Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp.
<p>Extraction Yields (%<span class="html-italic">v</span>/<span class="html-italic">w</span>) with different solvents for <span class="html-italic">Mammea americana</span> L. leaf extracts by micro-Soxhlet Extraction. Data in the bar charts is expressed as means ± standard deviation (n = 3).</p> "> Figure 2
<p>Total Ion Chromatogram for <span class="html-italic">Mammea americana</span> chloroform (MAC) leaf extract by GC-MS analysis. Peak identities are listed in <a href="#plants-14-00021-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Total Ion Chromatogram for <span class="html-italic">Mammea americana</span> dichloromethane (MAD) leaf extract by GC-MS analysis. Peak identities are listed in <a href="#plants-14-00021-t002" class="html-table">Table 2</a>.</p> "> Figure 4
<p>Total Ion Chromatogram for <span class="html-italic">Mammea americana</span> methanolic (MAM) leaf extract by GC-MS analysis. Peak identities are listed in <a href="#plants-14-00021-t003" class="html-table">Table 3</a>.</p> "> Figure 5
<p>Molecular structures for shared phytochemical constituents in the three analyzed leaf extracts from <span class="html-italic">Mammea americana</span> L. (Calophyllaceae) were identified by GC-MS analysis [<a href="#B24-plants-14-00021" class="html-bibr">24</a>].</p> "> Figure 6
<p>Relative amount (%) for the different classes of phytochemicals present in the three leaf extracts from <span class="html-italic">Mammea americana</span> L. (Calophyllaceae).</p> "> Figure 7
<p>Effect of <span class="html-italic">Mammea americana</span> leaf extracts on <span class="html-italic">Artemia salina</span> larvae zoomed to 0–100 μg/mL concentration range. Logistic regression was used for curve fitting. Percentages represent the means ± standard error of triplicates. Significant change at <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 8
<p>Effect of <span class="html-italic">Mammea americana</span> L. leaf extracts on <span class="html-italic">Ferrisia</span> sp. insects after (<b>a</b>) 24 and (<b>b</b>) 48 h of treatment. Logistic regression was used for curve fitting. Percentages represent the means ± standard error of triplicates. Significant change at <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 9
<p><span class="html-italic">Mammea americana</span> L. (Calophyllaceae) fresh leaves collected at Mayagüez, Puerto Rico.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield with Different Solvents for Mammea americana L. Leaf Extracts
2.2. Phytochemical Profiling by GC-MS
2.3. Brine Shrimp Lethality Bioassays
2.4. Insecticidal Activity Bioassays
3. Materials and Methods
3.1. Plant Material
3.2. Freeze Drying Process
3.3. Preparation of Mammea americana L. Fresh Leaves Extracts
3.4. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3.5. Identification of Phytochemical Constituents
3.6. Brine Shrimp Lethality Bioassays of Mammea americana L. Leaf Extracts
3.7. Insecticidal Activity of Mammea americana L. Leaf Extracts
3.7.1. Ferrisia sp. Insects Collection
3.7.2. Contact Toxicity Insecticidal Bioassays
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Fabiano-Tixier, A.-S.; Chemat, F. Essential Oils as Reagents in Green Chemistry, Illustrated, ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Thangaraj, P. Pharmacological Assays of Plant-Based Natural Products; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Dubey, N.K. (Ed.) Natural Products in Plant Pest Management; CABI: Wallingford, UK, 2011; Available online: www.cabi.org (accessed on 19 August 2021).
- Thilakarathna, R.; Siow, L.F.; Tang, T.-K.; Chan, E.-S.; Lee, Y.-Y. Physicochemical and antioxidative properties of ultrasound-assisted extraction of mahua (Madhuca longifolia) seed oil in comparison with conventional Soxhlet and mechanical extractions. Ultrason. Sonochem. 2022, 92, 106280. [Google Scholar] [CrossRef]
- Yang, X.; Peppard, T. Solid-Phase Microextraction for Flavor Analysis. J. Agric. Food Chem. 1994, 42, 1925–1930. [Google Scholar] [CrossRef]
- Chabert-Llompart, J. Mammea americana (Mamey Apple), 2022. Available online: https://www.cabi.org/isc/datasheet/32390 (accessed on 30 October 2024).
