Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes
<p>The pie chart of fresh oat’s microbial community (<b>A</b>,<b>B</b>) expressed abundance at the phylum level and genus level, respectively, and (<b>C</b>) expressed alpha diversity of fresh oat.</p> "> Figure 2
<p>Dynamic changes in oat silage quality and microbial count with different treatment groups (<b>A</b>–<b>L</b>), (<b>A</b>): hemicellulose, (<b>B</b>): cellulose, (<b>C</b>): crude protein, (<b>D</b>): water-soluble carbohydrates, (<b>E</b>): pH, (<b>F</b>): lactic acid, (<b>G</b>): acetic acid, (<b>H</b>): ammoniacal nitrogen, (<b>I</b>): lactic acid bacteria, (<b>J</b>): yeasts, (<b>K</b>): <span class="html-italic">Escherichia coli</span>, (<b>L</b>): filamentous fungi. (<b>M</b>) was a table to illustrate the significance of the results, <sup>1</sup>; WSC: water-soluble carbohydrate, <sup>2</sup>; CK, no additive; X, inoculated with xylanase; C, inoculated with cellulase, <sup>3</sup>; 3, 7, 14, 30, and 60 expressed different ensilage days, different lowercase letters indicate significant differences with different treatments.</p> "> Figure 3
<p>Bacterial community composition (<b>A</b>) and succession (<b>B</b>–<b>D</b>) at the phylum level in silage during the ensiling process. CK, no additive; X, inoculated with xylanase; (<b>C</b>), inoculated with cellulase; 3, 7, 14, 30, and 60 expressed different ensilage days; 0 expressed oat before ensiling; for example, CK-3 expressed that there was no additive after 3 days of silage.</p> "> Figure 4
<p>Bacterial community composition (<b>A</b>) and succession (<b>B</b>–<b>D</b>) at the genus level in silage during the ensiling process. CK, no additive; X, inoculated with xylanase; (<b>C</b>), inoculated with cellulase; 3, 7, 14, 30, and 60 expressed different ensilage days; 0 expressed oat before ensiling; for example, CK-3 expressed that there was no additive after 3 days of silage.</p> "> Figure 5
<p>Differences in bacterial (<b>A</b>,<b>B</b>) community diversity and richness in oat silage with different additive treatments and ensilage days. (<b>A</b>) Sob and Chao index. (<b>B</b>) Shannon and Simpson index. The cluster dendrogram analysis of bacterial communities (<b>C</b>) on operational taxonomic units (OTUs) level in oat silage with different additive treatments and ensilage days. CK, no additive; X, inoculated with xylanase; C, inoculated with cellulase; 3, 7, 14, 30, and 60 expressed different ensilage days; 0 expressed oat before ensiling; for example, CK_3 expressed that there was no additive after 3 days of silage. Different lowercase letters indicate significant differences with different treatments.</p> "> Figure 6
<p>Cooccurrence patterns of the silage bacterial community during the ensiling process. The networks of result (<b>B</b>–<b>G</b>) were treated with different groups, which were CK_3, X_3, C_3, CK_60, X_60, and C_60 treatment groups, respectively. The different of node number, edge number, positive number, and negative number (<b>H</b>) were treated with different treatment groups. (<b>A</b>) were cooccurrence patterns of the fresh oat bacterial community. We selected bacterial communities with a genus level greater than 0.1% for mapping.</p> "> Figure 7
<p>Functional abundance heat map on classification level_2 (<b>A</b>) and level_3 (<b>B</b>) in oat silage with different additive treatments and ensilage days. CK, no additive; X, inoculated with xylanase; C, inoculated with cellulase; 3, 7, 14, 30, and 60 expressed different ensilage days; 0 expressed oat before ensiling; for example, CK_3 expressed that there was no additive after 3 days of silage.</p> "> Figure 8
<p>Spearman analysis between silage parameters and the top ten bacterial genus levels (<b>A</b>) and top ten species levels (<b>B</b>) with different additive treatments and ensilage days. NDF, neutral detergent fiber; ADF, acid detergent fiber; CP, crude protein; WSC, water-soluble carbohydrates. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Microbial Community Attached to Fresh Oat
2.2. The Oat Silage of Quality and Microbial Count on Different Additives and Silage Days
2.3. Dynamic Changes of Microbial Community with Different Treatment Groups
3. Discussion
3.1. Material Characteristics and Silage Quality
3.2. Microbial Community in Silage
4. Materials and Methods
4.1. Silage Preparation and Treatments
4.2. Chemical Composition, Fermentation Composition, and Microorganisms-Colony Count
