Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Experimental Design and Treatments
2.3. Preparation of Ae
2.4. Plant Sampling
2.5. Morphological Features and Yield Attributes
2.6. Chlorophyll and Performance Index Measurements
2.7. Determinations of Relative Water Content (RWC %) and Membrane Stability Index (MSI %)
2.8. Determination of Nutrients
2.9. Estimation of Physicochemical Characteristics: Sepal Anthocyanin, pH, Total Soluble Solids, and Acidity in Dry Roselle Calyces
2.9.1. pH, Total Soluble Solids
2.9.2. Total Anthocyanin
2.10. Statistical Analysis
3. Results
3.1. Effect of Salinity
3.2. Effect of KSi
3.3. Effect of Ae
3.4. Effect of Salinity Plus KSi
3.5. Effect of Salinity Plus Ae
3.6. Effect of Interaction of Ae Plus KSi
3.7. Combination of Salinity Plus KSi and Ae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide; Version 4; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Reddy, M.; Begum, H.; Sunil, N.; Pandravada, S.; Sivaraj, N. Assessing climate suitability for sustainable vegetable roselle (Hibiscus sabdariffa var. sabdariffa L.) cultivation in India using MaxEnt model. Agric. Biol. Sci. J. 2015, 1, 62–70. [Google Scholar]
- Ottai, M.; Aboud, K.; Mahmoud, I.; El-Hariri, D. Stability analysis of roselle cultivars (Hibiscus sabdariffa L.) under different nitrogen fertilizer environments. World J. Agric. Res. 2006, 2, 333–339. [Google Scholar]
- Ismail, A.; Ikram, E.H.K.; Nazri, H.S.M. Roselle (Hibiscus sabdariffa L.) seeds nutritional composition protein quality and health benefits. Food 2008, 2, 1–16. [Google Scholar]
- Margesi, S.; Kagashe, G.; Dhokia, D. Determination of iron contents in Hibsicus sabdariffa calyces and Kigelia Africana fruit. Sch. Acad. J. Biosci. 2013, 1, 108–111. [Google Scholar]
- Cisse, M.; Dornier, M.; Sakho, M.; Ndiaye, A.; Reynes, M.; Sock, O. Le bissap (Hibiscus sabdariffa L.): Composition et principales utilisations. Fruits 2009, 64, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Manita-Mishr. Chemistry and pharmacology of some Hibiscus spp.—A review. J. Med. Aroma Plant. Sci. 1999, 21, 1169–1186. [Google Scholar]
- Akanbi, W.; Olaniyan, A.; Togun, A.; Ilupeju, A.; Olaniran, O. The effect of organic and inorganic fertilizer on growth, calyx yield and quality of roselle (Hibiscus sabdariffa L.). Am. Eurasian J. Sustain. Agric. 2009, 3, 652–657. [Google Scholar]
- Hussein, M.; El-Sherbeny, S.; El-Saeid, H.; Kandeel, M. Field experiments of foliar application with B-9 and micronutrients on Hibiscus sabdariffa L. 1. Growth, yield and hormonal content. Egypt. J. Horti. 1989, 16, 59–68. [Google Scholar]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Duke, N. Halophytes-A resource for the future. Wetl. Ecol. Manag. 2001, 9, 455. [Google Scholar]
- Jouyban, Z. The effects of salt stress on plant growth. Techn. J. Eng. Appl. Sci. 2012, 2, 7–10. [Google Scholar]
- Tester, M.; Bacic, A. Abiotic stress tolerance in grasses. From Model Plants Crop Plants 2005, 137, 791–793. [Google Scholar]
- Kadamanda, R.; Natarajan, S.R. Salinity effects on leaf on roselle Landraces (Hibiscus sabdariffa L.). Int. J. Pure App. Biosci. 2017, 5, 158–165. [Google Scholar] [CrossRef]
- Laane, H.-M. The effects of foliar sprays with different silicon compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar fertilization: Scientific principles and field pratices. Int. Fertil. Ind. Assoc. 2013, 15, 228. [Google Scholar]
- Ehrlich, H.L. Geomicrobiology; Marcel Dekker Inc.: New York, NY, USA, 1981; p. 393. [Google Scholar]
- Datnoff, L.E.; Snyder, G.H.; Korndörfer, G.H. Silicon in Agriculture; Elsevier: Amsterdam, The Netherlands, 2001; p. 424. [Google Scholar]
- Matichenkov, V.; Calvert, D. Silicon as a beneficial element for sugarcane. J. Am. Soc. Sugarcane Technol. 2002, 22, 21–30. [Google Scholar]
- Sommer, M.; Kaczorek, D.; Kuzyakov, Y.; Breuer, J. Silicon pools and fluxes in soils and landscapes—A review. J. Plant. Nutr. Soil Sci. 2006, 169, 310–329. [Google Scholar] [CrossRef]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Si, J.; Römheld, V. Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant. Pathol. 2005, 54, 678–685. [Google Scholar] [CrossRef]
- Kandil, E.E.; Abdelsalam, N.R.; Aziz, A.A.A.E.; Ali, H.M.; Siddiqui, M.H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech. 2020, 22, 782–791. [Google Scholar] [CrossRef]
- Kanai, S.; Ohkura, K.; Adu-Gyamfi, J.; Mohapatra, P.; Nguyen, N.; Saneoka, H.; Fujita, K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot. 2007, 58, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- Romero-Aranda, M.R.; Jurado, O.; Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant. Physiol. 2006, 163, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.; Kandil, E.E.; El-Dein, A.A.Z.; Abou-Donia, M.E.; Ali, H.M.; Abdelsalam, N.R. Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ibrahim, S.M.; Abou-Amer, I. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egypt J. Soil Sci. 2019, 59, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, R.K.; Ma, J.F.; Bélanger, R.R. Role of silicon in plants. Front. Plant Sci. 2017, 8, 1858. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Sun, W.; Zhu, Y.-G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant. Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Rémus-Borel, W.; Menzies, J.G.; Bélanger, R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y. The health efficacy of aloe and its development and utilization. Asian Soc. Sci. 2009, 5, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, Y.; Kong, H.; Song, Y.; Chong-Kil, L. Immunomodulatory effects of Aloe saponaria on lipopolysaccharide-activated RAW 264.7 macrophages. Nat. Prod. Chem. Res. 2016, 4, 2. [Google Scholar]