- Morton, J.F. Fruits of Warm Climates; Dowling, C.F., Morton, J.F., Eds.; Food and Agriculture Organization of the United Nations: Miami, FL, USA, 1987; ISBN 0-9610184-1-0. [Google Scholar]
- Nuñez-Meléndez, E. Plantas Medicinales de Puerto Rico: Folklore y Fundamentos Científicos, 1st ed.; Editorial de la Universidad de Puerto Rico EDUPR: San Juan, PR, USA, 1982. [Google Scholar]
- Péroumal, A.; Adenet, S.; Rochefort, K.; Fahrasmane, L.; Aurore, G. Variability of traits and bioactive compounds in the fruit and pulp of six mamey apple (Mammea americana L.) accessions. Food Chem. 2017, 234, 269–275. [Google Scholar] [CrossRef]
- Janakiram, N.B.; Cooma, I.; Mohammed, A.; Steele, V.E.; Rao, C.V. β-Ionone inhibits colonic aberrant crypt foci formation in rats, suppresses cell growth, and induces retinoid X receptor-α in human colon cancer cells. Mol. Cancer Ther. 2008, 7, 181–190. [Google Scholar] [CrossRef]
- Frame, A.D.; Ríos-Olivares, E.; De Jesús, L.; Ortiz, D.; Pagán, J.; Méndez, S. Plants from Puerto Rico with anti-Mycobacterium tuberculosis properties. PR Health Sci. J. 1998, 17, 243–252. [Google Scholar] [PubMed]
- Yang, H.; Protiva, P.; Gil, R.R.; Jiang, B.; Baggett, S.; Basile, M.J.; Reynertson, K.A.; Weinstein, I.B.; Kennelly, E.J. Antioxidant and Cytotoxic Isoprenylated Coumarins from Mammea americana. Planta Medica 2005, 71, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.G.; Allee, L.; Gibson, D.M. Insecticidal effectiveness of Mammea americana (Guttiferae) extracts on larvae of Diabrotica virgifera virgifera(Coleoptera: Chrysomelidae) and Trichoplusia ni (Lepidoptera: Noctuidae). Econ. Bot. 1996, 50, 236–242. [Google Scholar] [CrossRef]
- McCorquodale, A.; Hodges, A. Ferrisia Virgata Cockerell. 2016. EENY-674. Available online: https://entnemdept.ufl.edu/creatures/orn/mealybug/ferrisia_virgata.htm (accessed on 19 August 2021).
- Kaydan, M.B.; Gullan, P.J. ZOOTAXA A taxonomic revision of the mealybug genus Ferrisia fullaway (Hemiptera: Pseudococcidae), with descriptions of eight new species and a new genus. Zootaxa 2012, 3543, 1–65. Available online: www.mapress.com/zootaxa/ (accessed on 19 August 2021). [CrossRef]
- Tanwar, R.K.; Jeyakumar, P.; Monga, D. National Centre for Integrated Pest Management Mealybugs and Their Management. 2007. Available online: www.ncipm.org.in (accessed on 19 August 2021).
- Husnu-Can Baser, K.; Buchbauer, G. Handbook of Essential Oils Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2009. [Google Scholar]
- Kerebba, N.; Oyedeji, A.; Byamukama, R.; Kuria, S.; Oyedeji, O. Pesticidal activity of Tithonia diversifolia (Hemsl.) A. Gray and Tephrosia vogelii (Hook f.); phytochemical isolation and characterization: A review. S. Afr. J. Bot. 2019, 121, 366–376. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Tiong, I.K.R.; Lau, C.C.; Taib, M.I.M.; Waiho, K.; Sorgeloos, P.; Sung, Y.Y. Artemia as a model organism in stress response studies: Current progress and future prospects. Mar. Biol. 2024, 172, 1–17. [Google Scholar] [CrossRef]
- U.S. Department of Commerce. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Testing (NIST): Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- Dictionary of Natural Products (Online CHEMnetBASE); CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK; Available online: https://dnp.chemnetbase.com/chemical/ChemicalSearch.xhtml?dswid=-3503 (accessed on 19 August 2024).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- John Wiley & Sons, Inc. SpectraBase®. Available online: https://spectrabase.com/ (accessed on 2 September 2024).
