Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal
"> Figure 1
<p>Location of the study area: (<b>left</b>) at a national level; (<b>middle</b>) spatial distribution of the strawberry plants that could be retrieved after the exposure period (green dots) and the reference background site (red dot); (<b>right</b>) location of industries A, B, C, and D.</p> "> Figure 2
<p>Modified coefficient of variation (standard deviation divided by the median) of element concentrations in strawberry leaves.</p> "> Figure 3
<p>Accumulation Factor (AF) of the elements in exposed strawberry leaves. In the box plot, the square represents the mean, upper and lower times sign (×) represent the maximum and minimum values, and the whiskers extend to 1.5* the interquartile range. Below green line—no accumulation; green to orange line—minimal accumulation; orange to red line—moderate accumulation; above red line—significant accumulation.</p> "> Figure 4
<p>Enrichment factor (EF) of the elements in exposed strawberry leaves. Above the red line, anthropogenic sources are present.</p> "> Figure 5
<p>Spatial distribution of element concentrations in the exposed strawberry leaves in the study area (in mg·kg<sup>−1</sup>) related to (<b>above</b>) crustal natural origin, (<b>middle</b>) industry/steelworks, and (<b>below</b>) traffic.</p> "> Figure 6
<p>Mean elemental concentrations found in the exposed strawberry leaves versus the distance to steelworks B.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selected Biomonitors
2.3. Exposure Strategy of Biomonitors—Citizen Science Approach
2.4. Chemical Analysis
2.5. Meteorological and Air Quality Data
2.6. Data Analysis
2.6.1. Statistical Analysis
2.6.2. Accumulation and Enrichment Factors
2.6.3. Distribution Maps of the Elemental Concentrations
3. Results and Discussion
3.1. PM Levels
3.2. Elemental Characterization of Strawberry Leaves
3.3. Assessment of Pollution Sources
3.3.1. Bioaccumulation
3.3.2. Spearman Correlations
3.3.3. Principal Component Analysis
3.3.4. Spatial Distribution of Elemental Concentrations
3.4. Comparison Between Biomonitors
3.4.1. Enrichment Factors
3.4.2. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.M.; Lage, J.; Freitas, M.D.C.; Pedro, A.I.; Ribeiro, T.; Silva, A.V.; Canha, N.; Almeida-Silva, M.; Sitoe, T.; Dionisio, I.; et al. Integration of Biomonitoring and Instrumental Techniques to Assess the Air Quality in An Industrial Area Located in the Coastal of Central Asturias, Spain. J. Toxicol. Environ. Health A 2012, 75, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Canha, N.; Almeida, S.M.; Freitas, M.C.; Wolterbeek, H.T. Indoor and Outdoor Biomonitoring Using Lichens at Urban and Rural Primary Schools. J. Toxicol. Environ. Health A 2014, 77, 900–915. [Google Scholar] [CrossRef]
- Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. Leaf Accumulation of Atmospheric Dust: Biomagnetic, Morphological and Elemental Evaluation Using SEM, ED-XRF and HR-ICP-MS. Atmos. Environ. 2020, 221, 117082. [Google Scholar] [CrossRef]
- Tomašević, M.; Aničić, M.; Jovanović, L.; Perić-Grujić, A.; Ristić, M. Deciduous Tree Leaves in Trace Elements Biomonitoring: A Contribution to Methodology. Ecol. Indic. 2011, 11, 1689–1695. [Google Scholar] [CrossRef]
- Aničić, M.; Spasić, T.; Tomašević, M.; Rajšić, S.; Tasić, M. Trace Elements Accumulation and Temporal Trends in Leaves of Urban Deciduous Trees (Aesculus hippocastanum and Tilia spp.). Ecol. Indic. 2011, 11, 824–830. [Google Scholar] [CrossRef]
