The Development of Floral Scent Research: A Comprehensive Bibliometric Analysis (1987–2022)
<p>Temporal evolution of outputs on FS research. The term “LCS” (local citation score) denotes the frequency at which papers authored by an individual in the FS database are referenced by other research papers. Note: The green dotted line represents exponential trendline of outputs on FS research.</p> "> Figure 2
<p>Temporal changes in the publication of the top five research areas in FS research. The classification of research areas is based on the WoSCC.</p> "> Figure 3
<p>The co-occurrence network map of keywords in the worldwide scientific literature on FS. The size of each keyword (node) in the network is directly correlated with the frequency of its occurrences in the analysis of the literature. Colors are used to indicate clusters, in which keywords are grouped based on their interrelatedness in the network.</p> "> Figure 4
<p>Temporal distribution of keywords in the co-occurrence network map. Visualizing the average publication year gradient from purple (older publications) to blue (publications equally distributed across the timespan 1987–2022) to yellow (more recent publications).</p> "> Figure 5
<p>Analysis of top 20 countries’ cooperation network based on total link strength. Visualizing the total outputs strength from yellow to red in the map (<b>A</b>); visualizing the average publication year gradient from purple (older publications) to blue (publications equally distributed across the timespan 1987–2022) to yellow (more recent publications) (<b>B</b>).</p> "> Figure 6
<p>The network map showing the collaborations between 14 organizations in the top 10 in outputs and TLCS in the FS field.</p> "> Figure 7
<p>The potential future research trends and areas of FS based on the published articles.</p> ">
Abstract
:1. Introduction
- How have the interdisciplinary interests and the advancement in technology influenced the study of FS?
- How do high-frequency keywords, extracted from bibliometric data, reflect the areas of emphasis in FS research, and what can these keywords reveal about the dominant themes and connections within this scientific domain?
- What are the key trends and thematic shifts identified through bibliometric analysis in the FS field, and how can these patterns inform interdisciplinary collaboration and future research directions?
2. Methods
2.1. Data Collection
- Science Citation Index Expanded (SCIE) 1900–present;
- Social Sciences Citation Index (SSCI) 1956–present;
- Arts & Humanities Citation Index (A&HCI) 1975–present;
- Emerging Sources Citation Index (ESCI) 2018–present;
- Conference Proceedings Citation Index-Science (CPCI-S) 1990–present;
- Conference Proceedings Citation Index-Social Sciences and Humanities (CPCI-SSH) 1990–present.
2.2. Data Analysis
3. Results
3.1. Temporal Evolution of Research Outputs
3.2. Web of Science Core Collection Research Areas
3.3. Mapping the FS Topic Areas and Trends Using VOSviewer
- Cluster 1 spans a diverse spectrum of topics, primarily centered on volatile compounds and their identification. Within this cluster, keywords encompass chemical attributes recognized through identification technologies such as “gas-chromatography”, “solid-phase microextraction”, “mass spectrometry”, and “chromatography-mass spectrometry”. Additionally, the cluster delves into qualities associated with identification, including “flavor”, “impact odorants”, and “olfactometry”, among others.
- Cluster 2, anchored by the central keyword “FS”, gravitates towards subjects emphasizing the integral role of pollinators in reproduction and evolutionary processes. This thematic cluster includes keywords like “Hymenoptera”, “populations”, “bees”, “pollination”, “attraction”, “selection”, “ecology”, and “discrimination”, among others, underscoring the ecological and evolutionary dimensions of FS research.
- Cluster 3 is dedicated to keywords associated with the synthetic mechanisms of FS, encompassing terms like “biosynthesis”, “expression”, “metabolism”, “synthase”, “accumulation”, and “functional-characterization”, among others. This cluster delves into the intricate processes underpinning the creation and regulation of floral scents.
- Cluster 4 encompasses keywords such as “essential oil”, “antioxidant activity”, and “antimicrobial activity”. These keywords are closely interconnected and signify the relevance of floral scents in applications related to essential oils and their various biological activities.