- Baravalia, Y.; Vaghasiya, Y.; Chanda, S. Brine Shrimp Cytotoxicity, Anti-inflammatory and Analgesic Properties of Woodfordia fruticosa Kurz Flowers. Iran. J. Pharm. Res. 2012, 11, 851–861. Available online: https://www.researchgate.net/publication/258703394 (accessed on 14 October 2024).
- Gujar, A.; Anderson, T.; Cavagnino, D.; Patel, A. Comparative Analysis of Mass Spectral Matching for Confident Compound Identification Using the Advanced Electron Ionization Source for GC-MS. ThermoFisher Cientific. 2018. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-10598-gc-ms-mass-spectral-matching-tn10598-en.pdf (accessed on 20 August 2024).
- Zhao, N.; Zhou, L.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Evaluation of the toxicity of the essential oils of some common Chinese spices against Liposcelis bostrychophila. Food Control. 2012, 26, 486–490. [Google Scholar] [CrossRef]
- Elhefny, A.A.; Attia, S.A.; Helmy, S.M.Y.; El-Bradey, W.M. Insecticidal activity of citrus peel oil of navel orange against the striped mealybug Ferrisia virgata (Hemiptera: Pseudococcidae) and the mango shield scale Milviscutulus mangiferae (Hemiptera: Coccidae). Egyp. J. Plant Prot. Res. Inst. 2019, 2, 291–300. [Google Scholar]
- Karamaouna, F.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.; Polissiou, M.; Papatsakona, P.; Τsora, Ε. Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus. J. Insect Sci. 2013, 13, 142. [Google Scholar] [CrossRef]
- Pinto, J.J.; Silva, G.; Figueroa, I.; Tapia, M.; Urbina, A.; Rodríguez, J.C.; Lagunes, A. Insecticidal activity of powder and essential oil of Cryptocarya alba (Molina) Looser against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res. 2016, 76, 48–54. [Google Scholar] [CrossRef]
- Lougraimzi, H.; Benhima, R.; Kholssi, R.; Fatima, E.; Achbani, E.H.; Fadli, M. Chemical Composition and Insecticidal Potential of Pulicaria incisa (Lam) Essential Oil from Moroccan Plant Against Sitophilus oryzae (L.) and Tribolium castaneum (Herbst.). Biointerface Res. Appl. Chem. 2022, 12, 2262–2274. [Google Scholar] [CrossRef]
- Huang, X.; Du, L.; Liu, T.; Ma, R.; Liu, X.; Yuan, H.; Liu, S. Insecticidal Activity of a Component, (-)-4-Terpineol, Isolated from the Essential Oil of Artemisia lavandulaefolia DC. against Plutella xylostella (L.). Insects 2022, 13, 1126. [Google Scholar] [CrossRef]
- Roddee, J.; Nonkheang, N.; Klangjoho, S. Efficacy of botanical extracts against tomato mealybug Ferrisia virgata (Hemiptera: Pseudococcidae). Khon Kaen Agric. J. 2020, 48, 1434–1441. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. GC and GC/MS analyses of the Algerian Lantana camara leaf essential oil: Effect against Sitophilus granarius adults. J. Saudi Chem. Soc. 2012, 16, 291–297. [Google Scholar] [CrossRef]