- Baldantoni, D.; De Nicola, F.; Alfani, A. Air Biomonitoring of Heavy Metals and Polycyclic Aromatic Hydrocarbons near a Cement Plant. Atmos. Pollut. Res. 2014, 5, 262–269. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Zhou, J.; Sun, H. Biomonitoring Trace Metal Contamination by Seven Sympatric Alpine Species in Eastern Tibetan Plateau. Chemosphere 2016, 165, 388–398. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, F.; Maisto, G.; Prati, M.V.; Alfani, A. Leaf Accumulation of Trace Elements and Polycyclic Aromatic Hydrocarbons (PAHs) in Quercus ilex L. Environ. Pollut. 2008, 153, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, S.E.; Shmool, J.L.C.; Michanowicz, D.R.; Bain, D.J.; Cambal, L.K.; Shields, K.N.; Clougherty, J.E. Framework for Using Deciduous Tree Leaves as Biomonitors for Intraurban Particulate Air Pollution in Exposure Assessment. Environ. Monit. Assess. 2016, 188, 479. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, S.; Khademi, H.; Faz Cano, A.; Acosta, J.A. Using Plane Tree Leaves for Biomonitoring of Dust Borne Heavy Metals: A Case Study from Isfahan, Central Iran. Ecol. Indic. 2015, 57, 64–73. [Google Scholar] [CrossRef]
- Reimann, C.; Arnoldussen, A.; Boyd, R.; Finne, T.E.; Koller, F.; Nordgulen, Ø.; Englmaier, P. Element Contents in Leaves of Four Plant Species (Birch, Mountain Ash, Fern and Spruce) along Anthropogenic and Geogenic Concentration Gradients. Sci. Total Environ. 2007, 377, 416–433. [Google Scholar] [CrossRef]
- Guéguen, F.; Stille, P.; Lahd Geagea, M.; Boutin, R. Atmospheric Pollution in an Urban Environment by Tree Bark Biomonitoring—Part I: Trace Element Analysis. Chemosphere 2012, 86, 1013–1019. [Google Scholar] [CrossRef]
- Serbula, S.M.; Radojevic, A.A.; Kalinovic, J.V.; Kalinovic, T.S. Indication of Airborne Pollution by Birch and Spruce in the Vicinity of Copper Smelter. Environ. Sci. Pollut. Res. 2014, 21, 11510–11520. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, P.R.; Hallman, C.L.; Ridenour, G.; Witten, M.L. Spatial Patterns of Tungsten and Cobalt on Leaf Surfaces of Trees in Fallon, Nevada. Land Contam. Reclam. 2009, 17, 31–41. [Google Scholar] [CrossRef]
- Hofman, J.; Maher, B.A.; Muxworthy, A.R.; Wuyts, K.; Castanheiro, A.; Samson, R. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors. Environ. Sci. Technol. 2017, 51, 6648–6664. [Google Scholar] [CrossRef] [PubMed]
- Constant, N. Role of Citizen Science in Air Quality Monitoring. In Urban Pollution; Charlesworth, S.M., Booth, C.A., Eds.; Wiley: New York, NY, USA, 2018; pp. 303–312. ISBN 978-1-119-26048-6. [Google Scholar]
- Conrad, C.C.; Hilchey, K.G. A Review of Citizen Science and Community-Based Environmental Monitoring: Issues and Opportunities. Environ. Monit. Assess. 2011, 176, 273–291. [Google Scholar] [CrossRef]
- Sauermann, H.; Vohland, K.; Antoniou, V.; Balázs, B.; Göbel, C.; Karatzas, K.; Mooney, P.; Perelló, J.; Ponti, M.; Samson, R.; et al. Citizen Science and Sustainability Transitions. Res. Policy 2020, 49, 103978. [Google Scholar] [CrossRef]
- Declercq, Y.; Samson, R.; Van De Vijver, E.; De Grave, J.; Tack, F.M.G.; De Smedt, P. A Multi-Proxy Magnetic Approach for Monitoring Large-Scale Airborne Pollution Impact. Sci. Total Environ. 2020, 743, 140718. [Google Scholar] [CrossRef]
- University of Antwerp Project AIRBEZEN. Available online: http://oost-vlaanderen.airbezen.be/ (accessed on 10 October 2024).
- University of Antwerp STRAWBAIRIES 2019: Air Quality Results, European BIOVEINS Project (BiodivERsA-Horizon2020). Available online: https://medialibrary.uantwerpen.be/files/8419/249c45bc-bb05-4c53-a256-1b915003fa2a.pdf (accessed on 10 October 2024).