4.3. Microbial Sequencing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 2012, 193–194, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Li, J.; Chen, L.; Wang, S.; Shao, T. Effects of Freeze-Thaw Event on Microbial Community Dynamics During Red Clover Ensiling. Front. Microbiol. 2019, 10, 1559. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Zhang, M.; Liu, L.; Hu, X.; Liu, J.; Zhou, X.; Chai, Z.; Yin, H. Multiomics provides insights into the succession of microbiota and metabolite during plant leaf fermentation. Environ. Res. 2023, 221, 115304. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Zi, X.; Li, M.; Chen, Y.; Lv, R.; Zhou, H.; Tang, J. Effects of Citric Acid and Lactobacillus plantarum on Silage Quality and Bacterial Diversity of King Grass Silage. Front. Microbiol. 2021, 12, 631096. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Kholif, A.E.; Hernández, A.; Salem, A.Z.M.; Mellado, M.; Odongo, N.E. Effects of organic acid salts on ruminal biogas production and fermentation kinetics of total mixed rations with different maize silage to concentrate ratios. J. Clean. Prod. 2017, 147, 523–530. [Google Scholar] [CrossRef]
- Iannaccone, F.; Alborino, V.; Dini, I.; Balestrieri, A.; Marra, R.; Davino, R.; Di Francia, A.; Masucci, F.; Serrapica, F.; Vinale, F. In Vitro Application of Exogenous Fibrolytic Enzymes from Trichoderma spp. to Improve Feed Utilization by Ruminants. Agriculture 2022, 12, 573. [Google Scholar] [CrossRef]
- Dong, Z.; Li, J.; Wang, S.; Dong, D.; Shaoa, T. Diurnal Variation of Epiphytic Microbiota: An Unignorable Factor Affecting the Anaerobic Fermentation Characteristics of Sorghum-Sudangrass Hybrid Silage. Microbiol. Spectr. 2023, 11, e0340422. [Google Scholar] [CrossRef]
- Rytioja, J.; Hilden, K.; Yuzon, J.; Hatakka, A.; de Vries, R.P.; Makela, M.R. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol. Mol. Biol. Rev. 2014, 78, 614–649. [Google Scholar] [CrossRef]
- Fenja, K.; Qendrim, Z. A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. J. Sci. Food Agric. 2021, 101, 5737–5746. [Google Scholar] [CrossRef]
- Barbosa, F.C.; Silvello, M.A.; Goldbeck, R. Cellulase and oxidative enzymes: New approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol. Lett. 2020, 42, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Polizeli, M.L.; Rizzatti, A.C.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Alegria, A.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Zhu, Y.; Wen, Z.; Liu, G.; Guo, Y.; Sun, B. Effects of Cellulase, Lactobacillus plantarum, and Sucrose on Fermentation Parameters, Chemical Composition, and Bacterial Community of Hybrid Pennisetum Silage. Fermentation 2022, 8, 356. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P. Industrial applications of xylanases. In Microbial Xylanolytic Enzymes; Academic Press: Cambridge, MA, USA, 2022; pp. 149–211. [Google Scholar]
- Evans, C.T.; Mann, S.P.; Charley, R.C.; Parfitt, D. Formulation for Treating Silage Containing β-1,4-Xylanase and β-1,3-Xylosidase but Essentially Free of β-1,4-Glucanase and β-1,4-Cellobiohydrolase, and One or More Lactic Acid-Producing Bacteria. Biotechnol. Adv. 1996, 14, 391. [Google Scholar]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Dong, D.; Shao, T. Effect of epiphytic microbiota from napiergrass and Sudan grass on fermentation characteristics and bacterial community in oat silage. J. Appl. Microbiol. 2022, 132, 919–932. [Google Scholar] [CrossRef]
- Li, H.; Zeng, T.; Du, Z.; Dong, X.; Xin, Y.; Wu, Y.; Huang, L.; Liu, L.; Kang, B.; Jiang, D.; et al. Assessment on the Fermentation Quality and Bacterial Community of Mixed Silage of Faba Bean with Forage Wheat or Oat. Front. Microbiol. 2022, 13, 875819. [Google Scholar] [CrossRef]
- Cai, Y.; Du, Z.; Yamasaki, S.; Nguluve, D.; Tinga, B.; Macome, F.; Oya, T. Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa. Asian-Australas. J. Anim. Sci. 2020, 33, 1252–1264. [Google Scholar] [CrossRef]
- Liu, Q.; Zong, C.; Dong, Z.; Wu, J.; Zhu, J.; Li, J.; Zhang, J.; Shao, T. Effects of cellulolytic lactic acid bacteria on the lignocellulose degradation, sugar profile and lactic acid fermentation of high-moisture alfalfa ensiled in low-temperature seasons. Cellulose 2020, 27, 7955–7965. [Google Scholar] [CrossRef]
- Wilkinson, J.M. The Biochemistry of Silage. Exp. Agric. 1982, 18, 329. [Google Scholar] [CrossRef]
- Salem, A.Z.M.; Buendía-Rodríguez, G.; Elghandour, M.M.M.; Berasain, M.A.M.; Jiménez, F.J.P.; Pliego, A.B.; Chagoyán, J.C.V.; Cerrillo, M.A.; Rodríguez, M.A. Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate. J. Integr. Agric. 2015, 14, 131–139. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Sun, L.; Guo, L.; Xiong, Y.; Wang, Y.; Zhou, H.; Jia, S.; Yang, F.; et al. Impacts of Low Temperature and Ensiling Period on the Bacterial Community of Oat Silage by SMRT. Microorganisms 2021, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Risu, N.; Gentu, G.; Jia, Y.; Cai, Y. Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage. Asian-Australas. J. Anim. Sci. 2020, 33, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Thip-uten, S.; Cherdthong, A.; Khota, W. Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Zi, X.; Wang, W.; Zhou, S.; Zhou, F.; Rao, D.; Shen, P.; Fang, S.; Wu, B. Prolonged drought regulates the silage quality of maize (Zea mays L.): Alterations in fermentation microecology. Front. Plant Sci. 2022, 13, 1075407. [Google Scholar] [CrossRef]
