J.; Huang, D. Hydrological effects of litter and soil layers in typical stands of North Hebei. Res. Soil Water Conserv. 2018, 25, 86–91. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, R.; Wang, F.; Chen, X.; Lei, W.; Cao, X.; Liu, J. Water conservation effect of litter and soil layer of five typical forests in Bailongjiang and Taohe River Forest of Gansu. Res. Soil Water Conserv. 2021, 28, 118–125. [Google Scholar] [CrossRef]
- Cheng, H.; Fu, Y.; Dong, H.; Hu, X.; Huang, C.; Liu, Y.; Che, M.; Fu, W.; Gong, Y. Physical and chemical properties of soil and the hydrological effects of different vegetation types in the central Sichuan hilly region. Chin. J. Appl. Environ. Biol. 2019, 25, 845–853. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, C. Comprehensive evaluation of water conservation capacity in litter and soil layer of three typical forest types along the Highland Area. Res. Soil Water Conserv. 2018, 25, 177–182. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H.; Liu, C.; Wang, B.; Huang, L. Comprehensive evaluation of the water conservation capacity of litter and soil layers in three typical forest types in the Luoshan Nature Reserve, Ningxia. Acta Ecol. Sin. 2023, 43, 7987–7997. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, G.; Zhou, H.; Yang, Y.; Geng, Y. Hydrological characteristics of litter in a Pinus tabulaeformis plantation with different densities in Badaling Forest Farm. Ecol. Environ. Sci. 2019, 28, 1767–1775. [Google Scholar] [CrossRef]
- Lin, L.; Deng, Y.; Li, P.; Yang, G.; Jing, D.; Huang, Z.; Lei, Z. Study on the effects of litter and soil hydrology of different density Cunninghamia lanceolata forests in Northern Guangxi. J. Soil Water Conserv. 2020, 34, 200–207+215. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Dong, W.; Liu, S. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol. Complex. 2014, 20, 240–247. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, X.; Qin, F.; Wu, D.; Li, Y. Study on the water holding capacity of the litter layer under different forest types in the north slope of Yinshan Mountain. Res. Soil Water Conserv. 2019, 26, 151–157. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Wang, Y.; Liu, Z.; Deng, X.; Zhang, T.; Xiong, W.; Zuo, H. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China. J. Beijing For. Univ. 2016, 38, 36–44. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Xie, Y. Hydrology functions and water holding capacity of forest litter in Taihangshan Scenic Area. Res. Soil Water Conserv. 2016, 23, 135–139+144. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Q.; Jin, L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China. Chin. J. Appl. Ecol. 2017, 28, 55–63. [Google Scholar] [CrossRef]
- Ding, P.; Dai, Q.; Yao, Y.; Gao, R. Hydrological effects of litter and soil of different vegetation types on engineering accumulation. J. Soil Water Conserv. 2021, 35, 135–142+151. [Google Scholar] [CrossRef]