3.4. Analysis of Country Network Cooperation
3.5. Dominant Institutions
4. Discussion
4.1. Technological Changes Drive FS Research Development
4.2. Research Focuses of FS
4.3. Trends in FS Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghissing, U.; Mitra, A. Biology of Floral Scent Volatiles in Ornamental Plants. In Floriculture and Ornamental Plants; Datta, S.K., Gupta, Y.C., Eds.; Springer: Singapore, 2021; pp. 1–41. ISBN 9789811515545. [Google Scholar]
- Dudareva, N.; Pichersky, E. Biology of Floral Scent; CRC Press: Boca Raton, FL, UDA, 2006; ISBN 978-1-4200-0400-7. [Google Scholar]
- Drager, A.P.; Chuyong, G.B.; Kenfack, D.; Nkomo, W.A.; Thomas, D.W.; Wandji, R.T.; Dunham, A.E. What Structures Diurnal Visitation Rates to Flowering Trees in an Afrotropical Lowland Rainforest Understory? Insect Conserv. Diver. 2022, 15, 19–35. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Gross, K.; Chapurlat, E.; Parachnowitsch, A.; Joffard, N.; Sletvold, N.; Ovaskainen, O.; Friberg, M. Measuring, Comparing and Interpreting Phenotypic Selection on Floral Scent. J. Evol. Biol. 2022, 35, 1432–1441. [Google Scholar] [CrossRef]
- Wong, D.C.J.; Pichersky, E.; Peakall, R. Many Different Flowers Make a Bouquet: Lessons from Specialized Metabolite Diversity in Plant–Pollinator Interactions. Curr. Opin. Plant Biol. 2023, 73, 102332. [Google Scholar] [CrossRef]
- Manincor, N.; Andreu, B.; Buatois, B.; Lou Chao, H.; Hautekèete, N.; Massol, F.; Piquot, Y.; Schatz, B.; Schmitt, E.; Dufay, M. Geographical Variation of Floral Scents in Generalist Entomophilous Species with Variable Pollinator Communities. Funct. Ecol. 2022, 36, 763–778. [Google Scholar] [CrossRef]
- Eisen, K.E.; Powers, J.M.; Raguso, R.A.; Campbell, D.R. An Analytical Pipeline to Support Robust Research on the Ecology, Evolution, and Function of Floral Volatiles. Front. Ecol. Evol. 2022, 10, 1006416. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Fernández-Martínez, M.; Filella, I.; Junker, R.R.; Peñuelas, J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. Front. Plant Sci. 2020, 11, 1154. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Geslin, B.; Zakardjian, M.; Lecareux, C.; Caillault, P.; Nève, G.; Meunier, J.; Dupouyet, S.; Sweeney, A.C.T.; Lewis, O.T.; et al. Long-term Experimental Drought Alters Floral Scent and Pollinator Visits in a Mediterranean Plant Community despite Overall Limited Impacts on Plant Phenotype and Reproduction. J. Ecol. 2022, 110, 2628–2648. [Google Scholar] [CrossRef]
- Serna-González, M.; Urrego-Giraldo, L.E.; Santa-Ceballos, J.P.; Suzuki-Azuma, H. Flowering, Floral Visitors and Climatic Drivers of Reproductive Phenology of Two Endangered Magnolias from Neotropical Andean Forests. Plant Spec. Biol. 2022, 37, 20–37. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, P.; Zhang, H.; Shao, D.; Yang, W.; Sun, T. Density-Dependent Dispersal Strategy of Pollinator Moderates the Adverse Effect of Habitat Loss on Plant Reproduction: An Integrated Model Based on Pollinators’ Behavioural Response. Funct. Ecol. 2023, 37, 732–747. [Google Scholar] [CrossRef]
- Sydenham, M.A.K.; Venter, Z.S.; Reitan, T.; Rasmussen, C.; Skrindo, A.B.; Skoog, D.I.J.; Hanevik, K.; Hegland, S.J.; Dupont, Y.L.; Nielsen, A.; et al. MetaComNet: A Random Forest-based Framework for Making Spatial Predictions of Plant–Pollinator Interactions. Methods Ecol. Evol. 2022, 13, 500–513. [Google Scholar] [CrossRef]
- Latinovic, A.; Nichols, D.S.; Adams, V.M.; McQuillan, P.B. Grouped SPME Comparison of Floral Scent as a Method of Unlocking Phylogenetic Patterns in Volatiles. Front. Ecol. Evol. 2022, 10, 795122. [Google Scholar] [CrossRef]
- Zhou, Y.; Abbas, F.; He, J.; Yan, F.; Wang, Q.; Yu, Y.; Yu, R.; Fan, Y. Floral Volatile Chemical Diversity in Hedychium F1 Hybrid Population. Ind. Crop. Prod. 2022, 184, 115032. [Google Scholar] [CrossRef]
- Cai, M.; Xu, W.; Xu, Y.; Pan, H.; Zhang, Q. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia Caudata by Headspace Solid-Phase Microextraction and GC–MS. Molecules 2023, 28, 478. [Google Scholar] [CrossRef] [PubMed]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral Volatiles: From Biosynthesis to Function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile Terpenoids: Multiple Functions, Biosynthesis, Modulation and Manipulation by Genetic Engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Dey, P.K.; Mitra, A. Floral Concretes from Two Tuberose Cultivars for Potent Uses in Herbal Skin-Care Products. Ind. Crop. Prod. 2022, 185, 115086. [Google Scholar] [CrossRef]
