Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development
<p>Chromosomal distribution and collinearity analysis of <span class="html-italic">Glu</span> family members in wolfberry. (<b>A</b>) Chromosomal localization of <span class="html-italic">Glu</span> genes on the 12 chromosomes of wolfberry. Each colored bar represents a chromosome, and <span class="html-italic">Glu</span> genes are denoted by vertical lines along the chromosomes. (<b>B</b>) Collinearity analysis showing replication relationships between <span class="html-italic">Glu</span> gene family members within the wolfberry genome. Genes connected by lines represent collinear relationships. (<b>C</b>) Inter-species collinearity analysis between wolfberry and <span class="html-italic">Arabidopsis thaliana</span>.</p> "> Figure 2
<p>Gene structure and conserved motif analysis of <span class="html-italic">Glu</span> family members in wolfberry. (<b>A</b>) Conserved motif analysis revealing the presence of up to 15 motifs among <span class="html-italic">Glu</span> genes, with most genes possessing motifs 1 and 7. (<b>B</b>) Gene structure analysis showing the exon–intron organization of <span class="html-italic">Glu</span> genes. The number of exons and introns varies among different <span class="html-italic">Glu</span> family members. (<b>C</b>) Gene structure and conserved motif analysis of <span class="html-italic">Glu</span> family members in wolfberry.</p> "> Figure 2 Cont.
<p>Gene structure and conserved motif analysis of <span class="html-italic">Glu</span> family members in wolfberry. (<b>A</b>) Conserved motif analysis revealing the presence of up to 15 motifs among <span class="html-italic">Glu</span> genes, with most genes possessing motifs 1 and 7. (<b>B</b>) Gene structure analysis showing the exon–intron organization of <span class="html-italic">Glu</span> genes. The number of exons and introns varies among different <span class="html-italic">Glu</span> family members. (<b>C</b>) Gene structure and conserved motif analysis of <span class="html-italic">Glu</span> family members in wolfberry.</p> "> Figure 3
<p>Prediction of cis-acting elements of <span class="html-italic">Glu</span> family members in wolfberry. (<b>A</b>) Heatmap visualization of the distribution patterns of cis-regulatory elements among <span class="html-italic">Glu</span> genes. Elements are classified into 22 distinct categories based on their sequence features and putative functions. (<b>B</b>) Comparison of cis-regulatory element frequencies, highlighting higher occurrences of ARBE and G-box elements in specific <span class="html-italic">Glu</span> gene family members.</p> "> Figure 3 Cont.
<p>Prediction of cis-acting elements of <span class="html-italic">Glu</span> family members in wolfberry. (<b>A</b>) Heatmap visualization of the distribution patterns of cis-regulatory elements among <span class="html-italic">Glu</span> genes. Elements are classified into 22 distinct categories based on their sequence features and putative functions. (<b>B</b>) Comparison of cis-regulatory element frequencies, highlighting higher occurrences of ARBE and G-box elements in specific <span class="html-italic">Glu</span> gene family members.</p> "> Figure 4
<p>Evolutionary relationship analysis of <span class="html-italic">Glu</span> genes in wolfberry and interspecific comparison with <span class="html-italic">Arabidopsis thaliana</span>. (<b>A</b>) Evolutionary tree of <span class="html-italic">Glu</span> genes within wolfberry, categorized into 6 branches based on DNA sequence similarity. (<b>B</b>) Interspecific evolutionary analysis comparing <span class="html-italic">Glu</span> genes from wolfberry (<span class="html-italic">Lycium barbarum</span>) and <span class="html-italic">Arabidopsis thaliana</span>. The tree reveals 9 distinct branches, indicating evolutionary divergence and potential common ancestry between the <span class="html-italic">Glu</span> gene families of the two species.</p> "> Figure 5
<p>Expression of <span class="html-italic">Glu</span> gene family members in different tissues of wolfberry. Heatmap representation of <span class="html-italic">Glu</span> gene expression across various tissues, including flowers, leaves, and berries. Tissue-specific expression patterns indicate potential roles of <span class="html-italic">Glu</span> genes in different developmental processes within the plant.</p> "> Figure 6