- Zhou, Q.; Bi, H.; Kong, L.; Hou, G.; WEl, X.; WEl, X. Hydrological and ecological functions of litter layer under Robinia pseucdoacacia plantation with different densities in loess region of Western Shanxi Province. J. Soil Water Conserv. 2018, 32, 115–121. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, P.; Liu, X.; Lu, G.; Gu, J.; Wen, Z. Research on the hydrological effects of litters of different forest types in Chongling Watershed. Ecol. Environ. Sci. 2021, 30, 691–699. [Google Scholar] [CrossRef]
- Ilek, A.; Szostek, M.; Mikołajczyk, A.; Rajtar, M. Does mixing tree species affect water storage capacity of the forest floor? Laboratory test of pine-oak and fir-beech litter layers. Forests 2021, 12, 1674. [Google Scholar] [CrossRef]
- Sun, J.; Yu, X.; Wang, H.; Jia, G.; Zhao, Y.; Tu, Z.; Deng, W.; Jia, J.; Cheng, J. Effects of forest structure on hydrological processes in China. J. Hydrol. 2018, 561, 187–199. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, J.; Huang, Y.; Zhang, X.; Li, Z.; Han, L.; Zhang, C.; Guo, Y.; Tu, Z. Hydrological effects of litters and soil of nine landscape plants. Ecol. Sci. 2022, 41, 90–97. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, S.; Chen, Z.; Ruan, D.; Zhang, W.; Han, Y.; Han, L.; Wang, K.; Huang, Y.; Chen, J. Hydrological properties of soil and litter layers of four forest types restored in the gully erosion area of latosol in south China. Forests 2023, 14, 360. [Google Scholar] [CrossRef]
- Lacombe, G.; Valentin, C.; Sounyafong, P.; Rouw, A.; Soulileuth, B.; Silvera, N.; Pierret, A.; Sengtaheuanghoung, O.; Ribolzi, O. Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. Sci. Total Environ. 2018, 616–617, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Wang, W.; Yu, X.; Jia, G.; Fan, D. Eco-hydrological effects of litter layer in typical artificial forest stands in Xishan Mountain of Beijing. J. Beijing For. Univ. 2022, 44, 72–87. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Xie, B. Study on hydrological functions of litter layers in north China. PLoS ONE 2013, 8, e70328. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, Y.; Du, J.; Zhang, X.; Di, N. Effects of a broadleaf-oriented transformation of coniferous plantations on the hydrological characteristics of litter layers in subtropical China. Glob. Ecol. Conserv. 2021, 25, e01400. [Google Scholar] [CrossRef]
- Dong, H.; Yan, C.; Su, C.; Cao, H. Litter and soil hydrological effects of five no-commercial forests in Dongguan. J. Soil Water Conserv. 2021, 35, 144–149+160. [Google Scholar] [CrossRef]
- Du, C.; Shi, C.; Yang, J.; Ai, X.; Leng, L.; Zhang, Y.; Chu, Z.; Zhang, Y. Recovery characteristics of water-holding capacity of litter in typical stands of Xiaowutai mountain. J. Soil Water Conserv. 2021, 35, 236–243. [Google Scholar] [CrossRef]
- Yu, Z.; Fu, S.; Wang, Z. Water Conservation capacity of different vegetation types in Liaohe River Basin of Jilin Province. Soil Water Conserv. China 2022, 484, 51–55. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, H.; Sun, R.; Zhang, S.; Yang, Y. Water conservation capacity of typical forestlands in the Loess Plateau of Western Shanxi Province of Northern China. J. Beijing For. Univ. 2019, 41, 105–114. [Google Scholar] [CrossRef]