- Caser, M.; Scariot, V. The Contribution of Volatile Organic Compounds (VOCs) Emitted by Petals and Pollen to the Scent of Garden Roses. Horticulturae 2022, 8, 1049. [Google Scholar] [CrossRef]
- Derbassi, N.B.; Pedrosa, M.C.; Heleno, S.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Plant Volatiles: Using Scented Molecules as Food Additives. Trends Food Sci. Technol. 2022, 122, 97–103. [Google Scholar] [CrossRef]
- Sohail Akhtar, M.; Alam, T. Chemistry, Biological Activities, and Uses of Benzoin Resin. In Gums, Resins and Latexes of Plant Origin; Murthy, H.N., Ed.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–22. ISBN 978-3-030-76523-1. [Google Scholar]
- Dou, Z.; Xu, Z.; Zhang, T.; Li, S.; Xu, C.; Fan, T.; Guo, H. Highly Efficient Synthesis of Benzyl Benzoate Directly from Self-Coupling of Benzyl Alcohol in Water. Resour. Chem. Mater. 2023, 2, 117–127. [Google Scholar] [CrossRef]
- Jo, H.; Rodiek, S.; Fujii, E.; Miyazaki, Y.; Park, B.-J.; Ann, S.-W. Physiological and Psychological Response to Floral Scent. Hortscience 2013, 48, 82–88. [Google Scholar] [CrossRef]
- Wendin, K.; Pálsdóttir, A.M.; Spendrup, S.; Mårtensson, L. Odor Perception and Descriptions of Rose-Scented Geranium Pelargonium Graveolens ‘Dr. Westerlund’–Sensory and Chemical Analyses. Molecules 2023, 28, 4511. [Google Scholar] [CrossRef]
- Clifford, M.A. Your Guide to Forest Bathing (Expanded Edition): Experience the Healing Power of Nature; Red Wheel: Chico, CA, USA, 2021; ISBN 978-1-63341-226-2. [Google Scholar]
- Xu, J.; Xu, J.; Gu, Z.; Chen, G.; Li, M.; Wu, Z. Network Text Analysis of Visitors’ Perception of Multi-Sensory Interactive Experience in Urban Forest Parks in China. Forests 2022, 13, 1451. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Wang, W.; Yang, J.; Innes, J.L.; Ferretti-Gallon, K.; Wang, G. The Contribution of National Parks to Human Health and Well-Being: Visitors’ Perceived Benefits of Wuyishan National Park. Int. J. Geoheritage Parks 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Knoke, D.; Yang, S. Social Network Analysis; SAGE Publications: New York, NY, USA, 2019; ISBN 978-1-5063-8929-5. [Google Scholar]
- Camacho, D.; Panizo-LLedot, Á.; Bello-Orgaz, G.; Gonzalez-Pardo, A.; Cambria, E. The Four Dimensions of Social Network Analysis: An Overview of Research Methods, Applications, and Software Tools. Inform. Fusion 2020, 63, 88–120. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J. Vis. Exp. 2019, 152, 58494. [Google Scholar] [CrossRef]
- Garfield, E.; Pudovkin, A.I.; Istomin, V.S. Algorithmic Citation-Linked Historiography—Mapping the Literature of Science. Proc. Am. Soc. Inf. Sci. Technol. 2002, 39, 14–24. [Google Scholar] [CrossRef]
- Garfield, E.; Paris, S.; Stock, W.G. HistCiteTM: A Software Tool for Informetric Analysis of Citation Linkage. Inf. Wiss. Prax. 2006, 57, 391. [Google Scholar]
- Pichersky, E.; Gang, D.R. Genetics and Biochemistry of Secondary Metabolites in Plants: An Evolutionary Perspective. Trends Plant Sci. 2000, 5, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hu, K.; Lysenko, V.; Khan, K.Y.; Wang, Y.; Jiang, Y.; Guo, Y. A Scientometric Analysis of Agricultural Pollution by Using Bibliometric Software VoSViewer and HistciteTM. Environ. Sci. Pollut. Res. 2022, 29, 37882–37893. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Y.; Sun, X.; Zhu, Z.; Xu, Y. A Systematic Review of Higher-Order Thinking by Visualizing Its Structure Through HistCite and CiteSpace Software. Asia Pac. Edu. Res. 2022, 31, 635–645. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G. Exploring Machine Learning: A Scientometrics Approach Using Bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Picone, F.; Buonocore, E.; Chemello, R.; Russo, G.F.; Franzese, P.P. Exploring the Development of Scientific Research on Marine Protected Areas: From Conservation to Global Ocean Sustainability. Ecol. Inform. 2021, 61, 101200. [Google Scholar] [CrossRef]
