Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China
<p>Study area: (<b>a</b>) Mt. Baekdu (MTB) region in China; (<b>b</b>) Korea National Arboretum (KNA) in South Korea.</p> "> Figure 2
<p>Flowchart of the tree species classification procedure. Abbreviations: GLCM, gray-level co-occurrence matrix.</p> "> Figure 3
<p>Visual comparison of reflectance spectra of Korean pine and Japanese larch from Hyperion images. Half-transparent regions in the figure represent standard deviations.</p> "> Figure 4
<p>Species classification results of the KNA. Abbreviations: CM, combined training data model.</p> "> Figure 5
<p>Spectral comparison between the KNA and MTB.</p> "> Figure 6
<p>Species classification results of the MTB region.</p> ">
Abstract
:1. Introduction
- Can Hyperion data with machine learning algorithms, such as RFs and SVMs, be adopted for tree classification?
- Can Sentinel-2 data be used for tree species classification with RF and SVM algorithms instead of Hyperion data?
- Can training data that were built in the KNA be used for the tree classification of MTB?
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Methodology
2.4. Preprocessing
2.5. Texture Analysis
2.6. Spectral Separability and Similarity Analysis
2.7. Classification Algorithms
2.7.1. Random Forest
- N samples are randomly selected with replacement from the entire training data. These N samples are used as training data in each decision tree model to generate trees. In general, approximately 70% of the total sample is extracted and used as training data in each tree model, and the remaining 30% is termed “out-of-bag” (OOB) and not used during training;
- If there are M input variables, a number m of input variables of M is randomly selected with replacement at each node of the decision trees, and then the best node variables are determined among the m variables. The value of m is constant in an RF, and usually the square root of M, which is the total number of input variables, is used;
- Each decision tree is created to the maximum possible size without pruning.
2.7.2. Support Vector Machine
2.8. Data Dimensionality Reduction
3. Results and Discussion
3.1. Spectral Separability and Similarity
3.2. Classification with Hyperion Data of the Korea National Arboretum
3.3. Wilk’s Lambda Result of the Korea National Arboretum
3.4. Sentinel-2 Analysis
3.5. Classification of Mt. Baekdu
4. Conclusions
- Hyperion data with machine learning algorithms, such as RF and SVM, can be adopted for tree classification;
- Sentinel-2 data may be used for tree species classification with RF and SVM algorithms corresponding Hyperion data;
- A training dataset that was built in the KNA cannot be used for tree classification of MTB. However, combined training data from the KNA and MTB showed high classification accuracies in both regions.
Author Contributions
Funding
Conflicts of Interest
References
- Lim, J.; Lee, K.S. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems. Environ. Monit. Assess. 2017, 189, 96. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lee, K.S. Flood mapping using multi-source remotely sensed data and logistic regression in the heterogeneous mountainous regions in north korea. Remote. Sens. 2018, 10, 1036. [Google Scholar] [CrossRef]
- Lim, J. Investigation of Flood Risk Assessment in Inaccessible Regions Using Multiple Remote Sensing and Geographic Information Systems. Ph.D. Thesis, Sungkyunkwan University, Seoul, Korea, 2017. [Google Scholar]
- Dlamini, W.M. Mapping forest and woodland loss in swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Hurst, Z.M.; McCleery, R.A.; Collier, B.A.; Fletcher, R.J., Jr.; Silvy, N.J.; Taylor, P.J.; Monadjem, A. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in swaziland. PLoS ONE 2013, 8, e74520. [Google Scholar] [CrossRef] [PubMed]
- MLEP. Democratic People’s Republic of Korea Environment and Climate Change Outlook; MLEP: Pyongyang, Korea, 2012. [Google Scholar]
- Son, G.W. Environmental Policies and Reality in North Korea; Institute for Unification Education: Seoul, Korea, 2007. [Google Scholar]
- George, R.; Padalia, H.; Kushwaha, S.P.S. Forest tree species discrimination in western himalaya using eo-1 hyperion. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 140–149. [Google Scholar] [CrossRef]