ID No. | Phytocompound | RT (min) | Area (%) | M.F. | M.W. | LRI [21] | Classification |
---|---|---|---|---|---|---|---|
1 | 6-Methyl-5-hepten-2-one | 4.47 | 0.13 | C8H14O | 126 | 711 | ketone |
2 | 4-Hepten-1-ol | 4.70 | 0.08 | C7H14O | 114 | 713 | alcohol |
3 | 3-Hydroxy-1-cyclohexene-1-carbaldehyde | 9.16 | 0.05 | C7H10O2 | 126 | 1300 | aldehyde |
4 | 1,2-dihydro-1,5,8-trimethylnaphthalene | 11.44 | 0.02 | C13H16 | 172 | 1366 | benzene derivative |
5 | (+)-Cyclosativene | 11.79 | 0.05 | C15H24 | 204 | 1376 | sesquiterpene |
6 | Copaene | 12.01 | 0.22 | C15H24 | 204 | 1382 | sesquiterpene |
7 | (-)-trans-Caryophyllene | 13.27 | 4.28 | C15H24 | 204 | 1405 | sesquiterpene |
8 | Bergamotene | 13.54 | 0.10 | C15H24 | 204 | 1426 | sesquiterpene |
9 | α-Humulene | 14.27 | 0.58 | C15H24 | 204 | 1447 | sesquiterpene |
10 | trans-.beta.-Farnesene | 14.51 | 3.58 | C15H24 | 204 | 1454 | sesquiterpene |
11 | β-Ionone | 15.45 | 0.02 | C13H20O | 192 | 1481 | ketone |
12 | (3Z,6E)-alpha.-Farnesene | 15.86 | 0.45 | C15H24 | 204 | 1493 | sesquiterpene |
13 | (E,E)-alpha-Farnesene | 16.43 | 1.60 | C15H24 | 204 | 1507 | sesquiterpene |
14 | (+)-δ-Cadinene | 16.92 | 0.05 | C15H24 | 204 | 1519 | sesquiterpene |
15 | beta-epoxide-Caryophyllene | 19.26 | 0.35 | C15H24O | 220 | 1573 | sesquiterpenoid |
16 | Diethyl Phthalate | 19.92 | 0.02 | C12H14O4 | 222 | 1589 | ester |
17 | Myristic acid | 28.03 | 0.06 | C14H28O2 | 228 | 1765 lit | carboxylic acid |
18 | Neophytadiene | 31.52 | 0.14 | C20H38 | 278 | 1838 lit | diterpene |
19 | di-Isobutyl Phthalate | 32.60 | 0.14 | C16H22O4 | 278 | 1877 lit | ester |
20 | Butyl Isobutyl Phthalate | 36.94 | 0.09 | C16H22O4 | 278 | 1924 lit | ester |
21 | Hexadecanoic acid | 37.55 | 0.24 | C16H32O2 | 256 | 1973 lit | carboxylic acid |
22 | Linoleic acid | 44.91 | 0.07 | C18H32O2 | 280 | 2104 lit | carboxylic acid |
23 | Octadecanoic acid | 46.33 | 0.05 | C18H36O2 | 284 | 2172 lit | carboxylic acid |
24 | 2-(3-Methylbenzyl)-1-naphthoic acid | 51.76 | 0.12 | C19H16O2 | 276 | N/A | carboxylic acid |
25 | (2,5-diphenyl-1H-pyrrol-3-yl)-(2-naphthalenyl)methanone | 62.87 | 1.52 | C27H19NO | 373 | N/A | pyrrole |
26 | 6-phenyl-2-[(4,6,8-trimethyl-2-quinazolinyl)amino]-4-pyrimidinol | 65.84 | 5.03 | C21H19N5O | 357 | N/A | diazine |
27 | 3,3′:5,3″-bis(dimethylene)-2,6-di(1′,8′-naphthyrid-2′-yl)pyridine | 68.17 | 0.26 | C25H17N5 | 387 | N/A | pyridine |
28 | Mammea-E/BB | 71.12 | 1.37 | C24H30O7 | 430 | N/A | coumarin |