- Pichersky, E. Biochemistry and Genetics of Floral Scent: A Historical Perspective. Plant J. 2023, 115, 18–36. [Google Scholar] [CrossRef]
- Wang, X.; Fan, W.; Xu, Y. Comparison on Aroma Compounds in Chinese Soy Sauce and Strong Aroma Type Liquors by Gas Chromatography–Olfactometry, Chemical Quantitative and Odor Activity Values Analysis. Eur. Food Res. Technol. 2014, 239, 813–825. [Google Scholar] [CrossRef]
- Oyama-Okubo, N.; Sakai, T.; Ando, T.; Nakayama, M.; Soga, T. Metabolome Profiling of Floral Scent Production in Petunia Axillaris. Phytochemistry 2013, 90, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, M.; Cabooter, D. Current Developments in LC-MS for Pharmaceutical Analysis. Analyst 2020, 145, 1129–1157. [Google Scholar] [CrossRef]
- Azuma, H.; Toyota, M. Floral Scent Emission and New Scent Volatiles from Acorus (Acoraceae). Biochem. Syst. Ecol. 2012, 41, 55–61. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt Fagundes, M.; Ballus, C.A.; Perceval Soares, V.; De Freitas Ferreira, D.; Sena Vaz Leães, Y.; Sasso Robalo, S.; Guidetti Vendruscolo, R.; Bastianello Campagnol, P.C.; Smanioto Barin, J.; Cichoski, A.J.; et al. Characterization of Olive Oil Flavored with Brazilian Pink Pepper (Schinus Terebinthifolius Raddi) in Different Maceration Processes. Food Res. Int. 2020, 137, 109593. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Ccana-Ccapatinta, G.V.; Aldana-Mejía, J.A.; Berretta, A.A.; Moraes, L.A.; Bastos, J.K. Chemical Characterization of Brazilian Propolis Using Automated Direct Thermal Desorption–Gas Chromatography–Mass Spectrometry. J. Sci. Food Agric. 2022, 102, 4345–4354. [Google Scholar] [CrossRef]
- Wilson, A. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Peris, M.; Escuder-Gilabert, L. On-Line Monitoring of Food Fermentation Processes Using Electronic Noses and Electronic Tongues: A Review. Anal. Chim. Acta 2013, 804, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Meetings. Plant Mol. Biol. Rep. 2002, 20, 195–202. [CrossRef]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open 2019, 9, 2158244019829575. [Google Scholar] [CrossRef]
- Krizek, B.A.; Anderson, J.T. Control of Flower Size. J. Exp. Bot. 2013, 64, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, R.L.; Kemp, D.J.; Flores-Moreno, H.; Laffan, S.W.; White, T.E.; Hemmings, F.A.; Moles, A.T. Macroecological Patterns in Flower Colour Are Shaped by Both Biotic and Abiotic Factors. New Phytol. 2020, 228, 1972–1985. [Google Scholar] [CrossRef]
- Raza, A.; Hafeez, M.B.; Zahra, N.; Shaukat, K.; Umbreen, S.; Tabassum, J.; Charagh, S.; Khan, R.S.A.; Hasanuzzaman, M. The Plant Family Brassicaceae: Introduction, Biology, and Importance. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 1–43. ISBN 9789811563454. [Google Scholar]
- Adler, L.S.; Irwin, R.E. What You Smell Is More Important than What You See? Natural Selection on Floral Scent. New Phytol. 2012, 195, 510–511. [Google Scholar] [CrossRef]
- Gong, W.-C.; Chen, G.; Vereecken, N.J.; Dunn, B.L.; Ma, Y.-P.; Sun, W.-B. Floral Scent Composition Predicts Bee Pollination System in Five Butterfly Bush (Buddleja, Scrophulariaceae) Species. Plant Biol. 2015, 17, 245–255. [Google Scholar] [CrossRef]
- Klahre, U.; Gurba, A.; Hermann, K.; Saxenhofer, M.; Bossolini, E.; Guerin, P.M.; Kuhlemeier, C. Pollinator Choice in Petunia Depends on Two Major Genetic Loci for Floral Scent Production. Curr. Biol. 2011, 21, 730–739. [Google Scholar] [CrossRef]
- Cordeiro, G.D.; Pinheiro, M.; Dötterl, S.; Alves-dos-Santos, I. Pollination of Campomanesia phaea (Myrtaceae) by Night-Active Bees: A New Nocturnal Pollination System Mediated by Floral Scent. Plant Biol. 2017, 19, 132–139. [Google Scholar] [CrossRef]
- García, Y.; Friberg, M.; Parachnowitsch, A.L. Spatial Variation in Scent Emission within Flowers. Nord. J. Bot. 2021, 39, njb.03014. [Google Scholar] [CrossRef]
- Heiduk, A.; Brake, I.; von Tschirnhaus, M.; Göhl, M.; Jürgens, A.; Johnson, S.D.; Meve, U.; Dötterl, S. Ceropegia sandersonii Mimics Attacked Honeybees to Attract Kleptoparasitic Flies for Pollination. Curr. Biol. 2016, 26, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- Claudel, C.; Lev-Yadun, S. Odor Polymorphism in Deceptive Amorphophallus Species—A Review. Plant Signal. Behav. 2021, 16, 1991712. [Google Scholar] [CrossRef] [PubMed]