- Van Dyck, L.; Bentouhami, H.; Koch, K.; Samson, R.; Weyler, J. Exposure to Indoor Ferromagnetic Particulate Matter Monitored by Strawberry Plants and the Occurrence of Acute Respiratory Events in Adults. Int. J. Environ. Res. Public Health 2019, 16, 4823. [Google Scholar] [CrossRef]
- Canha, N.; Justino, A.R.; Gamelas, C.A.; Almeida, S.M. Citizens’ Perception on Air Quality in Portugal—How Concern Motivates Awareness. Int. J. Environ. Res. Public Health 2022, 19, 12760. [Google Scholar] [CrossRef]
- Justino, A.R.; Canha, N.; Gamelas, C.; Coutinho, J.T.; Kertesz, Z.; Almeida, S.M. Contribution of Micro-PIXE to the Characterization of Settled Dust Events in an Urban Area Affected by Industrial Activities. J. Radioanal. Nucl. Chem. 2019, 322, 1953–1964. [Google Scholar] [CrossRef]
- Abecasis, L.; Gamelas, C.A.; Justino, A.R.; Dionísio, I.; Canha, N.; Kertesz, Z.; Almeida, S.M. Spatial Distribution of Air Pollution, Hotspots and Sources in an Urban-Industrial Area in the Lisbon Metropolitan Area, Portugal—A Biomonitoring Approach. Int. J. Environ. Res. Public Health 2022, 19, 1364. [Google Scholar] [CrossRef]
- Gamelas, C.A.; Canha, N.; Vicente, A.; Silva, A.; Borges, S.; Alves, C.; Kertesz, Z.; Almeida, S.M. Source Apportionment of PM2.5 before and after COVID-19 Lockdown in an Urban-Industrial Area of the Lisbon Metropolitan Area, Portugal. Urban Clim. 2023, 49, 101446. [Google Scholar] [CrossRef]
- Bermudez, G.M.A.; Rodriguez, J.H.; Pignata, M.L. Comparison of the Air Pollution Biomonitoring Ability of Three Tillandsia Species and the Lichen Ramalina Celastri in Argentina. Environ. Res. 2009, 109, 6–14. [Google Scholar] [CrossRef]
- PORDATA-Base de Dados Portugal Contemporâneo. Available online: https://www.pordata.pt/pt/estatisticas/populacao (accessed on 9 November 2024).
- Aboal, J.R.; Fernández, J.A.; Carballeira, A. Sampling Optimization, at Site Scale, in Contamination Monitoring with Moss, Pine and Oak. Environ. Pollut. 2001, 115, 313–316. [Google Scholar] [CrossRef]
- Sitko, R.; Zawisz, B. Quantification in X-Ray Fluorescence Spectrometry. In X-Ray Spectroscopy; Sharma, S.K., Ed.; InTech: London, UK, 2012; ISBN 978-953-307-967-7. [Google Scholar]
- Carvalho, P.M.S.; Pessanha, S.; Machado, J.; Silva, A.L.; Veloso, J.; Casal, D.; Pais, D.; Santos, J.P. Energy Dispersive X-Ray Fluorescence Quantitative Analysis of Biological Samples with the External Standard Method. Spectrochim. Acta Part B At. Spectrosc. 2020, 174, 105991. [Google Scholar] [CrossRef]
- Oliva, S.R.; Espinosa, A.J.F. Monitoring of Heavy Metals in Topsoils, Atmospheric Particles and Plant Leaves to Identify Possible Contamination Sources. Microchem. J. 2007, 86, 131–139. [Google Scholar] [CrossRef]
- Ould-Dada, Z.; Baghini, N.M. Resuspension of Small Particles from Tree Surfaces. Atmos. Environ. 2001, 35, 3799–3809. [Google Scholar] [CrossRef]
- APA-Portuguese Environmental Agency QualAr. Available online: https://qualar.apambiente.pt/ (accessed on 9 November 2024).