29 | Mammea-B/AC | 74.16 | 2.37 | C21H26O5 | 358 | N/A | coumarin |
30 | 10,13-Di-t-butyl-14H-benzo[6,7]cyclohepta[1,2-b]naphtho[1,2-d]indole-14-one | 75.78 | 2.59 | C29H29NO | 407 | N/A | indole |
31 | N,N′-bis[ethoxy(phenyl)phosphoryl]ethane-1,2-diamine | 78.73 | 1.12 | C18H26N2O4P2 | 396 | N/A | amine |
32 | α-Tocopherol | 81.44 | 0.40 | C29H50O2 | 430 | 3130 lit | phenol |
33 | 1,4-Diphenyltriphenylene-2,3-diol | 87.68 | 1.67 | C30H20O2 | 412 | N/A | alcohol |
34 | γ-Sitosterol | 88.62 | 0.86 | C29H50O | 414 | N/A | steroid |
35 | Mammea-A/AB | 90.12 | 9.62 | C25H26O5 | 406 | N/A | coumarin |
36 | Taraxasterol | 91.99 | 0.19 | C30H50O | 426 | N/A | triterpenoid |
37 | Friedelin | 100.25 | 0.97 | C30H50O | 426 | 3510 lit | triterpenoid |
Identified Total Area % | 40.46 |
ID No. | Phytocompound | RT (min) | Area (%) | M.F. | M.W. | LRI [21] | Classification |
---|---|---|---|---|---|---|---|
1 | 6-Methyl-5-hepten-2-one | 4.45 | 0.07 | C8H14O | 126 | 710 | ketone |
2 | trans-3-Hexenoic acid | 4.80 | 0.07 | C6H10O2 | 114 | 714 | carboxylic acid |
3 | 2-Chlorocyclohexanone | 5.86 | 0.29 | C6H9ClO | 132 | 726 | ketone |
4 | Dihydrodihydroxymaltol | 7.68 | 0.07 | C6H8O4 | 144 | 1130 lit | pyrone |
5 | Naphthalene,1,2-dihydro-1,5,8-trimethyl- | 11.45 | 0.02 | C13H16 | 172 | 1366 | benzene derivative |
6 | Copaene | 12.02 | 0.17 | C15H24 | 204 | 1382 | sesquiterpene |
7 | Isocaryophyllene | 12.83 | 0.04 | C15H24 | 204 | 1405 | sesquiterpene |
8 | (-)-trans-Caryophyllene | 13.30 | 3.07 | C15H24 | 204 | 1419 | sesquiterpene |
9 | β-Bisabolene | 13.56 | 0.08 | C15H24 | 204 | 1426 | sesquiterpene |
10 | α-Humulene | 14.29 | 0.42 | C15H24 | 204 | 1447 | sesquiterpene |
11 | trans-.beta.-Farnesene | 14.56 | 2.81 | C15H24 | 204 | 1455 | sesquiterpene |
12 | (3Z,6E)-alpha.-Farnesene | 15.90 | 0.44 | C15H24 | 204 | 1494 | sesquiterpene |
13 | (E,E)-alpha-Farnesene | 16.52 | 2.05 | C15H24 | 204 | 1509 | sesquiterpene |
14 | (+)-δ-Cadinene | 16.96 | 0.04 | C15H24 | 204 | 1520 | sesquiterpene |
15 | beta-epoxide-Caryophyllene | 19.30 | 0.24 | C15H24O | 220 | 1574 | sesquiterpenoid |
16 | Neophytadiene | 31.55 | 0.09 | C20H38 | 278 | 1838 lit | diterpene |
17 | di-Isobutyl Phthalate | 32.65 | 0.12 | C16H22O4 | 278 | 1877 lit | ester |
18 | Neophytadiene, Isomer III | 33.52 | 0.04 | C20H38 | 278 | 1883 lit | diterpene |
19 | Dibutylphthalate | 36.99 | 0.07 | C16H22O4 | 278 | 1907 lit | ester |
20 | Hexadecanoic acid | 37.66 | 0.22 | C16H32O2 | 256 | 1973 lit | carboxylic acid |
21 | 3-Eicosene | 42.73 | 0.04 | C20H40 | 280 | N/A | hydrocarbon |