- Sobhan, I. Species Discrimination from a Hyperspectral Perspective; Wageningen University: Wageningen, The Netherlands, 2007. [Google Scholar]
- Pengra, B.W.; Johnston, C.A.; Loveland, T.R. Mapping an invasive plant, phragmites australis, in coastal wetlands using the eo-1 hyperion hyperspectral sensor. Remote. Sens. Environ. 2007, 108, 74–81. [Google Scholar] [CrossRef]
- Su, L.; Chopping, M.J.; Rango, A.; Martonchik, J.V.; Peters, D.P.C. Support vector machines for recognition of semi-arid vegetation types using misr multi-angle imagery. Remote. Sens. Environ. 2007, 107, 299–311. [Google Scholar] [CrossRef]
- Nidamanuri, R.R.; Zbell, B. Use of field reflectance data for crop mapping using airborne hyperspectral image. ISPRS J. Photogramm. Remote Sens. 2011, 66, 683–691. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the greater kruger national park region, by integrating hyperspectral and lidar data in a random forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.; Pang, Y. Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. J. Indian Soc. Remote Sens. 2015, 43, 101–107. [Google Scholar] [CrossRef]
- Puletti, N.; Camarretta, N.; Corona, P. Evaluating eo1-hyperion capability for mapping conifer and broadleaved forests. Eur. J. Remote Sens. 2016, 49, 157–169. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Vyas, D.; Krishnayya, N.S.R.; Manjunath, K.R.; Ray, S.S.; Panigrahy, S. Evaluation of classifiers for processing hyperion (eo-1) data of tropical vegetation. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 228–235. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Baldeck, C.A.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Kellner, J.R.; Wright, S.J. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 2015, 10, e0118403. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the southern alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and lidar data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Du, Q.; Ren, H. Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery. Pattern Recognit. 2003, 36, 1–12. [Google Scholar] [CrossRef]
- Lawrence, R.; Bunn, A.; Powell, S.; Zambon, M. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 2004, 90, 331–336. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Erbek, F.S.; Özkan, C.; Taberner, M. Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 2004, 25, 1733–1748. [Google Scholar] [CrossRef]
- Foody, G.M. Supervised image classification by mlp and rbf neural networks with and without an exhaustively defined set of classes. Int. J. Remote Sens. 2004, 25, 3091–3104. [Google Scholar] [CrossRef]
- Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural networks. arXiv, 2015; arXiv:1508.00092. [Google Scholar]
- Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Simpson, J.J.; McIntire, T.J. A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2135–2147. [Google Scholar] [CrossRef]
- Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote. Sens. 2016, 8, 506. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- Prospere, K.; McLaren, K.; Wilson, B. Plant species discrimination in a tropical wetland using in situ hyperspectral data. Remote Sens. 2014, 6, 8494–8523. [Google Scholar] [CrossRef]
- Jang, Y.C.; Lee, C.H.; Kang, H.K.; Lee, S.H. Problems to be solved technologically in strengthening forest rehabilitation battle for forest restoration of whole country. For. Sci. 2015, 2015, 2–5. [Google Scholar]
- Wikipedia. Köppen Climate Classification. Available online: https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification (accessed on 12 March 2019).
- Wikipedia. Humid Continental Climate. Available online: https://en.wikipedia.org/wiki/Humid_continental_climate (accessed on 12 March 2019).
- KFS. Introduction: Korea National Arboretum. Available online: http://english.forest.go.kr/newkfsweb/html/EngHtmlPage.do?pg=/esh/org_kna/UI_KFS_0106_030110.html&mn=ENG_06_03_01 (accessed on 11 December 2018).
- Jo, D.H. Mushrooms of mt. Baekdu (vol.1): Biota of mt. Baekdu. Available online: https://terms.naver.com/entry.nhn?docId=3328439&cid=42526&categoryId=56828 (accessed on 11 December 2018).