- Paatero, P.; Hopke, P.; Begum, B.; Biswas, S. A Graphical Diagnostic Method for Assessing the Rotation in Factor Analytical Models of Atmospheric Pollution. Atmos. Environ. 2005, 39, 193–201. [Google Scholar] [CrossRef]
- De Paula, P.H.M.; Mateus, V.L.; Araripe, D.R.; Duyck, C.B.; Saint’Pierre, T.D.; Gioda, A. Biomonitoring of Metals for Air Pollution Assessment Using a Hemiepiphyte Herb (Struthanthus flexicaulis). Chemosphere 2015, 138, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Samecka-Cymerman, A.; Kolon, K.; Kempers, A.J. A Preliminary Investigation in Using Pohlia nutans and Larix decidua as Biomonitors of Air Pollution. Pol. J. Environ. Stud. 2008, 17, 121–128. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-100846-5. [Google Scholar]
- Fernández, J.A.; Ederra, A.; Núñez, E.; Martínez-Abaigar, J.; Infante, M.; Heras, P.; Elías, M.J.; Mazimpaka, V.; Carballeira, A. Biomonitoring of Metal Deposition in Northern Spain by Moss Analysis. Sci. Total Environ. 2002, 300, 115–127. [Google Scholar] [CrossRef]
- Legendre, P. CRAN-Package Lmodel2. Available online: https://cran.r-project.org (accessed on 10 October 2024).
- Levei, L.; Cadar, O.; Babalau-Fuss, V.; Kovacs, E.; Torok, A.I.; Levei, E.A.; Ozunu, A. Use of Black Poplar Leaves for the Biomonitoring of Air Pollution in an Urban Agglomeration. Plants 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.; Allahabadi, A.; Ghaffari, H.R.; Fathabadi, Z.A.; Raisi, Z.; Rezai, M.; Aval, M.Y. Ecological Risk Assessment of Heavy Metal (HM) Pollution in the Ambient Air Using a New Bio-Indicator. Environ. Sci. Pollut. Res. 2016, 23, 14210–14220. [Google Scholar] [CrossRef] [PubMed]
- Kousehlar, M.; Widom, E. Sources of Metals in Atmospheric Particulate Matter in Tehran, Iran: Tree Bark Biomonitoring. Appl. Geochem. 2019, 104, 71–82. [Google Scholar] [CrossRef]
- Mijić, Z.; Stojić, A.; Perišić, M.; Rajšić, S.; Tasić, M.; Radenković, M.; Joksić, J. Seasonal Variability and Source Apportionment of Metals in the Atmospheric Deposition in Belgrade. Atmos. Environ. 2010, 44, 3630–3637. [Google Scholar] [CrossRef]
- Mason, B.; Mason, B.; Moore, C.B. Principles of Geochemistry, 4th ed.; Smith and Wyllie Intermediate Geology Series; Wiley: New York, NY, USA, 1982; ISBN 978-0-471-57522-1. [Google Scholar]
- Fernández, J.A.; Carballeira, A. A Comparison of Indigenous Mosses and Topsoils for Use in Monitoring Atmospheric Heavy Metal Deposition in Galicia (Northwest Spain). Environ. Pollut. 2001, 114, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Aboal, J.R.; Carballeira, A. Use of Native and Transplanted Mosses as Complementary Techniques for Biomonitoring Mercury around an Industrial Facility. Sci. Total Environ. 2000, 256, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Turan, D.; Kocahakimoglu, C.; Kavcar, P.; Gaygısız, H.; Atatanir, L.; Turgut, C.; Sofuoglu, S.C. The Use of Olive Tree (Olea europaea L.) Leaves as a Bioindicator for Environmental Pollution in the Province of Aydın, Turkey. Environ. Sci. Pollut. Res. 2011, 18, 355–364. [Google Scholar] [CrossRef]