- Joffard, N.; Arnal, V.; Buatois, B.; Schatz, B.; Montgelard, C. Floral Scent Evolution in the Section Pseudophrys: Pollinator-Mediated Selection or Phylogenetic Constraints? Plant Biol. 2020, 22, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. Pollination Mode Determines Floral Scent. Biochem. Syst. Ecol. 2015, 61, 44–53. [Google Scholar] [CrossRef]
- Zhang, X.-M. Floral Volatile Sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) Selectively Attract Asian Honey Bees. J. Appl. Entomol. 2018, 142, 359–362. [Google Scholar] [CrossRef]
- Gibernau, M.; Maia, A.C.D.; Amaral Navarro, D.M.D. Pollination Ecology and Floral Scent Chemistry of Philodendron fragrantissimum (Araceae). Bot. Lett. 2021, 168, 384–394. [Google Scholar] [CrossRef]
- Fenske, M.P.; Imaizumi, T. Circadian Rhythms in Floral Scent Emission. Front. Plant Sci. 2016, 7, 462. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, X.; Luo, Y.; Huang, S. Floral Scent Emission Is the Highest at the Second Night of Anthesis in Lonicera japonica (Caprifoliaceae). J. Syst. Evol. 2023, 61, 530–537. [Google Scholar] [CrossRef]
- Haber, A.I.; Sims, J.W.; Mescher, M.C.; De Moraes, C.M.; Carr, D.E. A Key Floral Scent Component (β-Trans-Bergamotene) Drives Pollinator Preferences Independently of Pollen Rewards in Seep Monkeyflower. Funct. Ecol. 2019, 33, 218–228. [Google Scholar] [CrossRef]
- Knauer, A.C.; Schiestl, F.P. Bees Use Honest Floral Signals as Indicators of Reward When Visiting Flowers. Ecol. Lett. 2015, 18, 135–143. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Johnson, S.D. Pollinator-Mediated Evolution of Floral Signals. Trends Ecol. Evol. 2013, 28, 307–315. [Google Scholar] [CrossRef]
- Gonzalez-Terrazas, T.P.; Martel, C.; Milet-Pinheiro, P.; Ayasse, M.; Kalko, E.K.V.; Tschapka, M. Finding Flowers in the Dark: Nectar-Feeding Bats Integrate Olfaction and Echolocation While Foraging for Nectar. R. Soc. Open Sci. 2016, 3, 160199. [Google Scholar] [CrossRef]
- Howell, A.D.; Alarcón, R. Osmia Bees (Hymenoptera: Megachilidae) Can Detect Nectar-Rewarding Flowers Using Olfactory Cues. Anim. Behav. 2007, 74, 199–205. [Google Scholar] [CrossRef]
- Lehner, S.; Schulz, S.; Dötterl, S. The Mystery of the Butterfly Bush Buddleja Davidii: How Are the Butterflies Attracted? Front. Plant Sci. 2022, 13, 3315. [Google Scholar] [CrossRef]
- Núñez, P.; Méndez, M.; López-Rull, I. Can Foraging Hummingbirds Use Smell? A Test with the Amazilia Hummingbird Amazila Amazilia. Ardeola 2021, 68, 433–444. [Google Scholar] [CrossRef]
- Van Der Niet, T.; Jürgens, A.; Johnson, S.D. Is the Timing of Scent Emission Correlated with Insect Visitor Activity and Pollination in Long-Spurred Satyrium Species? Plant Biol. 2015, 17, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Martel, C.; Gerlach, G.; Ayasse, M.; Milet-Pinheiro, P. Pollination Ecology of the Neotropical Gesneriad Gloxinia perennis: Chemical Composition and Temporal Fluctuation of Floral Perfume. Plant Biol. 2019, 21, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Hetherington-Rauth, M.C.; Ramírez, S.R. Evolutionary Trends and Specialization in the Euglossine Bee–Pollinated Orchid Genus Gongora1, 2. Ann. Mo. Bot. Gard. 2015, 100, 271–299. [Google Scholar] [CrossRef]
- Dötterl, S.; Glück, U.; Jürgens, A.; Woodring, J.; Aas, G. Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix Caprea. PLoS ONE 2014, 9, e93421. [Google Scholar] [CrossRef]
- Milet-Pinheiro, P.; Navarro, D.M.D.A.F.; Dötterl, S.; Carvalho, A.T.; Pinto, C.E.; Ayasse, M.; Schlindwein, C. Pollination Biology in the Dioecious Orchid Catasetum Uncatum: How Does Floral Scent Influence the Behaviour of Pollinators? Phytochemistry 2015, 116, 149–161. [Google Scholar] [CrossRef]
- Campbell, D.R.; Jürgens, A.; Johnson, S.D. Reproductive Isolation between Zaluzianskya Species: The Influence of Volatiles and Flower Orientation on Hawkmoth Foraging Choices. New Phytol. 2016, 210, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Füssel, U.; Dötterl, S.; Jürgens, A.; Aas, G. Inter- and Intraspecific Variation in Floral Scent in the Genus Salix and Its Implication for Pollination. J. Chem. Ecol. 2007, 33, 749–765. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P. The Evolution of Floral Scent and Insect Chemical Communication. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; O’Neill Rothenberg, D.; Zhou, Y.; Ke, Y.; Wang, H. Volatile Organic Compounds as Mediators of Plant Communication and Adaptation to Climate Change. Physiol. Plant. 2022, 174, e13840. [Google Scholar] [CrossRef]