- ISO 2859-1. Sampling Procedures for Inspection by Attributes—Part 1: Sampling Schemes Indexed by Acceptance Quality Limit (AQL) for Lot-By-Lot Inspection; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Series in Geographic Information Science; Pearson Education: Glenview, IL, USA, 2016. [Google Scholar]
- Zazi, L.; Boutaleb, A.; Guettouche, M.S. Identification and mapping of clay minerals in the region of Djebel Meni (Northwestern Algeria) using hyperspectral imaging, eo-1 hyperion sensor. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Korn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 sen2cor: L2a processor for users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; p. 91. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef] [Green Version]
- Culbert, P.D.; Radeloff, V.C.; St-Louis, V.; Flather, C.H.; Rittenhouse, C.D.; Albright, T.P.; Pidgeon, A.M. Modeling broad-scale patterns of avian species richness across the midwestern united states with measures of satellite image texture. Remote Sens. Environ. 2012, 118, 140–150. [Google Scholar] [CrossRef]
- Warner, T. Kernel-based texture in remote sensing image classification. Geogr. Compass 2011, 5, 781–798. [Google Scholar] [CrossRef]
- Luo, L.; Mountrakis, G. Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example. Remote Sens. Environ. 2010, 114, 1220–1229. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S. Incorporation of texture information in a svm method for classifying salt cedar in western china. Remote Sens. Lett. 2014, 5, 501–510. [Google Scholar] [CrossRef]
- Jensen, J.R.; Im, J.; Hardin, P.; Jensen, R.R. Chapter 19: Image classification. In The Sage Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; Sage Publications: London, UK, 2009; pp. 269–281. [Google Scholar]
- Maillard, P. Comparing texture analysis methods through classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Glcm Texture: A Tutorial v. 3.0 March 2017. Available online: https://prism.ucalgary.ca/handle/1880/51900 (accessed on 11 December 2018).
- De Carvalho, O.A.; Meneses, P.R. Spectral correlation mapper (scm): An improvement on the spectral angle mapper (sam). In Proceedings of the Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18, Pasadena, CA, USA, 2000; JPL Publication: Pasadena, CA, USA, 2000. [Google Scholar]
- Breiman, L.; Cutler, A. Random Forests. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 11 December 2018).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using random forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Ismail, R.; Mutanga, O.; Kumar, L. Modeling the potential distribution of pine forests susceptible to sirex noctilio infestations in mpumalanga, south africa. Trans. GIS 2010, 14, 709–726. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. Uav remote sensing for urban vegetation mapping using random forest and texture analysis. Remote. Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using random forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- van der Linden, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Meyer, D. Support Vector Machines. Available online: https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf (accessed on 11 December 2018).