- Jain, D.; Jain, J.; Kumari, B. Chemical composition and antioxidant activity of Aloe Saponaria. Pestic. Res. J. 2014, 26, 25–29. [Google Scholar]
- Wang, H.; Guo, X.; Hu, X.; Li, T.; Fu, X.; Liu, R.H. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017, 217, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Yagi, A.; Shibata, S.; Nishioka, I.; Iwadare, S.; Ishida, Y. Cardiac stimulant action of constituents of Aloe saponaria. J. Pharm. Sci. 1982, 71, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Winters, W.; Benavides, R.; Clouse, W. Effects of aloe extracts on human normal and tumor cells in vitro. Econ. Bot. 1981, 35, 89–95. [Google Scholar] [CrossRef]
- Yoo, E.A.; Kim, S.D.; Lee, W.M.; Park, H.J.; Kim, S.K.; Cho, J.Y.; Min, W.; Rhee, M.H. Evaluation of antioxidant, antinociceptive, and anti-inflammatory activities of ethanol extracts from Aloe saponaria Haw. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, M.C.; Artola, R.L.; Murature, M.; Murature, D.; Ditamo, Y.; Roth, G.A.; Kivatinitz, S. Mannan from Aloe saponaria inhibits tumoral cell activation and proliferation. Int. Immunopharmacol. 2004, 4, 411–418. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall Indian Priv.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Black, C.A.; Evans, D.D.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis, 2nd ed.; Chemical and Microbiological Properties; Soil Science Society of America International Publisher: Madison, WI, USA, 1965; p. 160. [Google Scholar]
- Mabusela, W.T.; Stephen, A.M.; Botha, M.C. Carbohydrate polymers from Aloe ferox leaves. Phytochemistry 1990, 29, 3555–3558. [Google Scholar] [CrossRef]
- Nandi, S.K.; Palni, L.M.S.; Parker, C.W. Dynamics of endogenous cytokinins during the growth cycle of a hormone-autotrophic genetic tumor line of tobacco. Plant. Physiol. 1990, 94, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Rowe, C.J. Food Analysis by Atomic Absorption Spectroscopy; Varian Techtron Pty. Ltd.: Springvale, Australia, 1973; pp. 13–39. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant. Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Gilmore, A.M.; Yamamoto, H.Y. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant. Physiol. 1991, 96, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.J.; Landolt, W.; Bucher, J.B.; Strasser, R.J. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ. Pollut. 2000, 109, 501–507. [Google Scholar] [CrossRef]
- Hayat, S.; Ali, B.; Hasan, S.A.; Ahmad, A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 2007, 60, 33–41. [Google Scholar] [CrossRef]
- Premachandra, G.S.; Saneoka, H.; Ogata, S. Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J. Agric. Sci. 1990, 115, 63–66. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Jayaraman, J. Laboratory Manual in Biochemistry; Wiley Eastern: Delhi, India, 1981; p. 188. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant. Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Piper, G.S. Soil and Plant Analysis: A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants; The University of Adelaide: Adelaide, Australia, 1947; p. 368. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; CAB International: Wallingford, UK, 1993; p. 37. [Google Scholar]
- Novozamsky, I.; Van Eck, R.; Houba, V. A rapid determination of silicon in plant material. Commun. Soil Sci. Plant. Anal. 1984, 15, 205–211. [Google Scholar] [CrossRef]
- Van der Vorm, P. Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon. Commun. Soil Sci. Plant. Anal. 1987, 18, 1181–1189. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Chloride in soils and its uptake and movement within the plant: A review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L. Templeton. Determination of ash in biomass. NREL BAT Team Lab. Anal. Proced. 2008, 25, 1617. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Abdel-Aal, E.S.; Hucl, P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
- Gomez, K.A. Statistical Analysis Procedures of Agriculture Research; Joh Wiley and Sons: New York, NY, USA, 1983; pp. 25–30. [Google Scholar]
- Waller, R.A.; Duncan, D.B. A bays rule for the symmetric multiple comparison problems. Amer. St. Assoc. 1969, 12, 1485–1503. [Google Scholar]
- Sairam, R.K.; Rao, K.V.; Srivastava, G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant. Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Hussain, T.M.; Ch, T.; Hazara, M.; Sultan, Z.; Saleh, B.K.; Gopal, G.R. Recent advances in salt stress biology a review. Biotechnol. Mol. Biol. Rev. 2008, 3, 8–13. [Google Scholar]
- Silva, C.; Martínez, V.; Carvajal, M. Osmotic versus toxic effects of NaCl on pepper plants. Biol. Plant. 2008, 52, 72–79. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Ashraf, M.; Altunlu, H. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 2007, 60, 397–403. [Google Scholar] [CrossRef]