- Elrhzaoui, G.; Divakar, P.K.; Crespo, A.; Tahiri, H.; Alaoui-Faris, F.E.E.; Khellouk, R. Spatial Mapping of Heavy Metals Using Lichen Bioaccumulation Capacity to Assess Air Contamination in Morocco. Cryptogam Biodivers. Assess. 2020, 4, 19–24. [Google Scholar]
- Širić, I.; Eid, E.M.; El-Morsy, M.H.E.; Osman, H.E.M.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Goala, M.; Singh, J.; Bachheti, A.; et al. Health Risk Assessment of Hazardous Heavy Metals in Two Varieties of Mango Fruit (Mangifera indica L. Var. Dasheri and Langra). Horticulturae 2022, 8, 832. [Google Scholar] [CrossRef]
- Watson, D.F. A Refinement of Inverse Distance Weighted Interpolation. Geo-Processing 1985, 2, 315–327. [Google Scholar]
- Birke, M.; Rauch, U.; Hofmann, F. Tree Bark as a Bioindicator of Air Pollution in the City of Stassfurt, Saxony-Anhalt, Germany. J. Geochem. Explor. 2018, 187, 97–117. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO European Centre for Environment and Health: Bonn, Germany, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Gamelas, C.; Abecasis, L.; Canha, N.; Almeida, S.M. The Impact of COVID-19 Confinement Measures on the Air Quality in an Urban-Industrial Area of Portugal. Atmosphere 2021, 12, 1097. [Google Scholar] [CrossRef]
- Schleppi, P.; Tobler, L.; Bucher, J.B.; Wyttenbach, A. Multivariate Interpretation of the Foliar Chemical Composition of Norway Spruce (Picea abies). Plant Soil 2000, 219, 251–262. [Google Scholar] [CrossRef]
- Markert, B. Establishing of “Reference Plant” for Inorganic Characterization of Different Plant Species by Chemical Fingerprinting. Water. Air. Soil Pollut. 1992, 64, 533–538. [Google Scholar] [CrossRef]
- Cicek, A.; Koparal, A.S. Accumulation of Sulfur and Heavy Metals in Soil and Tree Leaves Sampled from the Surroundings of Tunçbilek Thermal Power Plant. Chemosphere 2004, 57, 1031–1036. [Google Scholar] [CrossRef]
- Solgi, E.; Keramaty, M.; Solgi, M. Biomonitoring of Airborne Cu, Pb, and Zn in an Urban Area Employing a Broad Leaved and a Conifer Tree Species. J. Geochem. Explor. 2020, 208, 106400. [Google Scholar] [CrossRef]
- Staszewski, T.; Łukasik, W.; Kubiesa, P. Contamination of Polish National Parks with Heavy Metals. Environ. Monit. Assess. 2012, 184, 4597–4608. [Google Scholar] [CrossRef] [PubMed]
- Serbula, S.M.; Miljkovic, D.D.; Kovacevic, R.M.; Ilic, A.A. Assessment of Airborne Heavy Metal Pollution Using Plant Parts and Topsoil. Ecotoxicol. Environ. Saf. 2012, 76, 209–214. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation Technology: Hyper-Accumulation Metals in Plants. Water. Air. Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Calzoni, G.L.; Antognoni, F.; Pari, E.; Fonti, P.; Gnes, A.; Speranza, A. Active Biomonitoring of Heavy Metal Pollution Using Rosa Rugosa Plants. Environ. Pollut. 2007, 149, 239–245. [Google Scholar] [CrossRef]
- Ventura, M.G.; Freitas, M.D.C.; Pacheco, A.M.G. Selenium Levels in Mainland Portugal. Water. Air. Soil Pollut. 2005, 166, 167–179. [Google Scholar] [CrossRef]