- Wang, J.; Neskovic, P.; Cooper, L.N. Training data selection for support vector machines. In Proceedings of the First International Conference, ICNC 2005, Changsha, China, 27–29 August 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 554–564. [Google Scholar]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Alice, M. How to Perform a Logistic Regression in R. Available online: https://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/ (accessed on 6 February 2017).
- Ray, S.; Das, G.; Singh, J.P.; Panigrahy, S. Evaluation of Hyperspectral Indices for Lai Estimation and Discrimination of Potato Crop under Different Irrigation Treatments. Int. J. Remote. Sens. 2006, 27, 5373–5387. [Google Scholar] [CrossRef]
- Green, P.E.; Carroll, J.D. Analyzing Multivariate Data; Harcourt Brace Jovanovich: Orlando, FL, USA, 1978. [Google Scholar]
- Rautiainen, M.; Lukeš, P.; Homolová, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral properties of coniferous forests: A review of in situ and laboratory measurements. Remote Sens. 2018, 10, 207. [Google Scholar] [CrossRef]
- Lee, B.S. Study on the selection of timing of satellite image data in forest resource survey. Geol. Geogr. 2013, 1, 44–45. [Google Scholar]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; De Dieu, M.J. Hyperion, ikonos, ali, and etm+ sensors in the study of african rainforests. Remote Sens. Environ. 2004, 90, 23–43. [Google Scholar] [CrossRef]
- Asner, G.P. Hyperspectral remote sensing of canopy chemistry, physiology, and biodiversity in tropical rainforests. In Hyperspectral Remote Sensing of Tropical and Sub-Tropical Forests; CRS Press Taylor and Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008; pp. 261–296. [Google Scholar]
- Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging spectrometry and vegetation science. In Imaging Spectrometry: Basic Principles and Prospective Applications; Meer, F.D.v.d., Jong, S.M.D., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 111–155. [Google Scholar]
- Hovi, A.; Raitio, P.; Rautiainen, M. A Spectral Analysis of 25 Boreal Tree Species. Silva Fennica 2017, 51. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 1991, 35, 69–76. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Optimal hyperspectral narrowbands for discriminating agricultural crops. Remote Sens. Rev. 2001, 20, 257–291. [Google Scholar] [CrossRef] [Green Version]
Hyperion | Sentinel-2 | PlanetScope | |||
---|---|---|---|---|---|
KNA | KNA | MTB | KNA | MTB | |
Acquisition date | 7 September 2010 | 28 April 2018 23 May 2018 2 June 2018 7 July 2018 1 August 2018 25 September 2018 30 October 2018 | 18 April 2018 23 May 2018 2 June 2018 22 June 2018 26 August 2016 20 September 2018 5 October 2018 | 12 April 2018 16 September 2017 | 4 April 2018 31 August 2017 |
Path/Row | 116/34 | 52SCG | 52TDN | ||
Level | 1R/1T | 1C | 3B |
Data | Region | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|
Hyperion | KNA | 0.027 | ||||||
Sentinel-2 | KNA | 0.051 | 0.072 | 0.074 | 0.086 | 0.009 | 0.057 | 0.091 |
Sentinel-2 | MTB | 0.275 | 0.107 | 0.094 | 0.075 | 0.093 | 0.120 | 0.025 |
Korean Pine | MTB | |||||||
18 April 2018 | 23 May 2018 | 2 June 2018 | 22 June 2018 | 26 August 2016 | 20 September 2018 | 5 October 2018 | ||
KNA | 28 April 2018 | 0.966 | 0.995 | 0.994 | 0.991 | 0.992 | 0.996 | 0.988 |
23 May 2018 | 0.945 | 0.999 | 1.000 | 0.999 | 0.999 | 0.997 | 0.980 | |
