A Thematic Similarity Network Approach for Analysis of Places Using Volunteered Geographic Information
<p>An example of a TripAdvisor page and the highlights are the information scraped from the page.</p> "> Figure 2
<p>Workflow from data input to the construction of the thematic similarity network and analysis (i.e., community detection and unique nodes discovery).</p> "> Figure 3
<p>A stylized network demonstrating the process of community detection from a fully connected similarity network.</p> "> Figure 4
<p>Cross validation results for community detection in three networks, modularity (<b>Left</b>) and number of one-node communities (<b>Right</b>).</p> "> Figure 5
<p>The sizes of communities from the community detection results of the three networks.</p> "> Figure 6
<p>Network visualization of all communities from the thematic similarity networks using Gephi [<a href="#B60-ijgi-09-00385" class="html-bibr">60</a>] Fruchterman–Reingold layout with major communities highlighted. Only the major communities are shown on the map for the sake of clarity. Major communities in Network visualization and mapping for each network are colored the same and thus the legend applies for both.</p> "> Figure 7
<p>Dominant topics of all major communities in each thematic similarity network. Dominant topics are topics with coefficients equal or higher than 0.1.</p> "> Figure 8
<p>Low-income communities highlighted and the label nodes represent the geodemographic type. (<b>a</b>) Network visualization of all communities and mapping of major communities (colored the same as <a href="#ijgi-09-00385-f006" class="html-fig">Figure 6</a>b). The node label represents their demographic classification. (<b>b</b>) Word cloud of topics in major communities. Topics of low-income communities are in visualized (<b>b</b>).</p> "> Figure 9
<p>Visualization of the networks and nodes where large node size represents boundary nodes. Communities are colored the same as <a href="#ijgi-09-00385-f006" class="html-fig">Figure 6</a>.</p> "> Figure 10
<p>Two examples of communities with boundary nodes and their respective topics. (<b>a</b>) An example from TripAdvisor attractions. (<b>b</b>) An example from TripAdvisor restaurants.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Data
3.1. Data Collection
3.2. Data Pre-Processing and Aggregation
4. Methodology
4.1. Topic Modeling and Thematic Similarity Networks
4.2. Community Detection
4.3. Discovering Unique Nodes
- node has at least one edge connecting to community and
- all the neighborhoods of v have no edge connecting to community .
4.4. Algorithm and Implementation
Algorithm 1: Network Construction and Community and Boundary Node Detection |
5. Results
5.1. Major Network Communities and Their Topics
5.1.1. Network Visualization and Mapping
5.1.2. Quantitative Test for Spatial Autocorrelation of Communities
5.2. Enriching Network Communities with Geodemographic Attributes
5.3. Identifying Nodes with Degrees of Uniqueness
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Network | Community ID | Moran’s I | p Value |
---|---|---|---|
TripAdvisor Attractions | 1 | −0.022740 | 0.413 |
2 | −0.002260 | 0.105 | |
3 | 0.000641 | 0.054 | |
4 | 0.120743 | 0.014 * | |
5 | 0.162247 | 0.010 ** | |
6 | 0.142676 | 0.006 ** | |
7 | −0.020767 | 0.035 * | |
8 | 0.002285 | 0.410 | |
9 | −0.003477 | 0.131 | |
10 | 0.057185 | 0.097 | |
11 | 0.141883 | 0.015 * | |
12 | 0.107151 | 0.014 * | |
13 | 0.106869 | 0.034 * | |
14 | 0.053348 | 0.111 | |
15 | −0.005520 | 0.326 | |