- Chen, L.; Bai, S.; You, M.; Xiao, B.; Li, P.; Cai, Y. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Anim. Feed Sci. Technol. 2020, 269, 114669. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, Q.; Zi, X.; Lv, R.; Tang, J.; Zhou, H. Impacts of Citric Acid and Malic Acid on Fermentation Quality and Bacterial Community of Cassava Foliage Silage. Front. Microbiol. 2020, 11, 595622. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, H.; Li, L.; He, J.; Hu, Z.; Yang, X.; Xie, X. Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage. J. Anim. Sci. Technol. 2021, 63, 1301–1313. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, A.D.; Yang, W. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.-I.; McDonald, D.; et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.X.; Tayo, G.O.; Tan, Z.L.; Sun, Z.H.; Shen, L.X.; Zhou, C.S.; Xiao, W.J.; Ren, G.P.; Han, X.F.; Shen, S.B. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim. Sci. 2008, 86, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Kaka, N.A.; Shao, T. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour. Technol. 2020, 309, 123371. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.B.; Knelman, J.E.; Schindlbacher, A.; Siciliano, S.; Breulmann, M.; Yannarell, A.; Beman, J.M.; Abell, G.; Philippot, L.; Prosser, J.; et al. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes? Front. Microbiol. 2016, 7, 214. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Shi, W.; Sun, J.; Xia, T.; Huang, F.; Liu, Y.; Li, H.; Teng, K.; Zhong, J. Dynamic Changes in Fermentation Quality and Structure and Function of the Microbiome during Mixed Silage of Sesbania cannabina and Sweet Sorghum Grown on Saline-Alkaline Land. Microbiol. Spectr. 2022, 10, e0248322. [Google Scholar] [CrossRef]
- Jun, S.-R.; Robeson, M.S.; Hauser, L.J.; Schadt, C.W.; Gorin, A.A. PanFP: Pangenome-based functional profiles for microbial communities. BMC Res. Notes 2015, 8, 479. [Google Scholar] [CrossRef]
- Campana, M.; de Morais, J.P.G.; Capucho, E.; Garcia, T.M.; Pedrini, C.A.; Gandra, J.R.; Valle, T.A.D. Fibrolytic Enzymes Increase Fermentation Losses and Reduce Fiber Content of Sorghum Silage. Ann. Anim. Sci. 2023, 23, 165–172. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Wu, G.; Wang, X.; Lv, H.; Chen, J.; Liu, Y.; Pang, H.; Tan, Z. Effects of Lactobacillus plantarum on the Fermentation Profile and Microbiological Composition of Wheat Fermented Silage Under the Freezing and Thawing Low Temperatures. Front. Microbiol. 2021, 12, 671287. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, M.; Pan, G.; Zhang, H.; Yang, R.; Sun, J.; Yu, Z.; Bai, C.; Xue, Y. Effects of Bacillus subtilis or Lentilactobacillus buchneri on aerobic stability, and the microbial community in aerobic exposure of whole plant corn silage. Front. Microbiol. 2023, 14, 1177031. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Johnson, T.A.; Tyagi, N.; Malhotra, R.; Behare, P.V.; Kumar, S.; Tyagi, A.K. Synergistic Effect of LAB Strains (Lb. fermentum and Pediococcus acidilactisci) with Exogenous Fibrolytic Enzymes on Quality and Fermentation Characteristics of Sugarcane Tops Silage. Sugar Tech 2022, 25, 141–153. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, X.; Desta, S.T.; Dong, Z.; Mugabe, W.; Shao, T. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour. Technol. 2018, 257, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kuprys-Caruk, M.; Choinska, R.; Dekowska, A.; Piasecka-Jozwiak, K. Silage quality and biogas production from Spartina pectinata L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Sci. Rep. 2021, 11, 13175. [Google Scholar] [CrossRef]
- Reich, L.J.; Kung, L. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 2010, 159, 105–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Du, S.; Sun, L.; Wang, Z.; Ge, G.; Jia, Y. Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes. Plants 2024, 13, 6. https://doi.org/10.3390/plants13010006
Liu W, Du S, Sun L, Wang Z, Ge G, Jia Y. Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes. Plants. 2024; 13(1):6. https://doi.org/10.3390/plants13010006
Chicago/Turabian StyleLiu, Wei, Shuai Du, Lin Sun, Zhijun Wang, Gentu Ge, and Yushan Jia. 2024. "Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes" Plants 13, no. 1: 6. https://doi.org/10.3390/plants13010006
APA StyleLiu, W., Du, S., Sun, L., Wang, Z., Ge, G., & Jia, Y. (2024). Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes. Plants, 13(1), 6. https://doi.org/10.3390/plants13010006