2 June 2018 | 0.948 | 0.999 | 0.999 | 0.998 | 0.998 | 0.997 | 0.981 | |
7 July 2018 | 0.919 | 0.956 | 0.955 | 0.953 | 0.953 | 0.954 | 0.943 | |
1 August 2018 | 0.942 | 0.998 | 0.999 | 0.999 | 0.998 | 0.996 | 0.978 | |
25 September 2018 | 0.937 | 0.999 | 1.000 | 1.000 | 0.999 | 0.996 | 0.975 | |
30 October 2018 | 0.944 | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.980 | |
Japanese larch | MTB | |||||||
18 April 2018 | 23 May 2018 | 2 June 2018 | 22 June 2018 | 26 August 2016 | 20 September 2018 | 5 October 2018 | ||
KNA | 28 April 2018 | 0.934 | 0.995 | 0.993 | 0.991 | 0.990 | 0.996 | 0.987 |
23 May 2018 | 0.899 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.973 | |
2 June 2018 | 0.905 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.975 | |
7 July 2018 | 0.880 | 0.954 | 0.953 | 0.952 | 0.951 | 0.953 | 0.935 | |
1 August 2018 | 0.906 | 0.998 | 0.999 | 0.999 | 0.999 | 0.998 | 0.975 | |
25 September 2018 | 0.905 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.976 | |
30 October 2018 | 0.917 | 0.999 | 0.998 | 0.996 | 0.996 | 0.999 | 0.983 |
RF | SVM | |||||||
---|---|---|---|---|---|---|---|---|
Classification 1 | Korean Pine | Japanese Larch | Total | UA | Korean Pine | Japanese Larch | Total | UA |
Korean pine | 232 | 66 | 298 | 0.78 | 249 | 49 | 298 | 0.84 |
Japanese larch | 42 | 257 | 299 | 0.86 | 39 | 260 | 299 | 0.87 |
Total | 274 | 323 | 597 | 288 | 309 | 597 | ||
PA | 0.85 | 0.80 | 0.86 | 0.84 | ||||
Overall accuracy | 0.82 | kappa statistics | 0.64 | Overall accuracy | 0.85 | kappa statistics | 0.71 | |
Classification 2 | ||||||||
Korean pine | 214 | 54 | 268 | 0.80 | 229 | 39 | 268 | 0.85 |
Japanese larch | 40 | 232 | 272 | 0.85 | 35 | 237 | 272 | 0.87 |
Total | 254 | 286 | 540 | 264 | 276 | 540 | ||
PA | 0.84 | 0.81 | 0.87 | 0.86 | ||||
Overall accuracy | 0.83 | kappa statistics | 0.65 | Overall accuracy | 0.86 | kappa statistics | 0.73 | |
Classification 3 | ||||||||
Korean pine | 220 | 25 | 245 | 0.90 | 222 | 23 | 245 | 0.91 |
Japanese larch | 36 | 213 | 249 | 0.86 | 24 | 225 | 249 | 0.90 |
Total | 256 | 238 | 494 | 246 | 248 | 494 | ||
PA | 0.86 | 0.89 | 0.90 | 0.91 | ||||
Overall accuracy | 0.88 | kappa statistics | 0.75 | Overall accuracy | 0.90 | kappa statistics | 0.81 |
Band | MDG | Remarks | Reference |
---|---|---|---|
GLCM_mean_4 | 186.0 | ||
GLCM_variance_4 | 171.2 | ||
GLCM_contrast_4 | 54.0 | ||
GLCM_dissimilarity_4 | 50.7 | ||
B6 (477.7 nm) | 48.2 | Chlorophyll b | [76] |
GLCM_homogeneity_4 | 47.2 | ||
B8 (498.0 nm) | 45.8 | Senescing, carotenoid, browning, soil background effects | [77] |
GLCM_entropy_4 | 41.7 | ||
B9 (508.2 nm) | 39.0 | Nitrogen | [8] |
GLCM_second_moment_4 | 34.9 | ||
B7 (487.9 nm) | 34.5 | Nitrogen | [17,78] |
B10 (518.4 nm) | 29.9 | ||
B125 (1749.8 nm) | 23.5 | Protein | [8] |
ASPECT | 23.1 | ||
B11 (528.6 nm) | 22.4 | ||
B12 (538.7 nm) | 19.6 | ||
B118 (1689.3 nm) | 19.5 | Lignin, starch, protein | [79] |
B123 (1739.7 nm) | 18.9 | ||
B5 (467.5 nm) | 18.2 | Chlorophyll b | [79] |
B120 (1709.5 nm) | 18.2 |
No. of Variables | Wavelength (nm) | Wilk’s Lambda | F Statistics | Remarks | Reference |
---|---|---|---|---|---|
1 | 478 | 0.92 | 501.75 | Chlorophyll b | [76] |
2 | 2143 | 0.81 | 639.25 | ||
3 | 773 | 0.76 | 580.96 | ||
4 | 1659 | 0.70 | 605.46 | Lignin, biomass, starch, most useful to discriminate different kinds of leaves | [77] |