16 | −0.005640 | 0.280 | |
17 | −0.006208 | 0.157 | |
18 | −0.005532 | 0.345 | |
19 | −0.015263 | 0.430 | |
20 | −0.000060 | 0.073 | |
21 | −0.007165 | 0.067 | |
22 | −0.005024 | 0.492 | |
23 | −0.004145 | 0.208 | |
24 | −0.006130 | 0.140 | |
25 | −0.005303 | 0.389 | |
26 | −0.009513 | 0.381 | |
27 | 0.171691 | 0.009 ** | |
28 | 0.338116 | 0.002 ** | |
TripAdvisor Restaurants | 1 | 0.004695 | 0.052 |
2 | 0.120561 | 0.017 * | |
3 | 0.682913 | 0.001 *** | |
4 | −0.001215 | 0.045 * | |
5 | 0.459894 | 0.002 ** | |
6 | −0.003185 | 0.100 | |
7 | −0.009306 | 0.014 * | |
8 | 0.223211 | 0.001 *** | |
9 | −0.005161 | 0.416 | |
10 | 0.174987 | 0.001 *** | |
11 | −0.006029 | 0.140 | |
12 | −0.025863 | 0.045 * | |
13 | 0.112362 | 0.026 * | |
14 | 0.167896 | 0.010 ** | |
15 | 0.038441 | 0.170 | |
16 | −0.004510 | 0.365 | |
17 | 0.255313 | 0.002 ** | |
18 | −0.003777 | 0.186 | |
19 | 0.116421 | 0.020 * | |
20 | −0.005524 | 0.266 | |
21 | −0.004135 | 0.232 | |
22 | −0.006081 | 0.139 | |
23 | 0.345028 | 0.001 *** | |
24 | 0.085735 | 0.044 * | |
25 | −0.009043 | 0.358 | |
26 | −0.004745 | 0.425 | |
TripAdvisor Restaurants | 27 | 0.102172 | 0.030 * |
28 | 0.076950 | 0.046 * | |
29 | −0.006169 | 0.111 | |
30 | −0.005366 | 0.317 | |
31 | −0.004373 | 0.352 | |
32 | −0.004645 | 0.415 | |
33 | −0.011160 | 0.188 | |
34 | −0.004428 | 0.350 | |
35 | −0.005358 | 0.343 | |
36 | −0.004536 | 0.124 | |
37 | −0.008849 | 0.015 * | |
38 | −0.004531 | 0.391 | |
39 | −0.005106 | 0.442 | |
40 | −0.004121 | 0.251 | |
41 | −0.004531 | 0.390 | |
42 | −0.004252 | 0.282 | |
43 | −0.005566 | 0.301 | |
44 | 0.572042 | 0.001 *** | |
45 | −0.004745 | 0.444 | |
46 | −0.004745 | 0.429 | |
47 | −0.005653 | 0.277 | |
48 | −0.005114 | 0.443 | |
49 | −0.005894 | 0.195 | |
50 | −0.002693 | 0.085 | |
51 | 0.004695 | 0.038 * | |
52 | −0.004088 | 0.232 | |
53 | −0.005155 | 0.420 | |
54 | −0.002693 | 0.075 | |
55 | −0.007618 | 0.024 * | |
56 | 0.004695 | 0.053 | |
57 | 0.004695 | 0.043 * | |
58 | 0.004695 | 0.042 * | |
1 | 0.004695 | 0.046 * | |
2 | −0.003338 | 0.086 | |
3 | −0.006387 | 0.161 | |
4 | 0.004695 | 0.046 * | |
5 | −0.001215 | 0.048 * | |
6 | 0.004695 | 0.046 * | |
7 | −0.010278 | 0.404 | |
8 | −0.002693 | 0.095 | |
9 | −0.004061 | 0.221 | |
10 | 0.328338 | 0.001 *** | |
11 | −0.012091 | 0.006 ** | |
12 | 0.056188 | 0.085 | |
13 | −0.010706 | 0.293 | |
14 | −0.010190 | 0.414 | |
15 | −0.003404 | 0.113 | |
16 | −0.007665 | 0.031 * | |
17 | 0.118175 | 0.016 * | |
18 | 0.194717 | 0.013 * | |
19 | −0.004334 | 0.347 | |
20 | −0.005818 | 0.224 | |
21 | −0.015831 | 0.304 | |
22 | −0.006734 | 0.076 | |
23 | −0.009470 | 0.010 * | |
24 | 0.019150 | 0.246 | |
25 | 0.196924 | 0.005 ** | |
26 | 0.077334 | 0.063 | |
27 | −0.003777 | 0.169 | |
28 | −0.009687 | 0.451 |
References
- Goodchild, M.F. Formalizing Place in Geographic Information Systems. In Communities, Neighborhoods, and Health: Expanding the Boundaries of Place; Burton, L.M., Matthews, S.A., Leung, M., Kemp, S.P., Takeuchi, D.T., Eds.; Social Disparities in Health and Health Care; Springer: New York, NY, USA, 2011; pp. 21–33. [Google Scholar] [CrossRef] [Green Version]
- Tuan, Y.F. Space and Place: The Perspective of Experience; U of Minnesota Press: Minneapolis, MN, USA, 1977. [Google Scholar]
- Agnew, J. Space and Place. SAGE Handb. Geogr. Knowl. 2011, 23, 316–330. [Google Scholar]
- Cresswell, T. Place: An Introduction; John Wiley & Sons: Chichester, UK, 2014. Available online: http://xxx.lanl.gov/abs/sdzhBQAAQBAJ (accessed on 3 December 2014).