- Rus, A.; Lee, B.-h.; Muñoz-Mayor, A.; Sharkhuu, A.; Miura, K.; Zhu, J.-K.; Bressan, R.A.; Hasegawa, P.M. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant. Physiol. 2004, 136, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Cuin, T.A.; Miller, A.J.; Laurie, S.A.; Leigh, R.A. Potassium activities in cell compartments of salt-grown barley leaves. J. Exp. Bot. 2003, 54, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Wahab, M. The efficiency of using saline and fresh water irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare Mill subsp. vulgare var. vulgare under North Sinai conditions. Res. J. Agric. Biol. Sci. 2006, 2, 571–577. [Google Scholar]
- Ashraf, M.; Orooj, A. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J. Arid Environ. 2006, 64, 209–220. [Google Scholar] [CrossRef]
- Tabatabaie, S.J.; Nazari, J. Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turk. J. Agric. For. 2007, 31, 245–253. [Google Scholar]
- Mansour, M.; Salama, K.; Ali, F.; Abou Hadid, A. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen. Appl. Plant. Physiol. 2005, 31, 29–41. [Google Scholar]
- Mohamed, B.; Sarwar, M.; Rashid, B.; Dahab, A.; Jamal, A.; Shahid, B.; Hassan, S.; Husnain, T. Physiological and biochemical responses of roselle (Hibiscus sabdariffa L.) to NaCl stress. Agrochimica 2013, 57, 248–263. [Google Scholar]
- Ahmad, P. Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch. Agron. Soil Sci. 2010, 56, 575–588. [Google Scholar] [CrossRef]
- Azooz, M.M.; Youssef, A.M.; Ahmad, P. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int. J. Plant. Physiol. Biochem. 2011, 3, 253–264. [Google Scholar]
- Koç, M.; Barutçular, C.; Genç, I. Photosynthesis and productivity of old and modern durum wheats in a Mediterranean environment. Crop. Sci. 2003, 43, 2089–2098. [Google Scholar] [CrossRef]
- Santiago, L.S.; Lau, T.S.; Melcher, P.J.; Steele, O.C.; Goldstein, G. Morphological and physiological responses of Hawaiian Hibiscus tiliaceus populations to light and salinity. Int. J. Plant. Sci. 2000, 161, 99–106. [Google Scholar] [CrossRef]
- Moosavi, S.; Seghatoleslami, M.; Javadi, H.; Moosavi, S.; Jouyban, Z.; Ansarinia, E.; Nasiri, M. Effect of salt stress on germination and early seedling growth of roselle (Hibiscus sabdariffa). Glob. J. Med. Plant. Res. 2013, 1, 124–127. [Google Scholar]
- Parida, A.K.; Das, A.B.; Mohanty, P. Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant. Growth Regul. 2004, 42, 213–226. [Google Scholar] [CrossRef]
- Akram, M.S.; Ashraf, M.; Shahbaz, M.; Aisha Akram, N. Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) plants as affected by foliar-applied different potassium salts. J. Plant. Nutr. Soil Sci. 2009, 172, 884–893. [Google Scholar] [CrossRef]
- Ghabour, S.S.; El Yazal, S.A.S.; Moawad, H.M.H. The Beneficial effect of bio-fertilizer together with ascorbic acid on roselle plants grown below different kinds of soil. In Proceedings of the 15th International Conference on Agriculture & Horticulture, London, UK, 24–25 August 2020; p. 7. [Google Scholar]
- DeRidder, B.P.; Salvucci, M.E. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant. Sci. 2007, 172, 246–254. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Prášil, I.T.; Renaut, J. Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J. Proteom. 2011, 74, 1301–1322. [Google Scholar] [CrossRef]
- Desingh, R.; Kanagaraj, G. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen. Appl. Plant. Physiol. 2007, 33, 221–234. [Google Scholar]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Van Breusegem, F.; Vranová, E.; Dat, J.F.; Inzé, D. The role of active oxygen species in plant signal transduction. Plant. Sci. 2001, 161, 405–414. [Google Scholar] [CrossRef]
- Jithesh, M.; Prashanth, S.; Sivaprakash, K.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006, 85, 237. [Google Scholar] [CrossRef]
- Li, R.-h.; Guo, P.-G.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric. Sci. China 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.; Sohrabi, Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop. Sci. 2010, 4, 580–585. [Google Scholar]
- Jaleel, C.A.; Sankar, B.; Sridharan, R.; Panneerselvam, R. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 2008, 32, 79–83. [Google Scholar]
- Dolatabadian, A.; Jouneghani, R.S. Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 165–172. [Google Scholar]
- Marín Velázquez, J.A.; Andreu Puyal, P.; Carrasco, A.; Arbeloa Matute, A. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Rev. Des. Régions Arid. 2010, 24, 722–727. [Google Scholar]
- Huang, J.; Hirji, R.; Adam, L.; Rozwadowski, K.L.; Hammerlindl, J.K.; Keller, W.A.; Selvaraj, G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant. Physiol. 2000, 122, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Dubey, R.S. Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. J. Plant. Physiol. 2006, 163, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dubey, R.S. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: Role of osmolytes as enzyme protectant. J. Plant. Physiol. 2005, 162, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, M.T.; Rady, M.M.; Osman, A.S.; Abdalla, M.A. Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. J. Hortic. Sci. Biotechnol. 2013, 88, 439–446. [Google Scholar] [CrossRef]
- Dawood, M.; Taie, H.; Nassar, R.; Abdelhamid, M.; Schmidhalter, U. The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. S. Afr. J. Bot. 2014, 93, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Gong, H. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 2014, 34, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudi, K.; Emam, Y.; Pessarakli, M. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J. Plant. Nutr. 2016, 39, 1001–1015. [Google Scholar] [CrossRef]