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Al-Sadi, A.M. Biosynthesis of Essential Oils in Aromatic Plants: A Review. Food Rev. Int. 2016, 32, 117–160. [Google Scholar] [CrossRef]
- Colazza, S.; Peri, E.; Cusumano, A. Chemical Ecology of Floral Resources in Conservation Biological Control. Annu. Rev. Entomol. 2023, 68, 13–29. [Google Scholar] [CrossRef]
- Foti, M.C.; Rostás, M.; Peri, E.; Park, K.C.; Slimani, T.; Wratten, S.D.; Colazza, S. Chemical Ecology Meets Conservation Biological Control: Identifying Plant Volatiles as Predictors of Floral Resource Suitability for an Egg Parasitoid of Stink Bugs. J. Pest Sci. 2017, 90, 299–310. [Google Scholar] [CrossRef]
- Raguso, R.A.; Thompson, J.N.; Campbell, D.R. Improving Our Chemistry: Challenges and Opportunities in the Interdisciplinary Study of Floral Volatiles. Nat. Prod. Rep. 2015, 32, 893–903. [Google Scholar] [CrossRef]
- Bloch, G.; Bar-Shai, N.; Cytter, Y.; Green, R. Time Is Honey: Circadian Clocks of Bees and Flowers and How Their Interactions May Influence Ecological Communities. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160256. [Google Scholar] [CrossRef] [PubMed]
- Gérard, M.; Vanderplanck, M.; Restrepo, C.E.; Baird, E. Sensory Perception and Behaviour of Insect Pollinators under Climate Change. Nat. Clim. Chang. 2023, 13, 596–598. [Google Scholar] [CrossRef]
- Gervasi, D.D.L.; Selosse, M.; Sauve, M.; Francke, W.; Vereecken, N.J.; Cozzolino, S.; Schiestl, F.P. Floral Scent and Species Divergence in a Pair of Sexually Deceptive Orchids. Ecol. Evol. 2017, 7, 6023–6034. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, Y.; Wu, X.; Wen, X.; Li, D.; Zhou, H.; Li, Z.; Liu, B.; Wei, J.; Chen, F.; et al. High-Quality Evergreen Azalea Genome Reveals Tandem Duplication-Facilitated Low-Altitude Adaptability and Floral Scent Evolution. Plant Biotechnol. J. 2021, 19, 2544–2560. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.S.; Masek, P. Multisensory Integration of Colors and Scents: Insights from Bees and Flowers. J. Comp. Physiol. A 2014, 200, 463–474. [Google Scholar] [CrossRef]
- Bischoff, M.; Raguso, R.A.; Jürgens, A.; Campbell, D.R. Context-Dependent Reproductive Isolation Mediated by Floral Scent and Color. Evolution 2015, 69, 1–13. [Google Scholar] [CrossRef]
- Jürgens, A.; Bischoff, M. Changing Odour Landscapes: The Effect of Anthropogenic Volatile Pollutants on Plant–Pollinator Olfactory Communication. Funct. Ecol. 2017, 31, 56–64. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research Progress of Wine Aroma Components: A Critical Review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Xue, J.; Tang, C.; Duan, C.; Yan, G. Use of Torulaspora Delbrueckii and Hanseniaspora Vineae Co-Fermentation with Saccharomyces Cerevisiae to Improve Aroma Profiles and Safety Quality of Petit Manseng Wines. LWT 2022, 161, 113360. [Google Scholar] [CrossRef]
- Erbaş, S.; Erdoğan, Ü.; Mutlucan, M. The Scent Compounds of Immortelle Ecotypes (Helichrysum Italicum (Roth) G. Don.) Grown in Türkiye and Its New Products (Absolute and Concrete). S. Afr. J. Bot. 2023, 158, 301–311. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, C.; Cheng, B.; Wan, H.; Luo, L.; Pan, H.; Zhang, Q. Volatile Compound Analysis and Aroma Evaluation of Tea-Scented Roses in China. Ind. Crop. Prod. 2020, 155, 112735. [Google Scholar] [CrossRef]
- Dötterl, S.; Gershenzon, J. Chemistry, Biosynthesis and Biology of Floral Volatiles: Roles in Pollination and Other Functions. Nat. Prod. Rep. 2023; advance article. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.K.; Li, C.; Lee, I.H.T.; Lam, H.-M.; Chan, T.-F.; Hui, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Xu, M.; Jiang, Y.; Chen, S.; Chen, F.; Chen, F. Herbivory-Induced Emission of Volatile Terpenes in Chrysanthemum Morifolium Functions as an Indirect Defense against Spodoptera Litura Larvae by Attracting Natural Enemies. J. Agric. Food Chem. 2021, 69, 9743–9753. [Google Scholar] [CrossRef] [PubMed]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants: From Farm to Pharmacy; Joshee, N., Dhekney, S.A., Parajuli, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 333–359. ISBN 978-3-030-31269-5. [Google Scholar]