- Nogueira, T.A.R.; deMelo, W.J.; Fonseca, I.M.; Marques, M.O.; He, Z. Barium Uptake by Maize Plants as Affected by Sewage Sludge in a Long-Term Field Study. J. Hazard. Mater. 2010, 181, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Banu Doganlar, Z.; Doganlar, O.; Erdogan, S.; Onal, Y. Heavy Metal Pollution and Physiological Changes in the Leaves of Some Shrub, Palm and Tree Species in Urban Areas of Adana, Turkey. Chem. Speciat. Bioavailab. 2012, 24, 65–78. [Google Scholar] [CrossRef]
- Kuang, Y.W.; Wen, D.Z.; Zhou, G.Y.; Liu, S.Z. Distribution of Elements in Needles of Pinus massoniana (Lamb.) Was Uneven and Affected by Needle Age. Environ. Pollut. 2007, 145, 146–153. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-19203-6. [Google Scholar]
- Canha, N.; Justino, A.R.; Galinha, C.; Lage, J.; Stieghorst, C.; Revay, Z.; Alves, C.; Almeida, S.M. Elemental Characterisation of Native Lichens Collected in an Area Affected by Traditional Charcoal Production. J. Radioanal. Nucl. Chem. 2020, 325, 293–302. [Google Scholar] [CrossRef]
- Calvo, A.I.; Alves, C.; Castro, A.; Pont, V.; Vicente, A.M.; Fraile, R. Research on Aerosol Sources and Chemical Composition: Past, Current and Emerging Issues. Atmos. Res. 2013, 120–121, 1–28. [Google Scholar] [CrossRef]
- Mingorance, M.D.; Valdés, B.; Oliva, S.R. Strategies of Heavy Metal Uptake by Plants Growing under Industrial Emissions. Environ. Int. 2007, 33, 514–520. [Google Scholar] [CrossRef]
- Reimann, C.; Koller, F.; Frengstad, B.; Kashulina, G.; Niskavaara, H.; Englmaier, P. Comparison of the Element Composition in Several Plant Species and Their Substrate from a 1,500,000-km2 Area in Northern Europe. Sci. Total Environ. 2001, 278, 87–112. [Google Scholar] [CrossRef] [PubMed]
- Ataabadi, M.; Hoodaji, M.; Najafi, P. Biomonitoring of Some Heavy Metal Contaminations from a Steel Plant by above Ground Plants Tissue. Afr. J. Biotechnol. 2011, 10, 4127–4132. [Google Scholar]
- Maisto, G.; Alfani, A.; Baldantoni, D.; De Marco, A.; Virzo De Santo, A. Trace Metals in the Soil and in Quercus ilex L. Leaves at Anthropic and Remote Sites of the Campania Region of Italy. Geoderma 2004, 122, 269–279. [Google Scholar] [CrossRef]
- Schreck, E.; Foucault, Y.; Sarret, G.; Sobanska, S.; Cécillon, L.; Castrec-Rouelle, M.; Uzu, G.; Dumat, C. Metal and Metalloid Foliar Uptake by Various Plant Species Exposed to Atmospheric Industrial Fallout: Mechanisms Involved for Lead. Sci. Total Environ. 2012, 427–428, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, F.; D’Alessandro, A.; Lucarelli, F.; Marenco, F.; Nava, S.; Prati, P.; Valli, G.; Vecchi, R. Elemental Composition and Source Apportionment of Particulate Matter near a Steel Plant in Genoa (Italy). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 249, 548–551. [Google Scholar] [CrossRef]
- Hleis, D.; Fernández-Olmo, I.; Ledoux, F.; Kfoury, A.; Courcot, L.; Desmonts, T.; Courcot, D. Chemical Profile Identification of Fugitive and Confined Particle Emissions from an Integrated Iron and Steelmaking Plant. J. Hazard. Mater. 2013, 250–251, 246–255. [Google Scholar] [CrossRef]
- Sammut, M.L.; Noack, Y.; Rose, J. Zinc Speciation in Steel Plant Atmospheric Emissions: A Multi-Technical Approach. J. Geochem. Explor. 2006, 88, 239–242. [Google Scholar] [CrossRef]