- Crusciol, C.A.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop. Sci. 2009, 49, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Das, K.K.; Swamy, G.; Biswas, D.; Chnaniya, K.K. Response of soil application of diatomaceous earth as a source of silicon on leaf nutrient status of guava. Int. J. Curr. Microbiol. App. Sci 2017, 6, 1394–1399. [Google Scholar]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 672. [Google Scholar]
- Ahmad, A.; Afzal, M.; Ahmad, A.; Tahir, M. Foliar effect of silicon on yield and quality of rice. Cercet. Agron. Mold. 2013, 3, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002; p. 281. [Google Scholar]
- Abd El-Gawad, H.; El-Azm, N.A.; Hikal, M. Effect of potassium silicate on tuber yield and biochemical constituents of potato plants grown under drought stress conditions. Middle East. J. Agric. Res. 2017, 6, 718–731. [Google Scholar]
- Bidari, B.; Hebsur, N. Potassium in relation to yield and quality of selected vegetable crops. Karnataka J. Agric. Sci. 2011, 24, 111. [Google Scholar]
- Meena, V.; Dotaniya, M.; Coumar, V.; Rajendiran, S.; Kundu, S.; Rao, A.S. A case for silicon fertilization to improve crop yields in tropical soils. Proc. Natl. Acad. Sci. USA 2014, 84, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Lopes, U.P.; Zambolim, L.; Costa, H.; Pereira, O.L.; Finger, F.L. Potassium silicate and chitosan application for gray mold management in strawberry during storage. Crop Protect. 2014, 63, 103–106. [Google Scholar] [CrossRef]
- Shaaban, M.M.; Abou El-Nour, E.-Z.A. Macro and micro-nutrients concentrations and uptake by maize seedlings irrigated with fresh or saline water as affected by K-silicate foliar fertilization. Am. J. Plant Physiol. 2014, 9, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.T.; Haddad, R. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech. J. Genet. Plant Breed. 2011, 47, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Akev, N.; Can, A.; Sütlüpınar, N.; Çandöken, E.; Özsoy, N.; Özden, T.; Yanardağ, R.; Üzen, E. Twenty years of research on Aloe vera. J. Pharm. Istanb. Univ. 2015, 45, 191–215. [Google Scholar]
- Kothari, V.; Seshadri, S. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. Nutr. Food Sci. 2010, 40, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Yamada, Y. Alkaloid biogenesis: Molecular aspects. Annu. Rev. Plant Biol. 1994, 45, 257–285. [Google Scholar] [CrossRef]
- Stepien, P.; Klobus, G. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol. Plant. 2005, 125, 31–40. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta. Agric. Scand. B Soil Plant. Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
Soil Salinity Level | Depth (cm) | Particle Size Distribution | Texture Class | ρb g cm−3 | Ksat cm h−1 | FC % | WP % | AW % | ECe (dS/m) | pH | OM % | CEC | CaCO3 % | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | |||||||||||||
Normal soil (Ece < 4 dS/m) | 0.0–20 | 80 | 9.5 | 10.5 | SL | 1.57 | 1.87 | 23.29 | 10.42 | 12.87 | 3.56 | 7.40 | 0.84 | 11.89 | 6.58 |
20–40 | 75.5 | 12.3 | 12.2 | SL | 1.53 | 1.67 | 22.61 | 10.33 | 12.28 | 3.44 | 7.61 | 0.81 | 10.40 | 7.21 | |
40–60 | 73.3 | 13.2 | 13.5 | SL | 1.50 | 1.66 | 21.76 | 11.22 | 10.54 | 3.72 | 7.38 | 0.75 | 10.13 | 6.09 | |
mean | 76.27 | 11.67 | 12.07 | SL | 1.53 | 1.73 | 22.55 | 10.66 | 11.90 | 3.57 | 7.46 | 0.80 | 10.81 | 6.63 | |
Moderately saline soil (Ece: 4–8 dS/m) | 0.0–20 | 78.77 | 10.30 | 10.93 | SL | 1.58 | 2.11 | 20.38 | 10.61 | 9.77 | 6.82 | 7.55 | 0.79 | 10.67 | 7.11 |
20–40 | 76.17 | 11.21 | 12.63 | SL | 1.53 | 1.94 | 21.75 | 10.87 | 10.88 | 7.22 | 7.63 | 0.73 | 9.84 | 7.98 | |
40–60 | 74.21 | 13.15 | 12.64 | SL | 1.55 | 1.89 | 22.41 | 11.81 | 10.60 | 7.35 | 7.25 | 0.64 | 9.21 | 6.18 | |
mean | 76.38 | 11.55 | 12.06 | SL | 1.55 | 1.98 | 21.51 | 11.10 | 10.42 | 7.13 | 7.48 | 0.72 | 9.91 | 7.09 | |
Highly saline soil (Ece: 8–16 dS/m) | 0.0–20 | 75.23 | 10.47 | 14.30 | SL | 1.49 | 1.67 | 22.20 | 11.79 | 10.41 | 10.87 | 7.37 | 0.81 | 11.38 | 6.44 |
20–40 | 77.17 | 12.76 | 10.07 | SL | 1.54 | 2.18 | 19.33 | 10.42 | 8.91 | 11.22 | 7.74 | 0.63 | 9.14 | 7.21 | |
40–60 | 76.13 | 11.66 | 12.21 | SL | 1.51 | 1.84 | 20.63 | 11.15 | 9.48 | 11.07 | 7.66 | 0.62 | 9.99 | 8.16 | |
mean | 76.18 | 11.63 | 12.19 | SL | 1.51 | 1.90 | 20.72 | 11.12 | 9.60 | 11.05 | 7.59 | 0.69 | 10.17 | 7.27 |
Parameters | Minerals | Sugars | Sugars | ||||
---|---|---|---|---|---|---|---|
GA3 mg 100 g−1 | 15.00 | N mg 100 g−1 | 82.65 | Glucuronic (%) | 2.01 | Rhamnose (%) | 0.08 |
IAA mg 100 g−1 | 0.63 | P mg 100 g−1 | 7.95 | Stachyose (%) | 2.48 | Mannose (%) | 0.10 |
ABA mg 100 g−1 | 3.06 | K mg 100 g−1 | 57.14 | Galacturonic (%) | 1.68 | Raffinose (%) | 0.40 |
Carbohydrates % | 8.70 | Fe ppm | 766.11 | Sucrose (%) | 0.30 | Arabinose (%) | 0.24 |
Vitamin C mg g−1 | 154.64 | Zn ppm | 166.87 | Maltose (%) | 2.54 | Fructose (%) | 0.45 |
Protein % | 3.70 | Mn ppm | 478.88 | Lactose (%) | 0.22 | Mannitol (%) | 0.06 |
Cholesterol mg g−1 | 18.73 | Ca mg 100 g−1 | 37.00 | D-glucose (%) | 0.32 | Sorbitol (%) | 0.02 |
Polyphenol’s µg g−1 | 22.82 | Cu ppm | 42.73 | Glucose (%) | 0.64 | Ribose (%) | 0.12 |
Flavonoid µg g−1 | 2.28 | Mg mg 100 g−1 | 15.55 | Xylose (%) | 0.15 | Total sugars in ppm | 12.05 |
Total sterol µg g−1 | 65.47 | Na mg 100 g−1 | 48.27 | Galactose (%) | 0.24 | Total sugars in % | 0.001 |