- He, W.; Chen, L.; Pang, D.; Cao, M.; Zhang, Y.; Li, X. Hydrological effects of soil layers in different vegetation types on the eastern slopes of the Helan Mountain. J. Cent. South Univ. For. Tech. 2023, 43, 102–113. [Google Scholar] [CrossRef]
- Wang, S.; Fu, W.; Kou, J.; Baima, G.; Qiao, Q.; Yang, W. Water Conservation capacity of litters on sandy land in wind-water erosion crisscross region of Loess Plateau. Bull. Soil Water Conserv. 2021, 41, 30–37. [Google Scholar] [CrossRef]
Type of Community | Litter Thickness/cm | Total Litter Mass/(t·ha−1) | Un-Decomposed Layer | Semi-Decomposed Layer | ||
---|---|---|---|---|---|---|
Litter Mass/(t·ha−1) | Proportion/% | Litter Mass/(t·ha−1) | Proportion/% | |||
H. brasiliensis | 4.36 ± 0.77 a | 5.04 ± 1.52 c | 1.54 ± 0.58 b | 30.46 | 3.51 ± 1.13 b | 69.54 |
A. mangium | 3.42 ± 0.24 b | 13.16 ± 1.76 a | 4.16 ± 1.08 a | 31.64 | 8.99 ± 1.09 a | 68.36 |
E. robusta | 3.57 ± 0.56 b | 8.87 ± 1.87 b | 3.32 ± 1.22 a | 37.44 | 5.55 ± 1.53 b | 62.56 |
Acacia–Eucalyptus | 4.73 ± 0.81 a | 11.94 ± 2.71 a | 2.93 ± 0.91 ab | 24.51 | 9.01 ± 2.01 a | 75.49 |
Acacia–Hevea | 4.30 ± 1.20 a | 8.58 ± 1.32 b | 3.15 ± 1.37 a | 36.69 | 5.43 ± 1.83 b | 63.31 |
Variable | Factor | SS | df | F | MS | p |
---|---|---|---|---|---|---|
Litter mass | Forest type | 106.027 | 4 80 | 26.507 | 7.99 | <0.001 *** |
Litter layer | 246.248 | 1 80 | 246.248 | 74.226 | <0.001 *** | |
Forest type × litter layer | 47.01 | 4 80 | 11.752 | 3.543 | 0.010 | |
Total mass | Forest type | 212.015 | 4 40 | 53.004 | 5.302 | 0.002 |
Total thickness | Forest type | 18.679 | 4 70 | 7.719 | 4.670 | <0.001 *** |
Vegetation Type | Soil Depth (cm) | Bulk Density (g·cm−3) | Non-Capillary Porosity (%) | Capillary Porosity (%) | Total Porosity (%) |
---|---|---|---|---|---|
A. mangium | 0 to 10 | 1.42 ± 0.07 b | 1.95 ± 1.13 a | 29.56 ± 7.25 a | 31.51 ± 7.79 a |
10 to 20 | 1.56 ± 0.09 a | 1.68 ± 0.85 a | 30.84 ± 5.12 a | 32.52 ± 5.04 a | |
20 to 40 | 1.61 ± 0.08 a | 1.53 ± 0.85 a | 31.32 ± 2.89 a | 32.86 ± 3.34 a | |
40 to 60 | 1.62 ± 0.07 a | 1.06 ± 0.59 a | 31.24 ± 3.15 a | 32.30 ± 3.19 a | |
E. robusta | 0 to 10 | 1.52 ± 0.06 b | 2.54 ± 3.14 a | 27.73 ± 7.87 a | 30.27 ± 6.13 a |
10 to 20 | 1.60 ± 0.05 a | 2.68 ± 3.66 a | 29.94 ± 3.07 a | 32.62 ± 5.07 a | |
20 to 40 | 1.63 ± 0.07 a | 1.26 ± 0.85 a | 31.00 ± 3.01 a | 32.26 ± 3.19 a | |
40 to 60 | 1.62 ± 0.08 a | 0.94 ± 0.50 a | 30.97 ± 4.53 a | 31.91 ± 4.49 a | |
H. brasiliensis | 0 to 10 | 1.45 ± 0.07 b | 2.76 ± 1.83 a | 31.36 ± 3.82 a | 34.12 ± 5.13 a |
10 to 20 | 1.53 ± 0.06 a | 2.38 ± 1.37 ab | 32.59 ± 3.49 a | 34.97 ± 3.31 a | |
20 to 40 | 1.57 ± 0.06 a | 1.77 ± 0.79 ab | 33.31 ± 2.09 a | 35.08 ± 2.04 a | |
40 to 60 | 1.56 ± 0.10 a | 1.23 ± 0.58 b | 34.11 ± 1.92 a | 35.35 ± 2.09 a | |
Acacia–Eucalyptus | 0 to 10 | 1.41 ± 0.09 b | 1.66 ± 1.05 a | 30.62 ± 6.42 a | 32.28 ± 6.89 a |
10 to 20 | 1.53 ± 0.07 a | 1.74 ± 0.80 a | 33.24 ± 3.55 a | 34.98 ± 3.24 a | |