22 | Linoleic acid | 45.00 | 0.07 | C18H32O2 | 280 | 2104 lit | carboxylic acid |
23 | Octadecanoic acid | 46.44 | 0.05 | C18H36O2 | 284 | 2172 lit | carboxylic acid |
24 | 1-Docosene | 59.48 | 0.06 | C22H44 | 308 | 2194 lit | hydrocarbon |
25 | Cyclotetracosane | 67.00 | 0.49 | C24H48 | 336 | 2589 lit | hydrocarbon |
26 | Mammea-E/BB | 71.58 | 4.72 | C24H30O7 | 430 | N/A | coumarin |
27 | Mammea-B/AB | 74.05 | 3.15 | C22H28O5 | 372 | N/A | coumarin |
28 | Mammea-B/BC | 74.42 | 2.30 | C21H26O5 | 358 | N/A | coumarin |
29 | Herqueinone | 74.73 | 0.58 | C20H20O7 | 372 | N/A | phenalenone |
30 | 10,13-Di-t-butyl-14H-benzo [6,7]cyclohepta[1,2-b]naphtho[1,2-d]indole-14-one | 75.92 | 1.59 | C29H29NO | 407 | N/A | indole |
31 | α-Tocopherol | 81.57 | 0.49 | C29H50O2 | 430 | 3130 lit | phenol |
32 | Mammea-A/BD | 86.70 | 6.96 | C24H24O5 | 392 | N/A | coumarin |
33 | Cholestane, ethanone derivative | 88.15 | 2.14 | C29H48O | 412 | N/A | steroid |
34 | β-Sitosterol | 88.91 | 0.95 | C29H50O | 414 | 3187 lit | steroid |
35 | Mammea-A/AB | 90.83 | 12.02 | C25H26O5 | 406 | N/A | coumarin |
36 | 2-(1,3-Benzodioxol-5-yl)-3-methoxy-6-(pyridin-2-ylmethylsulfanyl)imidazo[1,2-b]pyridazine | 91.60 | 3.58 | C20H16N4O3S | 392 | N/A | diazine |
37 | 1,3-diphenyl-4-[(phenylmethyl)amino]-5,6,7,8-tetrahydroquinolin-2-one | 92.04 | 1.67 | C28H26N2O | 406 | N/A | quinolone |
38 | Friedelin | 100.79 | 1.41 | C30H50O | 426 | 3510 lit | triterpenoid |
Identified Total Area % | 52.69 |
ID No. | Phytocompound | RT (min) | Area (%) | M.F. | M.W. | LRI [21] | Classification |
---|---|---|---|---|---|---|---|
1 | 5-Methylfurfural | 3.95 | 0.06 | C6H6O2 | 110 | 705 | aldehyde |
2 | 2-Furoic acid methyl ester | 6.58 | 0.63 | C6H6O3 | 126 | 980 lit | ester |
3 | Dihydrodihydroxymaltol | 8.08 | 3.39 | C6H8O4 | 144 | 1130 lit | pyrone |
4 | Benzenecarboxylic acid | 8.47 | 0.27 | C7H6O2 | 122 | 1170 lit | carboxylic acid |
5 | 4H-Pyran-4-one, 3,5-dihydroxy-2-methyl- | 8.76 | 0.13 | C6H6O4 | 142 | 1188 lit | pyrone |
6 | 5-Hydroxymethyl-2-furaldehyde | 10.07 | 7.76 | C6H6O3 | 126 | 1326 | furan |
7 | 2-Methoxy-4-vinyl-phenol | 10.66 | 0.20 | C9H10O2 | 150 | 1343 | phenol |
8 | Copaene | 12.02 | 0.20 | C15H24 | 204 | 1382 | sesquiterpene |
9 | (-)-trans-Caryophyllene | 13.28 | 3.41 | C15H24 | 204 | 1418 | sesquiterpene |
10 | β-Sesquiphellandrene | 13.56 | 0.13 | C15H24 | 204 | 1426 | sesquiterpene |
11 | α-Humulene | 14.29 | 0.64 | C15H24 | 204 | 1447 | sesquiterpene |
12 | trans-.beta.-Farnesene | 14.54 | 3.28 | C15H24 | 204 | 1455 | sesquiterpene |
13 | trans-α-Bergamotene | 15.89 | 0.46 | C15H24 | 204 | 1493 | sesquiterpene |