Polysaccharides % | 90 | ||||||
Antioxidant activity % | 47.1 |
Salinity Levels | Ae % | KSi g L−1 | Plant Height (cm) | Stem Diameter (mm) | Fresh Weight Plant−1 (kg) | Dry Weight Plant−1 (g) | ||||
---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | |||
S1 (ECe < 4 dS/m) | 0 | 0 | 213.67 abc | 212.00 abcd | 26.62 cd | 27.49 bcd | 1.90 cd | 1.33 c | 531.58 bc | 389.21 d |
30 | 217.33 ab | 219.33 abc | 26.73 cd | 29.36 abcd | 2.33 ab | 1.47 c | 653.52 a | 404.33 d | ||
60 | 226.67 a | 236.00 a | 28.33 bc | 33.14 abc | 2.12 ab | 1.57 bc | 648.54 a | 541.87 bc | ||
0.5 | 0 | 212.33 abc | 218.00 abc | 26.23 cde | 27.58 bcd | 2.05 bc | 1.50 c | 609.69 ab | 462.71 cd | |
30 | 238.00 a | 234.33 a | 28.07 bcd | 29.70 abcd | 1.93 bc | 1.97 ab | 605.79 ab | 628.41 ab | ||
60 | 219.33 ab | 221.67 ab | 35.95 a | 35.09 a | 2.50 a | 2.33 a | 709.13 a | 736.92 a | ||
1 | 0 | 230.00 a | 230.67 a | 30.67 abc | 26.72 cde | 1.47 de | 1.93 ab | 447.16 cd | 610.71 ab | |
30 | 236.67 a | 240.33 a | 32.80 ab | 34.68 ab | 1.20 de | 2.30 a | 379.05 d | 670.81 ab | ||
60 | 234.67 a | 238.33 a | 31.91 abc | 32.16 abc | 1.17 g | 2.15 a | 399.57 d | 665.77 ab | ||
S2 (ECe 4–8 dS/m) | 0 | 0 | 167.00 efg | 170.33 efgh | 13.18 i | 14.80 g | 0.19 ef | 0.23 ef | 72.12 g | 72.57 fg |
30 | 179.00 de | 179.67 ef | 20.67 efg | 18.69 fg | 0.53 g | 0.48 def | 128.59 efg | 124.96 efg | ||
60 | 182.00 de | 187.67 de | 15.08 ghi | 15.41 fg | 0.62 fg | 0.27 ef | 101.70 fg | 106.74 efg | ||
0.5 | 0 | 176.67 def | 183.67 de | 16.56 fghi | 18.13 fg | 0.59 fg | 0.38 def | 113.29 efg | 110.65 efg | |
30 | 192.67 bcde | 196.67 bcde | 18.60 fghi | 18.84 fg | 0.85 fg | 0.80 d | 222.54 e | 225.92 e | ||
60 | 186.67 cde | 190.00 cde | 22.29 def | 22.54 def | 0.33 g | 0.56 de | 189.94 ef | 189.61 ef | ||
1 | 0 | 166.00 efg | 170.67 efg | 16.66 fghi | 14.90 g | 0.33 g | 0.29 ef | 98.04 fg | 98.83 efg | |
30 | 196.67 bcd | 196.67 bcde | 19.08 fgh | 20.06 efg | 0.31 g | 0.60 de | 122.22 efg | 122.08 efg | ||
60 | 187.33 cde | 184.00 de | 18.06 fghi | 15.09 g | 0.31 g | 0.34 ef | 108.83 fg | 107.15 efg | ||
S3 (ECe 8–12 dS/m) | 0 | 0 | 117.00 i | 117.67 k | 12.79 i | 12.95 g | 0.15 g | 0.14 f | 44.44 g | 44.33 g |
30 | 141.33 ghi | 146.33 ghijk | 16.15 ghi | 16.02 fg | 0.23 ef | 0.23 ef | 70.67 g | 73.94 fg | ||
60 | 123.33 hi | 120.00 jk | 16.24 ghi | 13.92 g | 0.26 g | 0.25 g | 63.07 g | 64.16 fg | ||
0.5 | 0 | 122.67 hi | 140.33 hijk | 13.52 hi | 12.90 g | 0.19 g | 0.19 ef | 83.67 fg | 82.95 fg | |
30 | 147.00 gh | 149.33 ghij | 17.33 fghi | 15.59 fg | 0.26 g | 0.25 ef | 99.80 fg | 100.89 efg | ||
60 | 140.00 ghi | 142.33 ghijk | 16.87 fghi | 15.98 fg | 0.27 g | 0.26 ef | 86.34 fg | 88.32 fg | ||
1 | 0 | 125.33 hi | 118.33 k | 14.79 hi | 14.38 g | 0.20 g | 0.21 ef | 61.60 g | 62.68 fg | |
30 | 135.67 hi | 131.00 ijk | 18.28 fghi | 16.82 fg | 0.37 g | 0.36 ef | 90.00 fg | 90.88 fg | ||
60 | 149.67 fgh | 150.67 fghi | 15.53 ghi | 14.65 g | 0.31 g | 0.33 er | 81.30 fg | 82.90 fg | ||
LSD 5% | (S) | 12.14 | 11.68 | 2.10 | 2.02 | 0.13 | 0.28 | 39.96 | 86.78 | |
(A) | 13.37 | 10.93 | 2.62 | 1.51 | 0.23 | 0.15 | 37.32 | 66.53 | ||
(KSi) | 9.09 | 10.02 | 1.94 | 2.41 | 0.40 | 0.25 | 37.05 | 43.83 | ||
(S*A) | 23.16 | 18.92 | 4.54 | 2.61 | 0.16 | 0.14 | 64.65 | 115.24 | ||
(S*KSi) | 15.75 | 17.35 | 3.36 | 4.17 | 0.27 | 0.24 | 64.18 | 75.91 | ||
(A*KSi) | 15.75 | 17.35 | 3.36 | 4.17 | 0.27 | 0.24 | 64.18 | 75.91 | ||
(S*A*KSi) | 27.27 | 30.05 | 5.82 | 7.23 | 0.47 | 0.42 | 111.16 | 131.48 |
Salinity Levels | Ae % | KSi g L−1 | No of Fruits Plant−1 | Fruits Fresh Weight Plant−1 (g) | Sepals Weight Plant−1 (g) | Fruits Ovaries Weight Plant−1 (g) | Seeds Weight Plant−1 (g) | Sepals Yield Dry Weight t h−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | |||
S1 (ECe < 4 dS/m) | 0 | 0 | 31.00 fg | 35.42 f | 372.33 de | 330.78 d | 27.96 bc | 22.17 d | 80.83 c | 79.45 c | 25.97 cd | 28.86 c | 0.932 bc | 0.739 d |
30 | 60.33 bcd | 60.14 bc | 396.33 de | 385.94 cd | 34.72 ab | 38.71 a | 119.41 a | 121.50 a | 38.69 ab | 40.59 a | 1.157 ab | 1.290 a | ||
60 | 55.00 cd | 59.17 cd | 434.00 cd | 457.75 b | 37.88 a | 34.75 b | 132.33 a | 124.87 a | 47.72 a | 46.36 a | 1.263 a | 1.158 b | ||
0.5 | 0 | 41.00 ef | 48.92 de | 435.67 cd | 428.72 bc | 16.87 d | 13.93 e | 67.66 cd | 68.15 de | 17.80 de | 14.77 de | 0.562 d | 0.464 e | |
30 | 78.33 a | 80.06 a | 687.33 a | 623.97 a | 36.78 a | 33.30 b | 102.50 b | 104.85 b | 39.02 ab | 43.97 a | 1.226 a | 1.110 b | ||
60 | 67.67 ab | 70.03 ab | 538.00 bc | 574.28 a | 23.84 cd | 22.07 d | 82.13 c | 79.26 cd | 35.67 bc | 34.78 b | 0.795 cd | 0.736 d | ||
1 | 0 | 38.33 f | 44.19 ef | 297.33 e | 243.44 e | 21.52 cd | 20.83 d | 60.07 d | 64.96 e | 16.81 def | 20.00 d | 0.717 cd | 0.694 d | |
30 | 63.33 bc | 65.61 bc | 598.00 ab | 613.00 a | 26.64 c | 26.14 c | 104.08 b | 102.26 b | 31.90 bc | 29.49 bc | 0.888 c | 0.871 c | ||
60 | 51.00 de | 56.83 cd | 420.00 cde | 382.50 cd | 22.06 cd | 21.09 d | 77.83 c | 77.16 cd | 28.44 bcd | 27.32 c | 0.735 cd | 0.703 d | ||
S2 (ECe 4–8 dS/m) | 0 | 0 | 8.00 i | 8.92 h | 62.00 f | 64.14 h | 3.58 e | 3.37 gh | 11.04 f | 10.40 h | 3.94 g | 4.70 gh | 0.119 e | 0.112 gh |
30 | 9.00 hi | 9.25 h | 85.67 f | 85.81 gh | 3.98 e | 4.57 fgh | 12.32 f | 13.79 gh | 4.86 g | 5.37 fgh | 0.133 e | 0.152 fgh | ||
60 | 11.00 hi | 9.67 h | 90.00 f | 95.56 fgh | 5.05 e | 5.16 fgh | 15.71 ef | 17.85 gh | 6.46 efg | 6.39 fgh | 0.168 e | 0.172 fgh | ||