- Shevky, E.; Bell, W. Social Area Analysis; Theory, Illustrative Application and Computational Procedures; Stanford University Press: Palo Alto, CA, USA, 1955. [Google Scholar]
- Anderson, T.R.; Egeland, J.A. Spatial Aspects of Social Area Analysis. Am. Sociol. Rev. 1961, 26, 392–398. [Google Scholar] [CrossRef]
- Spielman, S.E.; Thill, J.C. Social Area Analysis, Data Mining, and GIS. Comput. Environ. Urban Syst. 2008, 32, 110–122. [Google Scholar] [CrossRef]
- Spicker, P. Charles Booth: The Examination of Poverty. Soc. Policy Adm. 1990, 24, 21–38. [Google Scholar] [CrossRef]
- Webber, R. Papers: Designing Geodemographic Classifications to Meet Contemporary Business Needs. Interact. Mark. 2004, 5, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Singleton, A.D.; Longley, P.A. Creating Open Source Geodemographics: Refining a National Classification of Census Output Areas for Applications in Higher Education. Pap. Reg. Sci. 2009, 88, 643–666. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G. Crowdsourcing Urban Form and Function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting Ambient Geospatial Information from Social Media Feeds. GeoJournal 2013, 78, 319–338. [Google Scholar] [CrossRef]
- Sui, D.; Elwood, S.; Goodchild, M. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. Available online: http://xxx.lanl.gov/abs/SSbHUpSk2MsC (accessed on 15 February 2020).
- MacEachren, A.M. Leveraging Big (Geo) Data with (Geo) Visual Analytics: Place as the Next Frontier. In Spatial Data Handling in Big Data Era: Select Papers from the 17th IGU Spatial Data Handling Symposium; Zhou, C., Su, F., Harvey, F., Xu, J., Eds.; Advances in Geographic Information Science; Springer: Singapore, 2017; pp. 139–155. [Google Scholar] [CrossRef]
- Hu, Y. 1.07—Geospatial Semantics. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 80–94. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Crooks, A. Assessing the Placeness of Locations through User-Contributed Content. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery; Association for Computing Machinery: New York, NY, USA, 2019; pp. 15–23. [Google Scholar] [CrossRef] [Green Version]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Ballatore, A.; Adams, B. Extracting Place Emotions from Travel Blogs. Proc. AGILE 2015, 2015, 1–5. [Google Scholar]
- Adams, B.; McKenzie, G. Inferring Thematic Places from Spatially Referenced Natural Language Descriptions. In Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 201–221. [Google Scholar] [CrossRef]
- Mai, G.; Janowicz, K.; Prasad, S.; Yan, B. Visualizing the Semantic Similarity of Geographic Features. In Proceedings of the AGILE Conference, Lund, Sweden, 12–15 June 2018; pp. 12–15. [Google Scholar]
- Hu, Y.; McKenzie, G.; Janowicz, K.; Gao, S. Mining Human-Place Interaction Patterns from Location-Based Social Networks to Enrich Place Categorization Systems. In Proceedings of the Workshop on Cognitive Engineering for Spatial Information Processes at COSIT 2015, Santa Fe, NM, USA, 12 October 2015. [Google Scholar]
- Hasan, S.; Ukkusuri, S.V. Urban Activity Pattern Classification Using Topic Models from Online Geo-Location Data. Transp. Res. Part C Emerg. Technol. 2014, 44, 363–381. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting Urban Functional Regions from Points of Interest and Human Activities on Location-Based Social Networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Yin, Z.; Cao, L.; Han, J.; Zhai, C.; Huang, T. Geographical Topic Discovery and Comparison. In Proceedings of the 20th International Conference on World Wide Web; Association for Computing Machinery: New York, NY, USA, 2011; pp. 247–256. [Google Scholar] [CrossRef]
- Mei, Q.; Liu, C.; Su, H.; Zhai, C. A Probabilistic Approach to Spatiotemporal Theme Pattern Mining on Weblogs. In Proceedings of the 15th International Conference on World Wide Web; Association for Computing Machinery: New York, NY, USA, 2006; pp. 533–542. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Xie, X.; Ma, W.Y. Mining Geographic Knowledge Using Location Aware Topic Model. In Proceedings of the 4th ACM Workshop on Geographical Information Retrieval; Association for Computing Machinery: New York, NY, USA, 2007; pp. 65–70. [Google Scholar] [CrossRef]