<p>The potential role of <span class="html-italic">Glu</span> genes in wolfberry reproductive development. Microscopic observation of anther development stages in fertile (NQ1, <b>E</b>–<b>H</b>) and male-sterile (NQ5, <b>A</b>–<b>D</b>) wolfberry cultivars, revealing differences in sporopollenin metabolism and pollen grain formation. (<b>I</b>) Transcriptomic analysis and qRT-PCR identifying differential expression of <span class="html-italic">LbaGlu28</span> between fertile and male-sterile anthers. (<b>J</b>) Enzymatic assays demonstrating glucanase activity patterns in NQ1 and NQ5 anthers, indicative of aberrant sporopollenin metabolism in the male-sterile cultivar. ** indicates a highly significant difference (<span class="html-italic">p</span> ≤ 0.01).</p> "> Figure 7
<p>Subcellular localization of LbaGlu28 protein in wolfberry cells. (<b>A</b>) Schematic representation of the recombinant vector p35S:LbaGlu28:YFP used for subcellular localization analysis. (<b>B</b>) Confocal microscopy images showing the subcellular localization of LbaGlu1:YFP fusion protein in wolfberry cells. Yellow fluorescence indicates the presence of LbaGlu28 protein at the cell wall and plasma membrane, confirmed by the absence of co-localization with the red cell membrane marker during plasmolysis.</p> "> Figure 8
<p>Prediction of three-dimensional structures and signaling network of Glu proteins. (<b>A</b>) Predicted three-dimensional structure of LbaGlu28 generated using homology modeling. The structure provides insights into the spatial arrangement of amino acids within the protein. (<b>B</b>) Protein–protein interaction (PPI) network analysis predicting potential interactions between proteins and LbaGlu28, highlighting their functional associations within cellular processes.</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Identification of Glu Family Members in Wolfberry and Analysis of the Physicochemical Properties
2.2. Chromosome Localization and Collinearity Analysis of Glu Family Members in Wolfberry
2.3. Gene Structure and Conserved Motif Analysis of Glu Genes
2.4. Cis-Regulatory Element Analysis of Glu Genes in Wolfberry
2.5. Evolutionary Relationships Analysis of Glu Gene Family
2.6. Expression of Glu Gene Family Members in Different Tissues of Wolfberry
2.7. The Potential Role of the Glu Gene in Wolfberry Reproductive Development
2.8. Subcellular Localization of LbaGlu28 Protein in Plant Cells
2.9. The Prediction of Three-Dimensional Structures and Signaling Network of LbaGlu28
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification and Characterization of Glu Genes
4.3. Relationship Between Chromosome Position and Replication of Glu Family Genes
4.4. Multiple Sequence Alignment and Evolutionary Analysis
4.5. Gene Structure and Conserved Motif Analysis
4.6. Prediction of Three-Dimensional Protein Structure of Wolfberry Glu
4.7. Analysis of Cis-Acting Elements of the Glu Gene Family Members
4.8. Analysis of Glu Gene Expression in Different Tissues of Wolfberry
4.9. Observation of Sporopollenin Staining and Sporopollenin Enzyme Activity Assay
4.10. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.11. LbaGlu28 Cloning and Subcellular Localization
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bachman, E.S.; McClay, D.R. Molecular cloning of the first metazoan beta-1, 3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc. Natl. Acad. Sci. USA 1996, 93, 6808–6813. [Google Scholar] [CrossRef] [PubMed]
- Taif, S.; Zhao, Q.; Pu, L.; Li, X.; Liu, D.; Cui, X. A β-1, 3-glucanase gene from Panax notoginseng confers resistance in tobacco to Fusarium solani. Ind. Crops Prod. 2020, 143, 111947. [Google Scholar] [CrossRef]
- Linthorst, H.; Melchers, L.S.; Mayer, A.; Van Roekel, J.; Cornelissen, B.; Bol, J.F. Analysis of gene families encoding acidic and basic beta-1, 3-glucanases of tobacco. Proc. Natl. Acad. Sci. USA 1990, 87, 8756–8760. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Horner, H.T.; Palmer, R.G.; Shoemaker, R.C. Analysis and mapping of gene families encoding β-1, 3-glucanases of soybean. Genetics 1999, 153, 445–452. [Google Scholar] [CrossRef]
- Doxey, A.C.; Yaish, M.W.; Moffatt, B.A.; Griffith, M.; McConkey, B.J. Functional divergence in the Arabidopsis β-1, 3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol. Biol. Evol. 2007, 24, 1045–1055. [Google Scholar] [CrossRef]
- Leubner-Metzger, G. Functions and regulation of β-1, 3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci. Res. 2003, 13, 17–34. [Google Scholar] [CrossRef]
- Beffa, R.; Meins, F., Jr. Pathogenesis-related functions of plant β-1, 3-glucanases investigated by antisense transformation—A review. Gene 1996, 179, 97–103. [Google Scholar] [CrossRef]
- Michalko, J.; Renner, T.; Mészáros, P.; Socha, P.; Moravčíková, J.; Blehová, A.; Libantová, J.; Polóniová, Z.; Matušíková, I. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1, 3-glucanase. Planta 2017, 245, 77–91. [Google Scholar] [CrossRef]