0.5 | 0 | 8.00 i | 7.33 h | 69.00 f | 69.08 h | 3.06 e | 3.03 h | 10.43 f | 11.63 h | 4.49 g | 5.18 fgh | 0.102 e | 0.101 h | |
30 | 16.00 hi | 15.06 gh | 136.33 f | 146.19 fg | 6.50 e | 6.64 fg | 20.31 ef | 21.08 fgh | 10.48 efg | 10.85 ef | 0.217 e | 0.221 fg | ||
60 | 13.67 hi | 14.33 gh | 123.33 f | 124.03 fgh | 6.12 e | 6.13 fgh | 23.62 ef | 23.53 fg | 8.82 efg | 8.68 fg | 0.204 e | 0.204 fgh | ||
1 | 0 | 9.67 hi | 8.53 h | 83.67 f | 81.17 gh | 3.65 e | 3.98 fgh | 10.82 f | 13.03 gh | 5.21 fg | 5.51 fgh | 0.122 e | 0.133 fgh | |
30 | 10.33 hi | 9.39 h | 91.67 f | 92.53 gh | 4.48 e | 4.82 fgh | 13.99 ef | 14.30 gh | 7.10 efg | 7.50 fgh | 0.149 e | 0.161 fgh | ||
60 | 13.67 hi | 12.14 h | 92.67 f | 92.78 gh | 4.87 e | 4.91 fgh | 16.01 ef | 16.23 gh | 6.45 efg | 6.47 fgh | 0.162 e | 0.164 fgh | ||
S3 (ECe 8–12 dS/m) | 0 | 0 | 7.00 i | 8.25 h | 71.33 f | 76.00 h | 3.64 e | 3.58 gh | 13.41 ef | 12.92 gh | 2.48 g | 2.91 gh | 0.121 e | 0.119 gh |
30 | 14.67 hi | 11.89 h | 114.67 f | 106.47 fgh | 4.88 e | 4.86 fgh | 17.44 ef | 16.24 gh | 4.72 g | 4.59 gh | 0.163 e | 0.162 fgh | ||
60 | 10.00 hi | 11.78 h | 91.00 f | 94.25 fgh | 3.94 e | 3.74 gh | 13.49 ef | 13.24 gh | 2.84 g | 2.85 h | 0.131 e | 0.125 gh | ||
0.5 | 0 | 7.33 i | 8.33 h | 78.00 f | 77.72 h | 3.06 e | 3.01 h | 11.19 f | 12.01 h | 3.03 g | 3.08 gh | 0.102 e | 0.100 h | |
30 | 13.67 hi | 12.97 h | 103.00 f | 91.33 gh | 4.58 e | 4.82 fgh | 16.32 ef | 16.80 gh | 5.86 fg | 5.73 fgh | 0.153 e | 0.161 fgh | ||
60 | 15.00 hi | 13.75 gh | 119.00 f | 111.08 fgh | 6.11 e | 6.09 fgh | 20.07 ef | 19.32 fgh | 4.52 g | 4.13 gh | 0.204 e | 0.203 fgh | ||
1 | 0 | 11.67 hi | 14.64 gh | 113.67 f | 116.72 fgh | 5.29 e | 5.29 fgh | 20.71 ef | 20.04 fgh | 6.21 efg | 6.18 fgh | 0.176 e | 0.176 fgh | |
30 | 13.67 hi | 15.56 gh | 126.67 f | 125.97 fgh | 6.22 e | 6.04 fgh | 21.09 ef | 21.24 fgh | 7.14 efg | 7.46 fgh | 0.207 e | 0.201 fgh | ||
60 | 19.67 gh | 23.56 g | 163.33 f | 159.44 f | 7.17 e | 7.36 f | 27.21 e | 29.41 f | 6.41 efg | 6.63 fgh | 0.239 e | 0.245 f | ||
LSD 5% | (S) | 4.17 | 6.21 | 48.28 | 39.06 | 2.05 | 2.97 | 8.20 | 1.84 | 5.21 | 3.81 | 0.068 | 0.099 | |
(A) | 6.64 | 1.96 | 62.30 | 10.00 | 1.95 | 1.45 | 5.37 | 4.72 | 4.32 | 1.89 | 0.065 | 0.048 | ||
(KSi) | 3.80 | 3.50 | 43.65 | 22.00 | 2.38 | 1.13 | 4.85 | 3.75 | 3.95 | 1.93 | 0.079 | 0.038 | ||
(S*A) | 11.49 | 3.40 | 107.91 | 17.32 | 3.38 | 2.5 | 9.30 | 8.17 | 7.48 | 3.28 | 0.113 | 0.083 | ||
(S*KSi) | 6.58 | 6.06 | 75.60 | 38.11 | 4.11 | 1.95 | 8.40 | 6.49 | 6.83 | 3.35 | 0.137 | 0.065 | ||
(A*KSi) | 6.58 | 6.06 | 75.60 | 38.11 | 4.11 | 1.95 | 8.40 | 6.49 | 6.83 | 3.35 | 0.137 | 0.065 | ||
(S*A*KSi) | 11.40 | 10.49 | 130.95 | 66.00 | 7.13 | 3.38 | 14.55 | 11.24 | 11.84 | 5.80 | 0.238 | 0.113 |
Salinity Levels | Ae % | KSi g L−1 | Fv/Fm | PI | SPAD | RWC % | MSI % | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | |||
S1 (ECe < 4 dS/m) | 0 | 0 | 0.73 c–g | 0.73 c–h | 4.27 a–d | 4.42 ab | 36.90 h | 39.63 e–h | 73.38 de | 72.87 cd | 63.60 e–h | 62.14 de |
30 | 0.77 a–d | 0.75 a–g | 4.39 a–c | 4.62 ab | 48.33 a–d | 50.03 ab | 78.74 a–e | 79.28 a–d | 68.46 a–h | 68.22 a–e | ||
60 | 0.78 abc | 0.76 a–f | 4.73 ab | 4.61 ab | 41.07 c–h | 41.00 d–h | 81.79 a–d | 81.89 ab | 72.98 a–d | 70.16 a–d | ||
0.5 | 0 | 0.72 efg | 0.74 a–h | 2.76 e–k | 2.46 d–i | 37.93 gh | 39.67 e–h | 76.60 a–e | 76.32 a–d | 65.53 b–h | 64.59 b–e | |
30 | 0.79 a | 0.78 a–d | 3.87 b–f | 3.42 b–f | 50.00 a | 52.10 a | 81.71 a–d | 80.20 abc | 73.97 abc | 71.80 a–d | ||
60 | 0.76 a–e | 0.78 a–d | 2.77 e–k | 2.48 d–i | 41.97 a–h | 44.23 b–g | 84.62 ab | 84.39 a | 72.81 a–d | 72.74 abc | ||
1 | 0 | 0.77 a–d | 0.79 ab | 2.68 e–k | 2.88 c–h | 42.73 a–h | 42.73 c–h | 77.41 a–e | 75.06 bcd | 66.29 b–h | 66.67 a–e | |
30 | 0.80 a | 0.80 a | 5.25 a | 5.14 a | 48.97 abc | 48.67 abc | 85.74 a | 84.47 a | 76.63 a | 75.32 a | ||
60 | 0.79 ab | 0.80 a | 3.39 b–h | 3.65 b–e | 46.33 a–f | 46.13 a–d | 83.10 abc | 82.74 ab | 73.99 ab | 74.34 ab | ||
S2 (ECe 4–8 dS/m) | 0 | 0 | 0.67 h | 0.64 i | 1.44 k | 1.67 hi | 38.70 e–h | 37.27 h | 71.13 e | 70.80 d | 60.02 h | 62.07 de |
30 | 0.72 d–g | 0.72 e–h | 2.38 g–k | 2.25 f–i | 43.47 a–h | 41.97 d–h | 75.42 b–e | 77.08 a–d | 67.64 a–h | 65.35 a–e | ||
60 | 0.70 fgh | 0.68 hi | 2.29 g–k | 2.23 f–i | 39.03 e–h | 41.90 d–h | 78.79 a–e | 77.87 a–d | 67.67 a–h | 68.14 a–e | ||
0.5 | 0 | 0.70 gh | 0.72 e–h | 1.64 jk | 1.58 i | 41.43 b–h | 38.87 fgh | 72.20 e | 73.79 bcd | 64.09 d–h | 63.39 cde | |
30 | 0.76 a–e | 0.76 a–f | 2.36 g–k | 2.26 f–i | 49.67 ab | 46.43 a–d | 77.30 a–e | 79.97 abc | 67.19 b–h | 68.24 a–e | ||
60 | 0.78 abc | 0.78 a–d | 2.77 e–k | 2.40 e–i | 43.90 a–h | 45.13 b–f | 78.51 a–e | 80.12 abc | 70.73 a–e | 69.72 a–d | ||
1 | 0 | 0.69 gh | 0.71 fgh | 2.06 h–k | 1.48 i | 37.77 gh | 38.60 gh | 75.23 b–e | 75.80 a–d | 64.12 d–h | 65.07 b–e | |
30 | 0.76 a–e | 0.77 a–e | 3.17 c–i | 2.99 c–g | 43.07 a–h | 40.60 d–h | 78.23 a–e | 78.41 a–d | 69.79 a–g | 67.35 a–e | ||
60 | 0.74 b–g | 0.72 d–h | 2.11 h–k | 2.23 f–i | 45.27 a–g | 46.53 a–d | 79.47 a–e | 78.47 a–d | 70.36 a–f | 69.08 a–e | ||
S3 (ECe 8–12 dS/m) | 0 | 0 | 0.70 gh | 0.69 ghi | 1.91 ijk | 1.68 hi | 37.53 gh | 36.53 h | 70.80 e | 70.47 d | 60.78 gh | 59.47 e |
30 | 0.77 a–e | 0.76 a–f | 2.88 e–j | 2.60 d–i | 40.40 d–h | 39.4 e–h | 75.08 cde | 75.05 bcd | 64.88 c–h | 65.73 a–e | ||