14 | (E,E)-alpha-Farnesene | 16.47 | 1.47 | C15H24 | 204 | 1508 | sesquiterpene |
15 | β-Cadinene | 16.94 | 0.10 | C15H24 | 204 | 1519 | sesquiterpene |
16 | 3-Hydroxy-benzoic acid | 17.95 | 1.17 | C7H6O3 | 138 | 1543 | carboxylic acid |
17 | beta-epoxide-Caryophyllene | 19.31 | 0.31 | C15H24O | 220 | 1574 | sesquiterpenoid |
18 | 4-Hydroxy-3-methoxybenzoic acid | 20.00 | 0.25 | C8H8O4 | 168 | 1590 | carboxylic acid |
19 | Myristic acid | 28.20 | 0.11 | C14H28O2 | 228 | 1765 lit | carboxylic acid |
20 | 9H-Indeno[2,1-c]pyridin-9-one | 30.75 | 0.05 | C12H7NO | 181 | N/A | alkaloid |
21 | Neophytadiene | 31.54 | 0.14 | C20H38 | 278 | 1838 lit | diterpene |
22 | Butyl Isobutyl Phthalate | 32.65 | 0.14 | C16H22O4 | 278 | 1924 lit | ester |
23 | Methyl hexadecanoate | 35.69 | 0.05 | C17H34O2 | 270 | 1928 lit | ester |
24 | Dibutylphthalate | 36.99 | 0.08 | C16H22O4 | 278 | 1970 lit | ester |
25 | Hexadecanoic acid | 37.75 | 0.44 | C16H32O2 | 256 | 1973 lit | carboxylic acid |
26 | (Z)-9,17-Octadecadienal | 45.41 | 0.91 | C18H32O | 264 | 1997 lit | aldehyde |
27 | Octadecanoic acid | 46.48 | 0.14 | C18H36O2 | 284 | 2172 lit | carboxylic acid |
28 | Lycodoline | 65.85 | 3.13 | C16H25NO2 | 263 | N/A | alkaloid |
29 | 3-[(3-nitro-4-pyridinyl)amino]benzoic acid | 71.67 | 1.18 | C12H9N3O4 | 259 | N/A | carboxylic acid |
30 | Mammea-B/AB | 73.93 | 2.66 | C22H28O5 | 372 | N/A | coumarin |
31 | Mammea-B/AC | 74.24 | 1.83 | C21H26O5 | 358 | N/A | coumarin |
32 | Mammea-B/BA | 74.60 | 0.46 | C22H28O5 | 372 | N/A | coumarin |
33 | 10,13-Di-t-butyl-14H-benzo[6,7]cyclohepta[1,2-b]naphtho[1,2-d]indole-14-one | 75.84 | 1.36 | C29H29NO | 407 | N/A | indole |
34 | α-Tocopherol | 81.49 | 0.38 | C29H50O2 | 430 | 3130 lit | phenol |
35 | Mesuol | 86.39 | 4.99 | C24H24O5 | 392 | N/A | coumarin |
36 | 13,17-Diethyl-12,18-dimethyl-21,22-dioxaoxophlorin | 87.85 | 1.31 | C26H24N2O3 | 412 | N/A | porphyrin |
37 | γ-Sitosterol | 88.74 | 0.50 | C29H50O | 414 | N/A | steroid |
38 | Mammea-A/AB | 90.38 | 7.52 | C25H26O5 | 406 | N/A | coumarin |
39 | Friedelin | 100.56 | 1.57 | C30H50O | 426 | 3510 lit | triterpenoid |
Identified Total Area % | 52.81 |
Mean Brine Shrimp Mortality (%) (M ± SE) | ||||
---|---|---|---|---|
Conc. (μg/mL) | MAD | MAC | MAM | (+) Control K2Cr2O7 |
10 | 73 ± 3 | 30 ± 20 | 37 ± 15 | 3 ± 3 |
20 | 97 ± 3 | 93 ± 3 | 97 ± 3 | 10 ± 6 |
50 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 23 ± 7 |
100 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 70 ± 12 |
250 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 90 ± 6 |
500 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