- Grimault, V.; Helleboid, S.; Vasseur, J.; Hilbert, J.-L. Co-Localization of ß-1, 3-glucanases and callose during somatic embryogenesis in Cichorium. Plant Signal. Behav. 2007, 2, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Delp, G.; Palva, E.T. A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant β-1, 3-glucanase genes. Plant Mol. Biol. 1999, 39, 565–575. [Google Scholar] [CrossRef]
- Li, J.; Shao, Y.; Yang, Y.; Xu, C.; Jing, Z.; Li, H.; Xie, B.; Tao, Y. The chromatin modifier protein FfJMHY plays an important role in regulating the rate of mycelial growth and stipe elongation in Flammulina filiformis. J. Fungi 2022, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhou, J.; Wang, R.; Zhang, X.; Liu, C.; Liu, Z.; Yuan, S. Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea. Appl. Environ. Microbiol. 2019, 85, e01345-19. [Google Scholar] [CrossRef] [PubMed]
- Long, J.-T.; Fan, H.-X.; Zhou, Z.-Q.; Sun, W.-Y.; Li, Q.-W.; Wang, Y.; Ma, M.; Gao, H.; Zhi, H. The major zeaxanthin dipalmitate derivatives from wolfberry. J. Asian Nat. Prod. Res. 2019, 22, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shen, Y.; Zhang, S.; Xie, Z.; Cheng, X.; Li, W.; Zhong, C. Monosaccharide removal and effects of Komagataeibacter xylinus fermentation on antioxidant capacity and flavor profile of Chinese wolfberry juice. J. Food Process. Preserv. 2021, 45, e15800. [Google Scholar] [CrossRef]
- Lau, B.W.-M.; Lee, J.C.-D.; Li, Y.; Fung, S.M.-Y.; Sang, Y.-H.; Shen, J.; Chang, R.C.-C.; So, K.-F. Polysaccharides from wolfberry prevents corticosterone-induced inhibition of sexual behavior and increases neurogenesis. PLoS ONE 2012, 7, e33374. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Yue, S.; Xu, X.; Liu, J.; Xu, Q.; Wang, X.; Han, L.; Yu, D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS ONE 2012, 7, e41861. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, C.; Li, S.; Yuan, M.; Mu, W.; Yang, J.; Ma, Y.; Guan, C.; Ma, C. Changes in m6A RNA methylation are associated with male sterility in wolfberry. BMC Plant Biol. 2023, 23, 456. [Google Scholar] [CrossRef]
- Shi, J.; Chen, L.; Zheng, R.; Guan, C.; Wang, Y.; Liang, W.; Yang, S.; Wang, L.; Gong, L.; Zheng, G. Comparative phenotype and microRNAome in developing anthers of wild-type and male-sterile Lycium barbarum L. Plant Sci. 2018, 274, 349–359. [Google Scholar] [CrossRef]
- Worrall, D.; Hird, D.L.; Hodge, R.; Paul, W.; Draper, J.; Scott, R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 1992, 4, 759–771. [Google Scholar] [PubMed]
- Perrot, T.; Pauly, M.; Ramírez, V. Emerging roles of β-glucanases in plant development and adaptative responses. Plants 2022, 11, 1119. [Google Scholar] [CrossRef]
- Lui, X.J.; Thottathil, G.P.; Kumar, S. Genome-Wide Identification of β-1, 3-Glucanase Genes in Hevea brasiliensis. Malays. Appl. Biol. 2023, 52, 53–60. [Google Scholar] [CrossRef]
- Xu, X.; Feng, Y.; Fang, S.; Xu, J.; Wang, X.; Guo, W. Genome-wide characterization of the β-1, 3-glucanase gene family in Gossypium by comparative analysis. Sci. Rep. 2016, 6, 29044. [Google Scholar] [CrossRef]
- Wang, K.Q.; Yu, Y.H.; Jia, X.L.; Zhou, S.D.; Zhang, F.; Zhao, X.; Zhai, M.Y.; Gong, Y.; Lu, J.Y.; Guo, Y. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. J. Integr. Plant Biol. 2022, 64, 717–730. [Google Scholar] [CrossRef]
- Wan, L.; Zha, W.; Cheng, X.; Liu, C.; Lv, L.; Liu, C.; Wang, Z.; Du, B.; Chen, R.; Zhu, L. A rice β-1, 3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta 2011, 233, 309–323. [Google Scholar] [CrossRef]
- Zhang, X.; Bei, Z.; Ma, H.; Wei, Z.; Zhou, J.; Ren, Y.; Xu, W.; Nan, P.; Wang, Y.; Li, L. Abnormal Programmed Cell Death of Tapetum Leads to the Pollen Abortion of Lycium barbarum Linnaeus. Horticulturae 2022, 8, 1056. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud Se Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35 (Suppl. S2), W585–W587. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository—New features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 1996, 264, 121–136. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zheng, P.; Wen, X.; Bei, Z. Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development. Plants 2025, 14, 52. https://doi.org/10.3390/plants14010052
Zhang X, Zheng P, Wen X, Bei Z. Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development. Plants. 2025; 14(1):52. https://doi.org/10.3390/plants14010052
Chicago/Turabian StyleZhang, Xin, Pinjie Zheng, Xurui Wen, and Zhanlin Bei. 2025. "Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development" Plants 14, no. 1: 52. https://doi.org/10.3390/plants14010052
APA StyleZhang, X., Zheng, P., Wen, X., & Bei, Z. (2025). Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development. Plants, 14(1), 52. https://doi.org/10.3390/plants14010052