60 | 0.75 a–f | 0.76 a–f | 2.57 f–k | 2.38 e–i | 44.63 a–h | 42.63 c–h | 76.79 a–e | 76.87 a–d | 67.15 b–h | 66.54 a–e | ||
0.5 | 0 | 0.74 b–g | 0.73 b–h | 1.86 i–k | 1.50 i | 38.50 fgh | 40.93 d–h | 71.54 e | 71.79 cd | 61.33 fgh | 61.72 de | |
30 | 0.79 ab | 0.78 a–d | 3.96 a–e | 3.99 abc | 47.00 a–e | 45.40 b–e | 76.97 a–e | 76.64 a–d | 68.03 a–h | 67.41 a–e | ||
60 | 0.78 abc | 0.77 a–e | 3.57 b–g | 3.47 b–f | 42.80 a–h | 42.47 c–h | 78.37 a–e | 77.59 a–d | 70.64 a–e | 69.92 a–d | ||
1 | 0 | 0.74 b–g | 0.75 a–f | 1.79 jk | 1.76 ghi | 39.20 e–h | 38.77 gh | 72.12 e | 72.47 cd | 62.63 e–h | 63.41 cde | |
30 | 0.78 abc | 0.77 a–f | 3.92 a–f | 3.71 bcd | 45.30 a–g | 44.63 b–g | 78.03 a–e | 78.41 a–d | 66.69 b–h | 67.67 a–e | ||
60 | 0.80 a | 0.79 abc | 2.91 d–j | 2.70 d–i | 49.43 ab | 46.83 a–d | 79.14 a–e | 78.47 a–d | 67.85 a–h | 68.78 a–e | ||
LSD 5% | (S) | 0.03 | 0.03 | 1.04 | 0.31 | 5.31 | 5.77 | 1.92 | 4.08 | 1.62 | 8.17 | |
(A) | 0.02 | 0.02 | 0.45 | 0.35 | 3.26 | 4.16 | 2.83 | 4.57 | 2.94 | 3.82 | ||
(KSi) | 0.02 | 0.02 | 0.46 | 0.43 | 2.77 | 2.12 | 3.15 | 2.99 | 3.03 | 3.38 | ||
(S*A) | 0.03 | 0.03 | 0.78 | 0.6 | 5.68 | 7.21 | 4.90 | 7.92 | 5.08 | 6.62 | ||
(S*KSi) | 0.03 | 0.04 | 0.80 | 0.74 | 4.80 | 3.67 | 5.46 | 5.18 | 5.24 | 5.86 | ||
(A*KSi) | 0.03 | 0.04 | 0.80 | 0.74 | 4.80 | 3.67 | 5.45 | 5.19 | 5.25 | 5.87 | ||
(S*A*KSi) | 0.05 | 0.06 | 1.38 | 1.28 | 8.32 | 6.36 | 9.45 | 8.98 | 9.09 | 10.14 |
Salinity Levels | Ae % | KSi g L−1 | TSS (mg g−1 DW) | TFAA (mg g−1 DW) | Proline (µ mole g−1) | K+ (mg g−1 DW) | Na+ (mg g−1 DW) | SiO2 (mg g−1 DW) | Cl− (mg g−1 DW) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | |||
S1 (ECe < 4 dS/m) | 0 | 0 | 343.30 cd | 343.30 cde | 73.90 klm | 75.30 gh | 0.23 jkl | 0.22 g–k | 6.63 lm | 6.79 i–m | 0.49 gh | 0.48 i | 15.80 g | 14.70 k | 2.88 f | 3.76 j |
30 | 417.73 cd | 350.00 cde | 89.10 g | 86.30 fg | 0.26 hij | 0.25 f–i | 6.87 ij | 6.85 h–l | 0.44 ij | 0.44 j | 23.00 bcd | 22.70 b | 2.88 f | 3.09 i | ||
60 | 435.10 bc | 370.00 cd | 132.00 b | 138.10 b | 0.33 e | 0.34 de | 7.57 b | 7.13 c–g | 0.41 jk | 0.41 jk | 23.20 bcd | 22.80 b | 2.88 f | 3.09 i | ||
0.5 | 0 | 396.90 de | 343.30 c–f | 67.40 n | 70.80 fgh | 0.44 c | 0.48 c | 6.70 l | 6.63 klm | 0.41 jk | 0.41 jkk | 20.30 e | 19.30 hi | 2.88 f | 3.09 i | |
30 | 495.70 a | 460.00 b | 110.80 d | 127.20 cd | 0.21 lm | 0.20 j–m | 7.37 d | 7.25 b–e | 0.41 jk | 0.41 k | 22.10 cde | 21.20 de | 2.85 f | 3.09 i | ||
60 | 516.70 a | 553.30 a | 152.70 a | 157.70 a | 0.29 fg | 0.31 e | 8.13 a | 8.05 a | 0.37 l | 0.36 l | 23.90 abc | 22.40 bc | 2.82 f | 2.73 j | ||
1 | 0 | 374.40 e | 348.40 f | 92.40 g | 96.70 f | 0.24 ijk | 0.23 f–j | 6.94 hi | 6.60 lm | 0.41 jk | 0.41 jk | 21.30 de | 20.10 fgh | 2.88 f | 3.09 i | |
30 | 436.70 b | 377.00 c | 104.10 ef | 106.30 e | 0.70 b | 0.71 b | 7.00 gh | 6.87 g–k | 0.39 kl | 0.38 kl | 24.20 ab | 23.30 b | 2.49 g | 2.54 k | ||
60 | 447.20 b | 436.70 b | 116.80 c | 117.20 de | 0.77 a | 0.75 a | 7.51 bc | 7.51 b | 0.36 l | 0.36 l | 25.40 a | 25.30 a | 2.49 g | 2.54 k | ||
S2 (ECe 4–8 dS/m) | 0 | 0 | 303.33 h–l | 306.00 e–i | 68.50 mn | 67.50 h | 0.18 n | 0.18 mn | 6.10 n | 6.01 n | 0.55 de | 0.55 def | 11.90 h | 11.30 l | 3.57 d | 3.70 de |
30 | 317.10 g–j | 313.30 e–h | 90.20 g | 82.90 fgh | 0.25 hij | 0.25 fgh | 6.59 m | 6.57 m | 0.54 ef | 0.54 efg | 21.00 e | 20.00 fgh | 3.55 d | 3.61 ef | ||
60 | 318.90 ghi | 317.20 g–j | 97.30 h–k | 95.50 f | 0.24 ijk | 0.26 fg | 7.21 e | 7.06 d–h | 0.54 ef | 0.53 fgh | 20.30 e | 20.30 efg | 3.55 d | 3.61 ef | ||
0.5 | 0 | 306.80 h–k | 306.70 e–i | 80.00 h | 83.60 fg | 0.21 lm | 0.22 h–l | 6.79 k | 6.74 j–m | 0.55 def | 0.54 efg | 18.50 e | 17.50 j | 3.55 d | 3.61 ef | |
30 | 318.90 ghi | 319.00 d–g | 98.90 f | 96.10 f | 0.25 h–k | 0.23 f–j | 7.10 f | 7.01 e–i | 0.51 fg | 0.51 hi | 21.80 de | 20.90 def | 3.36 g | 3.53 f | ||
60 | 324.10 gh | 320.70 d–g | 104.30 e | 112.60 de | 0.26 ghi | 0.26 fg | 7.30 d | 7.16 c–f | 0.49 gh | 0.50 i | 22.10 cde | 21.20 de | 3.30 gh | 3.30 gh | ||
1 | 0 | 315.50 g–j | 306.80 h–k | 74.40 jkl | 75.70 gh | 0.22 kl | 0.21 i–m | 6.84 jk | 6.70 j–m | 0.51 fg | 0.51 ghi | 21.70 de | 19.80 gh | 3.54 d | 3.54 d | |
30 | 329.70 c–g | 323.30 d–g | 109.80 d | 106.70 e | 0.26 hij | 0.25 fgh | 7.04 fg | 6.90 f–j | 0.49 gh | 0.48 i | 22.10 cde | 21.20 de | 3.21 e | 3.22 h | ||
60 | 334.50 fg | 327.70 d–g | 132.60 b | 144.00 ab | 0.27 f–i | 0.26 f | 7.47 c | 7.33 bcd | 0.45 hi | 0.48 i | 22.50 bcd | 21.40 d | 3.19 e | 3.21 e | ||
S3 (ECe 8–12 dS/m) | 0 | 0 | 201.10 q | 226.70 j | 67.00 n | 67.00 h | 0.09 o | 0.10 p | 5.46 q | 5.42 p | 0.68 a | 0.67 a | 10.90 h | 10.40 l | 5.96 a | 5.73 a |
30 | 251.30 op | 266.00 hij | 81.00 h | 85.00 fg | 0.19 mn | 0.19 k–n | 5.80 1p | 5.72 o | 0.58 cd | 0.57 cd | 17.50 fg | 16.60 j | 4.23 b | 4.47 b | ||
60 | 261.70 nop | 266.70 hij | 75.30 ijkl | 76.30 gh | 0.19 mn | 0.18 lmn | 6.12 n | 6.06 n | 0.58 cde | 0.56 cde | 22.40 bcd | 21.60 cd | 3.93 c | 4.14 c | ||
0.5 | 0 | 241.10 p | 261.00 ij | 79.90 hij | 81.30 fgh | 0.17 n | 0.16 no | 5.89 o | 5.78 no | 0.63 b | 0.60 b | 18.50 ef | 17.50 j | 4.29 b | 4.39 b | |
30 | 268.70 mno | 283.30 ghi | 90.70 g | 95.60 f | 0.28 fgh | 0.23 f–k | 6.59 m | 6.57 m | 0.58 c | 0.58 bc | 18.50 ef | 17.50 j | 3.93 c | 4.08 c | ||
60 | 280.80 lmn | 290.00 f–i | 106.00 de | 105.70 e | 0.45 c | 0.45 c | 7.06 fg | 7.02 e–i | 0.55 cde | 0.58 bc | 21.30 de | 20.20 fg | 3.87 c | 3.75 d | ||