- Hao, Q.; Cai, R.; Wang, C.; Xiao, R.; Yang, J.M.; Pang, Y.; Zhang, L. Equip Tourists with Knowledge Mined from Travelogues. In Proceedings of the 19th International Conference on World Wide Web; Association for Computing Machinery: New York, NY, USA, 2010; pp. 401–410. [Google Scholar] [CrossRef]
- Hu, B.; Ester, M. Spatial Topic Modeling in Online Social Media for Location Recommendation. In Proceedings of the 7th ACM Conference on Recommender Systems; Association for Computing Machinery: New York, NY, USA, 2013; pp. 25–32. [Google Scholar] [CrossRef]
- Yuan, Q.; Cong, G.; Ma, Z.; Sun, A.; Thalmann, N.M. Who, Where, When and What: Discover Spatio-Temporal Topics for Twitter Users. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2013; pp. 605–613. [Google Scholar] [CrossRef]
- Schmid, K.A.; Züfle, A.; Pfoser, D.; Crooks, A.; Croitoru, A.; Stefanidis, A. Predicting the evolution of narratives in social media. In International Symposium on Spatial and Temporal Databases; Springer: Cham, Switzerland, 2017; pp. 388–392. [Google Scholar]
- Jenkins, A.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Crowdsourcing a Collective Sense of Place. PLoS ONE 2016, 11, e0152932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, X.; Yang, J.; Kim, J.S.; Trajcevski, G.; Züfle, A.; Nascimento, M.A. Fine-Grained Diversification of Proximity Constrained Queries on Road Networks. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases; Association for Computing Machinery: New York, NY, USA, 2019; pp. 51–60. [Google Scholar]
- Cranshaw, J.; Schwartz, R.; Hong, J.; Sadeh, N. The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City. In Sixth International AAAI Conference on Weblogs and Social Media; The AAAI Press: Palo Alto, CA, USA, 2012. [Google Scholar]
- Preoţiuc-Pietro, D.; Cranshaw, J.; Yano, T. Exploring Venue-Based City-to-City Similarity Measures. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Noulas, A.; Scellato, S.; Mascolo, C.; Pontil, M. Exploiting Semantic Annotations for Clustering Geographic Areas and Users in Location-Based Social Networks. In Fifth International AAAI Conference on Weblogs and Social Media; The AAAI Press: Palo Alto, CA, USA, 2011. [Google Scholar]
- Adams, B.; Raubal, M. Identifying Salient Topics for Personalized Place Similarity. Res. Locate 2014, 14, 1–12. [Google Scholar]
- Janowicz, K.; Raubal, M.; Kuhn, W. The Semantics of Similarity in Geographic Information Retrieval. J. Spat. Inf. Sci. 2011, 2011, 29–57. [Google Scholar] [CrossRef]
- Yan, B.; Janowicz, K.; Mai, G.; Gao, S. From ITDL to Place2Vec: Reasoning About Place Type Similarity and Relatedness by Learning Embeddings From Augmented Spatial Contexts. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Quercini, G.; Samet, H. Uncovering the Spatial Relatedness in Wikipedia. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems; Association for Computing Machinery: New York, NY, USA, 2014; pp. 153–162. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, X.; Shaw, S.L. Extracting and Analyzing Semantic Relatedness between Cities Using News Articles. Int. J. Geogr. Inf. Sci. 2017, 31, 2427–2451. [Google Scholar] [CrossRef]
- Valavanis, I.; Spyrou, G.; Nikita, K. A Similarity Network Approach for the Analysis and Comparison of Protein Sequence/Structure Sets. J. Biomed. Inform. 2010, 43, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale. Nat. Methods 2014, 11, 333–337. [Google Scholar] [CrossRef]
- Brown, S.A. Patient Similarity: Emerging Concepts in Systems and Precision Medicine. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Pai, S.; Bader, G.D. Patient Similarity Networks for Precision Medicine. J. Mol. Biol. 2018, 430, 2924–2938. [Google Scholar] [CrossRef] [PubMed]
- Google Geocoding API. Available online: https://developers.google.com/maps/documentation/geocoding/start (accessed on 3 February 2020).