- Ugolini, F.; Tognetti, R.; Raschi, A.; Bacci, L. Quercus ilex L. as Bioaccumulator for Heavy Metals in Urban Areas: Effectiveness of Leaf Washing with Distilled Water and Considerations on the Trees Distance from Traffic. Urban For. Urban Green. 2013, 12, 576–584. [Google Scholar] [CrossRef]
- Simon, E.; Baranyai, E.; Braun, M.; Cserháti, C.; Fábián, I.; Tóthmérész, B. Elemental Concentrations in Deposited Dust on Leaves along an Urbanization Gradient. Sci. Total Environ. 2014, 490, 514–520. [Google Scholar] [CrossRef]
- Piczak, K. Metal Concentrations in Deciduous Tree Leaves from Urban Areas in Poland. Environ. Monit. Assess. 2003, 86, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.V.; Haukioja, E.; Bakhtiarov, A.V.; Stroganov, D.N. Heavy Metals in Birch Leaves around a Nickel-Copper Smelter at Monchegorsk, Northwestern Russia. Environ. Pollut. 1995, 90, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, L.D.; Bell, J.N.B.; Garrec, J.P.; Klumpp, A.; Krause, G.H.M.; Tonneijck, A.E.G. Biomonitoring of Air Pollutants with Plants—Considerations for the Future. In Urban Air Pollution, Bioindication and Environmental Awareness; Cuvillier Verlag: Göttingen, Germany, 2001. [Google Scholar]
- Hovmand, M.F.; Nielsen, S.P.; Johnsen, I. Root Uptake of Lead by Norway Spruce Grown on 210Pb Spiked Soils. Environ. Pollut. 2009, 157, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as Bioindicator of Heavy Metal Pollution in Three European Cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Arnoldussen, A.; Finne, T.E.; Koller, F.; Nordgulen, Ø.; Englmaier, P. Element Contents in Mountain Birch Leaves, Bark and Wood under Different Anthropogenic and Geogenic Conditions. Appl. Geochem. 2007, 22, 1549–1566. [Google Scholar] [CrossRef]
Strawberry Leaves (Present Study) | Reference Plant [57] | Typical Concentrations in Plants | Toxic Levels in Plants | Transplanted Lichens [26] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element | n | Mean ± SD | Median | Min | Max | Background Site | p-Value | Mean ± SD | |||
mg·kg−1 | mg·kg−1 | ||||||||||
Macro elements | |||||||||||
K | 47 | 24,500 ± 7700 | 23,400 | 12,700 | 44,700 | 18,000 | 0.000 | 19,000 | 3500–6600 n | 7900 ± 1120 | |
Ca | 47 | 22,600 ± 3600 | 23,000 | 11,100 | 30,200 | 18,200 | 0.000 | 10,000 | 2300–5000 n | 226,000 ± 15,000 | |
Mg | 47 | 4970 ± 840 | 4970 | 3390 | 7330 | 3320 | 0.000 | 2000 | 500–1300 n | 1230 ± 270 | |
Si | 47 | 2400 ± 1260 | 1960 | 660 | 6150 | 1450 | 0.000 | 1000 | 6240 ± 1280 | ||
P | 47 | 1440 ± 680 | 1250 | 570 | 3900 | 940 | 0.000 | 2000 | 1100 n | n.d. | |
S | 47 | 1140 ± 380 | 1080 | 630 | 2170 | 1290 | 0.011 | 3000 | 10–150 a | 1580 ± 410 | |
Micro elements | |||||||||||
Cl | 47 | 3180 ± 2490 | 2710 | 480 | 14,600 | 2650 | 0.154 | 2000 | n.d. | ||
Fe | 47 | 2420 ± 1770 | 2090 | 480 | 10,870 | 780 | 0.000 | 150 | 640–2486 b; 42–352 i | 11,800 ± 3800 | |
Al | 47 | 347 ± 87 | 325 | 216 | 552 | 291 | 0.000 | 80 | 200–1000 b; 10–900 i | 2590 ± 450 | |
Mn | 47 | 128 ± 90 | 111 | 36 | 643 | 132 | 0.756 | 200 | 15–100 b; 15–160 i | 406 ± 297 | |
Zn | 47 | 47.3 ± 21.3 | 40.0 | 28.0 | 124.0 | 26.0 | 0.000 | 50 | 10–160 b; 20–400 c; 10–150 e,h; 15–30 f,i | 80–200 ª; 70–400 b; 100 c,f; 300–400 e | 608 ± 454 |