1 | 0 | 246.70 op | 263.30 hij | 73.90 lm | 75.20 gh | 0.09 o | 0.11 p | 6.94 hi | 7.09 d–h | 0.59 bc | 0.57 cd | 20.40 e | 19.30 hi | 4.27 b | 4.08 c | |
30 | 289.50 klm | 298.10 i–l | 80.40 hi | 84.90 fg | 0.29 f | 0.13 op | 7.52 bc | 7.38 bc | 0.58 cd | 0.57 cd | 21.20 e | 18.90 i | 3.57 d | 3.70 de | ||
60 | 294.70 jkl | 300.00 e–i | 82.00 h | 86.40 fg | 0.40 d | 0.38 d | 7.10 f | 7.10 d–h | 0.58 cde | 0.55 def | 21.30 de | 20.10 fgh | 3.57 d | 3.70 de | ||
LSD 5% | (S) | 3.21 | 12.18 | 2.11 | 11.13 | 0.02 | 0.10 | 0.59 | 0.26 | 0.03 | 0.022 | 0.04 | 0.07 | 0.05 | 0.032 | |
(A) | 8.78 | 13.07 | 2.01 | 9.02 | 0.08 | 0.01 | 0.43 | 0.26 | 0.02 | 0.011 | 0.04 | 0.14 | 0.03 | 0.029 | ||
(KSi) | 7.57 | 16.68 | 1.55 | 5.58 | 0.08 | 0.01 | 0.64 | 0.33 | 0.01 | 0.080 | 0.02 | 0.08 | 0.03 | 0.031 | ||
(S*A) | 12.81 | 22.63 | 3.48 | 15.62 | 0.01 | 0.02 | 0.76 | 0.45 | 0.03 | 0.019 | 0.06 | 0.24 | 0.06 | 0.052 | ||
(S*KSi) | 11.15 | 28.89 | 2.69 | 9.67 | 0.02 | 0.02 | 1.11 | 0.57 | 0.02 | 0.014 | 0.04 | 0.13 | 0.06 | 0.053 | ||
(A*KSi) | 13.84 | 28.89 | 2.68 | 9.67 | 0.02 | 0.02 | 1.11 | 0.57 | 0.02 | 0.014 | 0.04 | 0.13 | 0.06 | 0.053 | ||
S*A*KSi | 22.72 | 50.04 | 4.65 | 16.75 | 0.03 | 0.04 | 1.92 | 0.99 | 0.04 | 0.024 | 0.06 | 0.23 | 0.10 | 0.092 |
Salinity Levels | Ae % | KSi g L−1 | Anthocyanin (mg g−1 DW) | Total Soluble Sugars (%) | Acidity Citric Acid % | pH | ||||
---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | |||
S1 (ECe < 4 dS/m) | 0 | 0 | 94.31 g | 88.30 n | 0.36 cd | 0.35 d | 0.62 h | 0.63 ghi | 2.89 de | 2.91 def |
30 | 95.40 fg | 90.90 m | 0.36 cd | 0.36 c | 0.63 gh | 0.63 ghi | 2.98 bc | 2.98 b | ||
60 | 104.90 de | 97.40 k | 0.41 a | 0.40 b | 0.68 e | 0.67 e | 2.94 cd | 2.95 cde | ||
0.5 | 0 | 121.20 c | 119.90 d | 0.36 cd | 0.36 c | 0.72 d | 0.73 d | 2.88 e | 2.90 efg | |
30 | 121.90 c | 121.30 d | 0.41 a | 0.40 b | 0.72 d | 0.73 d | 2.82 f | 2.84 hi | ||
60 | 152.40 a | 147.90 a | 0.41 a | 0.40 b | 0.74 d | 0.74 d | 2.72 gh | 2.76 klm | ||
1 | 0 | 107.10 de | 102.30 i | 0.35 d | 0.35 d | 0.85 b | 0.86 bc | 2.68 hi | 2.75 lm | |
30 | 108.30 d | 104.60 h | 0.41 a | 0.40 b | 0.86 ab | 0.87 ab | 2.66 i | 2.72 m | ||
60 | 122.40 c | 123.40 c | 0.42 a | 0.43 a | 0.88 a | 0.88 a | 2.50 j | 2.59 n | ||
S2 (ECe 4–8 dS/m) | 0 | 0 | 87.50 h | 86.30 o | 0.36 cd | 0.35 d | 0.61 h | 0.63 ghi | 2.85 ef | 2.85 ghi |
30 | 94.70 g | 88.70 n | 0.36 cd | 0.36 c | 0.64 fg | 0.63 ghi | 2.84 ef | 2.86 fghi | ||
60 | 104.50 de | 95.30 l | 0.41 a | 0.40 b | 0.64 fg | 0.64 ghi | 2.73 g | 2.78 j | ||
0.5 | 0 | 106.70 de | 100.30 j | 0.36 cd | 0.36 c | 0.61 h | 0.62 hi | 2.75 g | 2.89 fgh | |
30 | 106.80 de | 100.90 j | 0.41 a | 0.40 b | 0.65 f | 0.65 fg | 2.67 hi | 2.71 m | ||
60 | 121.30 c | 119.50 e | 0.41 a | 0.40 b | 0.67 e | 0.67 e | 2.52 j | 2.59 n | ||
1 | 0 | 120.30 c | 118.00 ef | 0.36 cd | 0.36 c | 0.83 c | 0.84c | 2.76 g | 2.80 i–l | |
30 | 120.70 c | 118.10 ef | 0.41 a | 0.40 b | 0.83 c | 0.84 c | 3.01 ab | 2.99 bc | ||
60 | 151.20 a | 145.60 b | 0.41 a | 0.41 b | 0.87 ab | 0.85 bc | 2.87 ef | 2.89 fgh | ||
S3 (ECe 8–12 dS/m) | 0 | 0 | 93.00 g | 85.30 o | 0.29 g | 0.28 h | 0.56 j | 0.56 k | 3.06 a | 3.05 a |
30 | 93.90 g | 87.60 no | 0.29 g | 0.30 g | 0.59 i | 0.61 ij | 2.98 bc | 2.97 bc | ||
60 | 103.70 e | 94.40 l | 0.32 f | 0.31 fg | 0.65 f | 0.66 ef | 2.97 bc | 2.97 bc | ||
0.5 | 0 | 120.10 c | 117.40 fg | 0.33 e | 0.32 f | 0.64 fg | 0.64 ghi | 3.03 ab | 3.02 ab | |
30 | 120.30 c | 118.10 ef | 0.34 e | 0.34 e | 0.65 f | 0.65 fg | 2.68 h | 2.73 m | ||
60 | 144.70 b | 145.40 b | 0.38 b | 0.37 c | 0.65 f | 0.63 ghi | 2.54 j | 2.63 n | ||
1 | 0 | 99.20 f | 99.60 j | 0.36 cd | 0.36 c | 0.72 d | 0.73 d | 2.86 ef | 2.89 fgh | |
30 | 105.90 de | 99.40 j | 0.36 cd | 0.36 c | 0.73 d | 0.74 d | 2.85 ef | 2.87 fgh | ||
60 | 120.80 c | 119.50 e | 0.37 c | 0.36 c | 0.73 d | 0.73 d | 2.75 g | 2.81 ijk | ||
LSD 5% | (S) | 1.34 | 3.42 | 0.03 | 0.04 | 0.09 | 0.08 | 0.01 | 0.05 | |
(A) | 1.87 | 0.82 | 0.06 | 0.08 | 0.04 | 0.03 | 0.06 | 0.06 | ||
(KSi) | 1.03 | 0.50 | 0.06 | 0.06 | 0.02 | 0.04 | 0.02 | 0.02 | ||
(S*A) | 3.24 | 1.42 | 0.01 | 0.01 | 0.07 | 0.05 | 0.10 | 0.11 | ||
(S*KSi) | 1.78 | 0.86 | 0.01 | 0.01 | 0.05 | 0.06 | 0.03 | 0.03 | ||
(A*KSi) | 1.78 | 0.86 | 0.01 | 0.01 | 0.05 | 0.07 | 0.03 | 0.03 | ||
S*A*KSi | 3.08 | 1.49 | 0.02 | 0.02 | 0.08 | 0.01 | 0.05 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Sreea, A.I.B.; Roby, M.H.H.; Mahdy, H.A.A.; Abdou, N.M.; El-Tahan, A.M.; El-Saadony, M.T.; El-Tarabily, K.A.; El-Saadony, F.M.A. Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract. Plants 2022, 11, 497. https://doi.org/10.3390/plants11040497
Abou-Sreea AIB, Roby MHH, Mahdy HAA, Abdou NM, El-Tahan AM, El-Saadony MT, El-Tarabily KA, El-Saadony FMA. Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract. Plants. 2022; 11(4):497. https://doi.org/10.3390/plants11040497
Chicago/Turabian StyleAbou-Sreea, Alaa Idris Badawy, Mohamed H. H. Roby, Hayam A. A. Mahdy, Nasr M. Abdou, Amira M. El-Tahan, Mohamed T. El-Saadony, Khaled A. El-Tarabily, and Fathy M. A. El-Saadony. 2022. "Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract" Plants 11, no. 4: 497. https://doi.org/10.3390/plants11040497
APA StyleAbou-Sreea, A. I. B., Roby, M. H. H., Mahdy, H. A. A., Abdou, N. M., El-Tahan, A. M., El-Saadony, M. T., El-Tarabily, K. A., & El-Saadony, F. M. A. (2022). Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract. Plants, 11(4), 497. https://doi.org/10.3390/plants11040497