- US Census. Available online: https://www2.census.gov/geo/pdfs/education/CensusTracts.pdf (accessed on 3 February 2020).
- Openshaw, S. The Modifiable Areal Unit Problem. Quant. Geogr. Br. View 1981, 60–69. [Google Scholar]
- Kouloumpis, E.; Wilson, T.; Moore, J. Twitter Sentiment Analysis: The Good the Bad and the Omg! In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media; The AAAI Press: Menlo Park, CA, USA, 2011. [Google Scholar]
- Boyd-Graber, J.; Mimno, D.; Newman, D. Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements. Handb. Mixed Membsh. Model. Their Appl. 2014, 226–250, 225255. [Google Scholar]
- Schofield, A.; Mimno, D. Comparing Apples to Apple: The Effects of Stemmers on Topic Models. Trans. Assoc. Comput. Linguist. 2016, 4, 287–300. [Google Scholar] [CrossRef]
- Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks; ELRA: Valletta, Malta, 2010; pp. 45–50. Available online: http://is.muni.cz/publication/884893/en (accessed on 15 February 2020).
- Stevens, K.; Kegelmeyer, P.; Andrzejewski, D.; Buttler, D. Exploring Topic Coherence over Many Models and Many Topics. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning; Association for Computational Linguistics: Stroudsburg, PA, USA, 2012; pp. 952–961. [Google Scholar]
- Serrano, M.A.; Boguná, M.; Vespignani, A. Extracting the Multiscale Backbone of Complex Weighted Networks. Proc. Natl. Acad. Sci. USA 2009, 106, 6483–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, G.; Staudt, C.L.; Hamann, M.; Meyerhenke, H.; Wagner, D. Structure-Preserving Sparsification of Social Networks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Paris, France, 25–28 August 2015; pp. 448–454. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Analysis of Weighted Networks. Phys. Rev. E 2004, 70, 056131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, P.C.; Meira, W., Jr.; Cardie, C.; Kleinberg, R. A Measure of Polarization on Social Media Networks Based on Community Boundaries. In Seventh International AAAI Conference on Weblogs and Social Media; The AAAI Press: Menlo Park, CA, USA, 2013. [Google Scholar]
- Schaeffer, S.E. Graph Clustering. Comput. Sci. Rev. 2007, 1, 27–64. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Third International AAAI Conference on Weblogs and Social Media; The AAAI Press: Menlo Park, CA, USA, 2009. [Google Scholar]
- Spielman, S.E.; Singleton, A. Studying Neighborhoods Using Uncertain Data from the American Community Survey: A Contextual Approach. Ann. Assoc. Am. Geogr. 2015, 105, 1003–1025. [Google Scholar] [CrossRef] [Green Version]
- Singleton, A.; Arribas-Bel, D. Geographic Data Science. Geogr. Anal. 2019. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Que, X.; Checconi, F.; Petrini, F.; Gunnels, J.A. Scalable Community Detection with the Louvain Algorithm. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, 25–29 May 2015; pp. 28–37. [Google Scholar] [CrossRef]
- Swartz, M.; Crooks, A. Comparison of Emoji Use in Names, Profiles, and Tweets. In Proceedings of the 2020 IEEE 14th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 3–5 February 2020; pp. 375–380. [Google Scholar]
- Swartz, M.; Crooks, A.T.; Kennedy, W. Emoji and Keyword Cues for Diversity in Social Media. In Proceedings of the 11th International Conference on Social Media and Society, Online. 22 July 2020. [Google Scholar]
- Almazro, D.; Shahatah, G.; Albdulkarim, L.; Kherees, M.; Martinez, R.; Nzoukou, W. A Survey Paper on Recommender Systems. 2010. Available online: http://xxx.lanl.gov/abs/1006.5278 (accessed on 15 February 2020).