20 to 40 | 1.57 ± 0.05 a | 1.59 ± 1.31 a | 33.11 ± 2.42 a | 34.70 ± 2.58 a | |
40 to 60 | 1.56 ± 0.06 a | 1.23 ± 0.60 a | 34.62 ± 2.34 a | 35.85 ± 2.84 a | |
Acacia–Hevea | 0 to 10 | 1.43 ± 0.04 b | 2.29 ± 1.52 a | 33.19 ± 3.13 a | 35.47 ± 3.36 a |
10 to 20 | 1.53 ± 0.07 a | 1.62 ± 1.57 a | 33.51 ± 3.55 a | 35.13 ± 4.08 a | |
20 to 40 | 1.58 ± 0.09 a | 1.38 ± 0.90 a | 33.86 ± 2.26 a | 35.24 ± 2.38 a | |
40 to 60 | 1.52 ± 0.08 a | 1.41 ± 0.81 a | 35.23 ± 2.09 a | 36.64 ± 2.19 a |
Grade I Index | Weight | Serial No. | Grade II Index | Weight |
---|---|---|---|---|
Litter layer | 0.4429 | P1 | Litter thickness | 0.0954 |
P2 | Total litter mass | 0.0696 | ||
P3 | Wm | 0.1392 | ||
P4 | Qmax | 0.0697 | ||
P5 | Qeff | 0.0690 | ||
Soil layer | 0.5571 | P6 | Bulk density | 0.0615 |
P7 | Non-capillary porosity | 0.1560 | ||
P8 | Capillary porosity | 0.0817 | ||
P9 | Total porosity | 0.0912 | ||
P10 | Soil water holding capacity | 0.1667 |
Vegetation Type | Water Conservation Capacity | Comprehensive Evaluation Value | Rank | |
---|---|---|---|---|
Litter Layer | Soil Layer | |||
A. mangium | 0.1097 | 0.1757 | 0.2854 | 1 |
E. robusta | 0.1137 | 0.1363 | 0.2500 | 2 |
H. brasiliensis | 0.0485 | 0.0520 | 0.1006 | 5 |
Acacia–Eucalyptus | 0.0987 | 0.0753 | 0.1740 | 4 |
Acacia–Hevea | 0.0722 | 0.1179 | 0.1900 | 3 |
Type of Community | Stand Age (Years) | DBH (cm) | Height (m) | Crown Width (m2) | Canopy Density (%) |
---|---|---|---|---|---|
H. brasiliensis | 14 | 9.99 ± 1.45 | 10.49 ± 3.06 | 21.08 ± 17.66 | 86 |
A. mangium | 14 | 13.28 ± 0.24 | 10.37 ± 3.50 | 44.55 ± 5.98 | 80 |
E. robusta | 14 | 10.98 ± 1.96 | 12.08 ± 0.61 | 15.77 ± 12.46 | 65 |
Acacia–Eucalyptus | 14 | 14.75 ± 3.57 | 11.73 ± 1.37 | 23.82 ± 4.04 | 80 |
Acacia–Hevea | 14 | 14.23 ± 1.13 | 11.56 ± 0.64 | 40.18 ± 16.42 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Huang, Y.; Yan, M.; Han, Y.; Wang, K.; Chen, Z.; Ruan, D.; Yu, Y.; Tu, Z. Differential Water Conservation Capacity in Broadleaved and Mixed Forest Restoration in Latosol Soil-Eroded Region, Hainan Province, China. Plants 2024, 13, 694. https://doi.org/10.3390/plants13050694
Chen S, Huang Y, Yan M, Han Y, Wang K, Chen Z, Ruan D, Yu Y, Tu Z. Differential Water Conservation Capacity in Broadleaved and Mixed Forest Restoration in Latosol Soil-Eroded Region, Hainan Province, China. Plants. 2024; 13(5):694. https://doi.org/10.3390/plants13050694
Chicago/Turabian StyleChen, Suyi, Yanping Huang, Mei Yan, Yujie Han, Kang Wang, Zexian Chen, Dongshuo Ruan, Yan Yu, and Zhihua Tu. 2024. "Differential Water Conservation Capacity in Broadleaved and Mixed Forest Restoration in Latosol Soil-Eroded Region, Hainan Province, China" Plants 13, no. 5: 694. https://doi.org/10.3390/plants13050694
APA StyleChen, S., Huang, Y., Yan, M., Han, Y., Wang, K., Chen, Z., Ruan, D., Yu, Y., & Tu, Z. (2024). Differential Water Conservation Capacity in Broadleaved and Mixed Forest Restoration in Latosol Soil-Eroded Region, Hainan Province, China. Plants, 13(5), 694. https://doi.org/10.3390/plants13050694