750 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
1000 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
Conc. (%v/v) | (-) Control DMSO | |||
0.1 | 0 | |||
0.3 | 0 | |||
4 | 0 |
Mammea Leaves Extract Treatment | LC50 µg/mL (95% CL) | Toxicity Profile * | Regression Equation | R2 | χ2 (df = 5) | p-Value |
---|---|---|---|---|---|---|
MAD | 8.39 (6.55–10.23) | Highly toxic | 1.00 | 0.004 | <0.0001 | |
MAC | 12.67 (10.84–14.51) | Highly toxic | 1.00 | 0.001 | <0.0001 | |
MAM | 11.66 (9.90–13.42) | Highly toxic | 1.00 | 0.0001 | <0.0001 | |
(+) Control K2Cr2O7 | 109.98 (89.19–130.77) | Toxic | 0.995 | 15.02 | <0.0001 | |
(-) Control DMSO | 0 | Non toxic | 0 | 0 | 0 | 0 |
Mean Insect Mortality (%) (M ± SE) | ||||||||
---|---|---|---|---|---|---|---|---|
Conc. (mg/mL) | MAD 24 h | MAC 24 h | MAM 24 h | (+) Control 24 h | MAD 48 h | MAC 48 h | MAM 48 h | (+) Control 48 h |
1.0 | 11 ± 6 | 6 ± 6 | 36 ± 2 | 89 ± 6 | 28 ± 6 | 22 ± 11 | 56 ± 6 | 100 ± 0 |
2.5 | 11 ± 11 | 6 ± 6 | 30 ± 7 | 22 ± 11 | 11 ± 6 | 50 ± 10 | ||
5.0 | 11 ± 6 | 6 ± 6 | 30 ± 7 | 22 ± 6 | 11 ± 6 | 50 ± 10 | ||
7.5 | 39 ± 6 | 17 ± 10 | 40 ± 14 | 39 ± 6 | 17 ± 10 | 67 ± 10 | ||
10.0 | 50 ± 17 | 28 ± 6 | 44 ± 24 | 50 ± 17 | 28 ± 6 | 67 ± 10 | ||
(-) Control | 0 | 0 | 0 | 0 | 0 | 0 | ||
1 mL solvent |
Mammea Leaves Extract Treatment | Exposure Time | LC50 mg/mL (95% CL) | Regression Equation | R2 | χ2 (df = 2) | p-Value |
---|---|---|---|---|---|---|
MAD | 24 h | 9.86 (7.31–12.40) | 0.957 | 41.10 | 0.04 | |
48 h | 10.00 (6.14–13.85) | 0.813 | 135.35 | 0.09 | ||
MAC | 24 h | 14.26 (8.14–20.37) | 0.961 | 10.23 | 0.04 | |
48 h | 19.87 (1.82–37.93) | 0.478 | 123.46 | 0.26 | ||
MAM | 24 h | 10.80 (5.30–16.31) | 0.911 | 55.04 | 0.03 | |
48 h | 5.90 (3.55–8.25) | 0.943 | 87.00 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Torres, M.; Rivera-Portalatín, N.; Cabrera-Asencio, I. Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp. Plants 2025, 14, 21. https://doi.org/10.3390/plants14010021
Vázquez-Torres M, Rivera-Portalatín N, Cabrera-Asencio I. Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp. Plants. 2025; 14(1):21. https://doi.org/10.3390/plants14010021
Chicago/Turabian StyleVázquez-Torres, Mike, Nilka Rivera-Portalatín, and Irma Cabrera-Asencio. 2025. "Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp." Plants 14, no. 1: 21. https://doi.org/10.3390/plants14010021
APA StyleVázquez-Torres, M., Rivera-Portalatín, N., & Cabrera-Asencio, I. (2025). Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp. Plants, 14(1), 21. https://doi.org/10.3390/plants14010021