Cu | 46 | 5.6 ± 1.6 | 5.0 | 3.0 | 10.0 | 4.0 | 0.000 | 10 | 0.4–45.8 b; 2–20 c,g; 2–12 f; 3–30 h; 4–5 i | 100 a; 20–30 c; 20–100 e,h; 30 f,g | 163 ± 90 |
Trace elements | |||||||||||
Sr | 47 | 108 ± 29 | 109 | 31 | 160 | 96 | 0.007 | 50 | 30 m | 565 ± 74 | |
Ba | 47 | 86.2 ± 22.7 | 89.0 | 30.0 | 128.0 | 50.0 | 0.000 | 40 | 2–13 l | 200–500 l | n.d. |
As | 47 | 69.8 ± 62.7 | 51.0 | 9.0 | 320.0 | 15.0 | 0.000 | 0.1 | 30 ± 28 | ||
Ti | 47 | 31.6 ± 25.8 | 26.0 | 10.0 | 141.0 | 15.0 | 0.000 | 5 | 1150 ± 230 | ||
Br | 47 | 21.4 ± 7.0 | 20.0 | 9.0 | 48.0 | 29.0 | 0.000 | 4 | 180 ± 16 | ||
Rb | 47 | 21.4 ± 5.9 | 20.0 | 12.0 | 39.0 | 17.0 | 0.000 | 50 | 70 ± 15 | ||
Zr | 47 | 17.9 ± 8.1 | 16.0 | 5.0 | 39.0 | 4.0 | 0.000 | 0.1 | 79 ± 20 | ||
Se | 47 | 9.3 ± 2.2 | 10.0 | 3.0 | 13.0 | 11.0 | 0.000 | 0.02 | 0.05–1 k | 75 ± 6 | |
Cr | 18 | 9.2 ± 8.9 | 6.0 | 3.0 | 41.0 | <DL | 0.003 | 1.5 | 0.1–5 e; 1–2 i | 5–10 a; 5–30 e,j | 52 ± 91 |
Pb | 28 | 6.0 ± 2.5 | 5.0 | 2.0 | 13.0 | 6.0 | 0.918 | 1 | 1–13 c; 3.0–5.9 f 0.5–10 h; 0.4–2.5 i; 3–10 j | 30 a,f; 20 b; 10 c; 3–20 d; 30–300 e,h | 130 ± 111 |
Strawberry Leaves | Lichens | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | Communality | PC1 | PC2 | PC3 | Communality | ||
K | 0.85 | 0.006 | 0.172 | −0.106 | 0.764 | Mn | 0.965 | 0.088 | 0.145 | 0.96 |
Al | 0.83 | 0.289 | 0.067 | −0.058 | 0.78 | Cr | 0.96 | 0.068 | 0.185 | 0.96 |
Si | 0.78 | 0.118 | −0.296 | −0.1 | 0.72 | Fe | 0.856 | 0.437 | 0.154 | 0.946 |
Cl | 0.645 | 0.07 | 0.319 | 0.028 | 0.523 | Mg | 0.74 | 0.327 | 0.077 | 0.661 |
Cr | 0.096 | 0.941 | 0.106 | 0.028 | 0.906 | Si | 0.277 | 0.902 | 0.005 | 0.891 |
Fe | 0.205 | 0.889 | 0.048 | 0.203 | 0.876 | Al | 0.347 | 0.871 | −0.026 | 0.88 |
Mn | 0.024 | 0.5 | 0.249 | 0.034 | 0.314 | Ti | 0.259 | 0.817 | 0.027 | 0.735 |
P | 0.029 | 0.22 | 0.853 | −0.084 | 0.784 | K | −0.422 | 0.658 | 0.12 | 0.625 |
S | 0.141 | 0.215 | 0.778 | −0.15 | 0.693 | S | 0.236 | 0.307 | 0.734 | 0.689 |
Mg | 0.583 | −0.2 | 0.584 | 0.096 | 0.731 | Zn | 0.474 | 0.044 | 0.606 | 0.594 |
Zn | −0.125 | 0.243 | 0.235 | 0.831 | 0.82 | Pb | −0.034 | −0.124 | 0.579 | 0.351 |
Pb | −0.098 | −0.251 | −0.366 | 0.725 | 0.731 | |||||
Ti | 0.039 | 0.413 | −0.25 | 0.665 | 0.677 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamelas, C.A.; Canha, N.; Justino, A.R.; Nunes, A.; Nunes, S.; Dionísio, I.; Kertesz, Z.; Almeida, S.M. Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal. Plants 2024, 13, 3587. https://doi.org/10.3390/plants13243587
Gamelas CA, Canha N, Justino AR, Nunes A, Nunes S, Dionísio I, Kertesz Z, Almeida SM. Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal. Plants. 2024; 13(24):3587. https://doi.org/10.3390/plants13243587
Chicago/Turabian StyleGamelas, Carla A., Nuno Canha, Ana R. Justino, Alexandra Nunes, Sandra Nunes, Isabel Dionísio, Zsofia Kertesz, and Susana Marta Almeida. 2024. "Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal" Plants 13, no. 24: 3587. https://doi.org/10.3390/plants13243587
APA StyleGamelas, C. A., Canha, N., Justino, A. R., Nunes, A., Nunes, S., Dionísio, I., Kertesz, Z., & Almeida, S. M. (2024). Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal. Plants, 13(24), 3587. https://doi.org/10.3390/plants13243587