Dataset | Count | Number of Reviews | Number of Tracts |
---|---|---|---|
TripAdvisor attractions | 956 (attractions) | 446,747 | 210 |
TripAdvisor restaurants | 7946 (restaurants) | 865,055 | 210 |
268,224 (users) | 2,009,498 | 210 |
Dataset | K | |
---|---|---|
TripAdvisor attractions | 30 | 100 |
TripAdvisor restaurants | 40 | 500 |
70 | 700 |
Network | Iteration | Weight Threshold | Modularity |
---|---|---|---|
TripAdvisor attractions | 8 | 0.4 | 0.714 |
TripAdvisor restaurants | 10 | 0.5 | 0.573 |
19 | 0.7 | 0.365 |
Network | Community ID | Moran’s I | p Value |
---|---|---|---|
TripAdvisor attraction | 1 | −0.022740 | 0.413 |
4 | 0.120743 | 0.014 * | |
6 | 0.142676 | 0.006 ** | |
8 | 0.002285 | 0.410 | |
12 | 0.107151 | 0.014 * | |
13 | 0.106869 | 0.034 * | |
TripAdvisor restaurants | 2 | 0.120561 | 0.017 * |
3 | 0.682913 | 0.001 *** | |
8 | 0.223211 | 0.001 *** | |
10 | 0.174987 | 0.001 *** | |
13 | 0.112362 | 0.026 * | |
14 | 0.167896 | 0.010 ** | |
17 | 0.255313 | 0.002 ** | |
23 | 0.345028 | 0.001 *** | |
44 | 0.572042 | 0.001 *** | |
10 | 0.328338 | 0.001 *** | |
12 | 0.056188 | 0.085 | |
17 | 0.118175 | 0.020 * | |
18 | 0.194717 | 0.007 ** | |
23 | 0.019150 | 0.258 |
Type | Type Description | Percentage | |
---|---|---|---|
High Income | 2 | “Wealthy Nuclear Families” | 1.87% |
5 | “Wealthy, urban without Kids” | 68.22% | |
7 | “Wealthy Old Caucasian” | 2.80% | |
Low Income | 8 | “Low income, mix of minorities” | 22.90% |
Others | 10 | “Residential Institutions” | 1.40% |
3 | “Middle Income, Single Family Home” | 0.47% |
Central Nodes | Outlier Nodes | ||
---|---|---|---|
36061012000 | 36061013700 | ||
36061005000 | 36061010400 | ||
36061005400 | 36061007600 | ||
36061016700 | 36061009200 | ||
36061005502 | 36061000100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Crooks, A.; Züfle, A. A Thematic Similarity Network Approach for Analysis of Places Using Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2020, 9, 385. https://doi.org/10.3390/ijgi9060385
Yuan X, Crooks A, Züfle A. A Thematic Similarity Network Approach for Analysis of Places Using Volunteered Geographic Information. ISPRS International Journal of Geo-Information. 2020; 9(6):385. https://doi.org/10.3390/ijgi9060385
Chicago/Turabian StyleYuan, Xiaoyi, Andrew Crooks, and Andreas Züfle. 2020. "A Thematic Similarity Network Approach for Analysis of Places Using Volunteered Geographic Information" ISPRS International Journal of Geo-Information 9, no. 6: 385. https://doi.org/10.3390/ijgi9060385
APA StyleYuan, X., Crooks, A., & Züfle, A. (2020). A Thematic Similarity Network Approach for Analysis of Places Using Volunteered Geographic Information. ISPRS International Journal of Geo-Information, 9(6), 385. https://doi.org/10.3390/ijgi9060385