- Baydar, N.G.; Baydar, H. Phenolic Compounds, Antiradical Activity and Antioxidant Capacity of Oil-Bearing Rose (Rosa Damascena Mill.) Extracts. Ind. Crop. Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Russo, R.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Exploitation of Cytotoxicity of Some Essential Oils for Translation in Cancer Therapy. Evid. Based Compl. Alt. 2015, 2015, 397821. [Google Scholar] [CrossRef]
- Jiménez-Fernández, M.; Juárez-Trujillo, N.; Mendoza-López, M.R.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A. Nutraceutical Potential, and Antioxidant and Antibacterial Properties of Quararibea Funebris Flowers. Food Chem. 2023, 411, 135529. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum Vulgare: A Comprehensive Review of Its Traditional Use, Phytochemistry, Pharmacology, and Safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef]
- Dampc, A.; Luczkiewicz, M. Labrador Tea—The Aromatic Beverage and Spice: A Review of Origin, Processing and Safety. J. Sci. Food Agric. 2015, 95, 1577–1583. [Google Scholar] [CrossRef]
- Dampc, A.; Luczkiewicz, M. Rhododendron Tomentosum (Ledum Palustre). A Review of Traditional Use Based on Current Research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef]
- Kumar, Y.; Prakash, O.; Tripathi, H.; Tandon, S.; Gupta, M.M.; Rahman, L.-U.; Lal, R.K.; Semwal, M.; Darokar, M.P.; Khan, F. AromaDb: A Database of Medicinal and Aromatic Plant’s Aroma Molecules With Phytochemistry and Therapeutic Potentials. Front. Plant Sci. 2018, 9, 1081. [Google Scholar] [CrossRef]
- Chisvert, A.; López-Nogueroles, M.; Miralles, P.; Salvador, A. Chapter 10—Perfumes in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products, 2nd ed.; Salvador, A., Chisvert, A., Eds.; Elsevier: Boston, MA, USA, 2018; pp. 225–248. ISBN 978-0-444-63508-2. [Google Scholar]
- Bartsch, J.; Uhde, E.; Salthammer, T. Analysis of Odour Compounds from Scented Consumer Products Using Gas Chromatography-Mass Spectrometry and Gas Chromatography-Olfactometry. Anal. Chim. Acta 2016, 904, 98–106. [Google Scholar] [CrossRef]
- Amrad, A.; Moser, M.; Mandel, T.; De Vries, M.; Schuurink, R.C.; Freitas, L.; Kuhlemeier, C. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Curr. Biol. 2016, 26, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, S.; Wu, J.; Liu, X.; Zhang, Z. Identification of Long Non-Coding RNAs Involved in Floral Scent of Rosa Hybrida. Front. Plant Sci. 2022, 13, 996474. [Google Scholar] [CrossRef]
- Bendahmane, M.; Dubois, A.; Raymond, O.; Bris, M.L. Genetics and Genomics of Flower Initiation and Development in Roses. J. Exp. Bot. 2013, 64, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Frachon, L.; Stirling, S.A.; Schiestl, F.P.; Dudareva, N. Combining Biotechnology and Evolution for Understanding the Mechanisms of Pollinator Attraction. Curr. Opin. Biotechnol. 2021, 70, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent Developments, Challenges, and Opportunities in Genetic Improvement of Essential Oil-Bearing Rose (Rosa Damascena): A Review. Ind. Crop. Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Z. Genetic and Biochemical Aspects of Floral Scents in Roses. Int. J. Mol. Sci. 2022, 23, 8014. [Google Scholar] [CrossRef] [PubMed]
- Bailes, E.J.; Ollerton, J.; Pattrick, J.G.; Glover, B.J. How Can an Understanding of Plant–Pollinator Interactions Contribute to Global Food Security? Curr. Opin. Plant Biol. 2015, 26, 72–79. [Google Scholar] [CrossRef]
- Tirnaz, S.; Batley, J. Epigenetics: Potentials and Challenges in Crop Breeding. Mol. Plant 2019, 12, 1309–1311. [Google Scholar] [CrossRef]
Cluster | Color | Keywords | Occurrences | Links | Total Links |
---|---|---|---|---|---|
1 | Red | volatile compounds | 770 | 65 | 1942 |
identification | 484 | 65 | 1247 | ||
quality | 230 | 54 | 530 | ||
flavor | 217 | 56 | 574 | ||
gas chromatography | 207 | 51 | 629 | ||
solid-phase microextraction | 178 | 46 | 490 | ||
impact odorants | 162 | 43 | 425 | ||
profiles | 136 | 48 | 377 | ||
wine | 131 | 41 | 366 | ||
extraction | 122 | 40 | 345 | ||
fermentation | 102 | 42 | 260 | ||
fruit | 98 | 54 | 239 | ||
cultivars | 93 | 49 | 263 | ||
temperature | 69 | 52 | 184 | ||
mass spectrometry | 68 | 38 | 167 | ||
varieties | 68 | 40 | 183 | ||
saccharomyces cerevisiae | 67 | 38 | 162 | ||
chromatography–mass spectrometry | 65 | 26 | 191 | ||
grape | 65 | 41 | 177 | ||
olfactometry | 52 | 32 | 180 | ||
storage | 51 | 36 | 130 | ||
2 | Green | floral scent | 1497 | 65 | 3459 |
evolution | 522 | 60 | 1375 | ||
plants | 381 | 62 | 879 | ||
pollination | 230 | 51 | 583 | ||
diversity | 159 | 59 | 400 | ||
ecology | 128 | 32 | 341 | ||
attraction | 119 | 40 | 304 | ||
chemistry | 111 | 40 | 294 | ||
responses | 101 | 47 | 226 | ||
behavior | 87 | 34 | 181 | ||
biology | 87 | 33 | 223 | ||
color | 85 | 51 | 240 | ||
selection | 82 | 37 | 220 | ||
patterns | 81 | 40 | 211 | ||
hymenoptera | 73 | 29 | 161 | ||
populations | 57 | 43 | 145 | ||
bees | 56 | 27 | 129 | ||
discrimination | 56 | 36 | 133 | ||
reproductive isolation | 54 | 22 | 105 | ||
nectar | 53 | 27 | 113 | ||
3 | Blue | biosynthesis | 380 | 60 | 1092 |
expression | 229 | 50 | 604 | ||
emission | 211 | 56 | 700 | ||
genes | 136 | 44 | 369 | ||
floral scent production | 95 | 32 | 200 | ||
metabolism | 92 | 50 | 269 | ||
gene expression | 78 | 36 | 171 | ||
accumulation | 74 | 48 | 210 | ||
functional characterization | 74 | 40 | 218 | ||
arabidopsis | 68 | 30 | 170 | ||
synthase | 67 | 38 | 218 | ||
arabidopsis thaliana | 64 | 26 | 140 | ||
clarkia breweri | 60 | 27 | 185 | ||
volatile | 53 | 47 | 146 | ||
4 | Yellow | essential oil | 358 | 60 | 791 |
antioxidant activity | 220 | 47 | 477 | ||
constituents | 214 | 54 | 500 | ||
chemical composition | 213 | 49 | 455 | ||
leaves | 172 | 53 | 403 | ||
extract | 142 | 38 | 255 | ||
growth | 131 | 53 | 230 | ||
acid | 76 | 47 | 164 | ||
antimicrobial activity | 73 | 29 | 137 | ||
phenolic compounds | 69 | 40 | 156 | ||
yield | 63 | 36 | 119 |
Institution | Country | Outputs | Institution | Country | TLCS |
---|---|---|---|---|---|
CAS | China | 122 | UM | USA | 1579 |
UKZN | South Africa | 78 | PU | USA | 1481 |
CU | USA | 79 | UB | Germany | 1194 |
UB | Germany | 69 | MPICE | Germany | 851 |
CAU | China | 59 | CU | USA | 727 |
KU | Japan | 55 | UKZN | South Africa | 637 |
UM | USA | 55 | USC | USA | 629 |
CAAS | China | 54 | UA | USA | 576 |
MPICE | Germany | 53 | UF | USA | 443 |
PU | USA | 52 | UZ | Switzerland | 415 |
Average | 67.6 | Average | 853.2 |
Author | Institution | Outputs | Author | Institution | TLCSx |
---|---|---|---|---|---|
S. Dotterl | UB, Germany | 116 | N. Dudareva | PU, USA | 1346 |
R.A. Raguso | USC, USA | 79 | R.A. Raguso | USC, USA | 1304 |
S.D. Johnson | UKZN, South Africa | 64 | E. Pichersky | UM, USA | 1216 |
E. Pichersky | UM, USA | 53 | S. Dotterl | UB, Germany | 700 |
F.P. Schiestl | UZ, Switzerland | 51 | C.M. Kish | PU, USA | 626 |
N. Dudareva | PU, USA | 49 | A. Jurgens | UB, Germany | 602 |
F. Chen | UM, USA | 48 | F.P. Schiestl | UZ, Switzerland | 580 |
A. Jurgens | UB, Germany | 43 | J.T. Knudsen | UG, Sweden | 567 |
N. Watanabe | US, Japan | 37 | L. Tollsten | UG, Sweden | 414 |
J. Wang | UM, USA | 34 | E. Lewinsohn | UM, USA | 362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Zhang, Y.; Fan, J.; Shrestha, A.; Zhang, W.; Wang, G. The Development of Floral Scent Research: A Comprehensive Bibliometric Analysis (1987–2022). Plants 2023, 12, 3947. https://doi.org/10.3390/plants12233947
Peng Q, Zhang Y, Fan J, Shrestha A, Zhang W, Wang G. The Development of Floral Scent Research: A Comprehensive Bibliometric Analysis (1987–2022). Plants. 2023; 12(23):3947. https://doi.org/10.3390/plants12233947
Chicago/Turabian StylePeng, Qin, Yangyang Zhang, Junjun Fan, Anil Shrestha, Wangxiang Zhang, and Guangyu Wang. 2023. "The Development of Floral Scent Research: A Comprehensive Bibliometric Analysis (1987–2022)" Plants 12, no. 23: 3947. https://doi.org/10.3390/plants12233947
APA StylePeng, Q., Zhang, Y., Fan, J., Shrestha, A., Zhang, W., & Wang, G. (2023). The Development of Floral Scent Research: A Comprehensive Bibliometric Analysis (1987–2022). Plants, 12(23), 3947. https://doi.org/10.3390/plants12233947