5 | 722 | 0.68 | 528.05 | Vegetation stress and dynamics | [77] |
6 | 457 | 0.66 | 478.66 | Chlorophyll b | [79,81] |
7 | 681 | 0.64 | 446.96 | Biomass, LAI | [77] |
8 | 651 | 0.63 | 407.37 | Chlorophyll a, b | [9] |
9 | 498 | 0.62 | 377.42 | Senescing, carotenoid, browning, soil background effects | [77] |
10 | 1044 | 0.62 | 349.30 | ||
11 | 1215 | 0.60 | 337.88 | Moisture absorption | [77] |
12 | 2133 | 0.60 | 317.32 | ||
13 | 600 | 0.59 | 299.05 | ||
14 | 1074 | 0.58 | 283.67 | ||
15 | 1195 | 0.58 | 271.26 | Water, cellulose, starch, lignin | [79] |
16 | 488 | 0.58 | 257.28 | Nitrogen | [17,78] |
17 | 1094 | 0.57 | 244.71 | Biomass, LAI | [77] |
18 | 1175 | 0.57 | 232.93 | ||
19 | 1508 | 0.57 | 222.74 | Plant moisture | [77] |
20 | 2063 | 0.57 | 213.61 | ||
21 | 630 | 0.57 | 204.77 | Chlorophyll b | [17,79] |
22 | 508 | 0.56 | 196.82 | Nitrogen | [8] |
23 | 691 | 0.56 | 189.45 | Biomass, LAI | [77] |
24 | 610 | 0.56 | 182.55 | Biomass, LAI | [77] |
25 | 1023 | 0.56 | 176.17 | Protein | [79] |
26 | 468 | 0.56 | 170.27 | Chlorophyll b | [79] |
27 | 1276 | 0.56 | 164.66 | Moisture absorption, starch | [9] |
28 | 2335 | 0.56 | 159.46 | Cellulose | [79] |
29 | 2163 | 0.55 | 154.51 | Ligning, sugar, protein | [9] |
30 | 2214 | 0.55 | 149.90 | ||
31 | 993 | 0.55 | 145.41 | ||
32 | 1064 | 0.55 | 141.22 | Plant moisture | [77] |
33 | 963 | 0.55 | 137.25 | Water, starch | [79] |
34 | 1558 | 0.55 | 133.48 | ||
35 | 1568 | 0.55 | 130.08 | ||
36 | 1679 | 0.55 | 126.80 | Lignin, tannin, starch, cellulose | [9] |
37 | 923 | 0.55 | 123.64 | ||
38 | 641 | 0.55 | 120.62 | Chlorophyll b | [79] |
39 | 1165 | 0.55 | 117.74 | ||
40 | 1185 | 0.55 | 115.02 | ||
41 | 1699 | 0.55 | 112.42 | Lignin, starch, protein | [79] |
42 | 1649 | 0.55 | 109.98 | Lignin, tannin, starch, cellulose | [9] |
43 | 864 | 0.55 | 107.61 | Chlorophyll, biomass, LAI, protein | [77] |
44 | 895 | 0.54 | 105.67 | ||
45 | 803 | 0.54 | 103.62 | ||
46 | 702 | 0.54 | 101.61 | ||
47 | 2285 | 0.54 | 99.57 | ||
48 | 2244 | 0.54 | 97.61 | ||
49 | 2254 | 0.54 | 95.78 | ||
50 | 671 | 0.54 | 93.98 | Chlorophyll(Red 2) | [82] |
51 | 437 | 0.54 | 92.24 | Chlorophyll a | [79] |
52 | 1326 | 0.54 | 90.55 | ||
53 | 712 | 0.54 | 88.93 | ||
54 | 1669 | 0.54 | 87.38 | Lignin, tannin, starch, cellulose | [9] |
55 | 1740 | 0.54 | 85.88 |
RF | SVM | |||||||
---|---|---|---|---|---|---|---|---|
Classification 1 | Korean Pine | Japanese larch | Total | UA | Korean Pine | Japanese Larch | Total | UA |
Korean pine | 237 | 61 | 298 | 0.80 | 244 | 54 | 298 | 0.82 |
Japanese larch | 44 | 255 | 299 | 0.85 | 40 | 259 | 299 | 0.87 |
Total | 281 | 316 | 597 | 284 | 313 | 597 | ||
PA | 0.84 | 0.81 | 0.86 | 0.83 | ||||
Overall accuracy | 0.82 | kappa statistics | 0.65 | Overall accuracy | 0.84 | kappa statistics | 0.69 | |
Classification 2 | ||||||||
Korean pine | 223 | 45 | 268 | 0.83 | 232 | 36 | 268 | 0.87 |
Japanese larch | 41 | 231 | 272 | 0.85 | 35 | 237 | 272 | 0.87 |
Total | 264 | 276 | 540 | 267 | 273 | 540 | ||
PA | 0.84 | 0.84 | 0.87 | 0.87 | ||||
Overall accuracy | 0.84 | kappa statistics | 0.68 | Overall accuracy | 0.87 | kappa statistics | 0.74 | |
Classification 3 | ||||||||
Korean pine | 215 | 30 | 245 | 0.88 | 219 | 26 | 245 | 0.89 |
Japanese larch | 31 | 218 | 249 | 0.88 | 24 | 225 | 249 | 0.90 |
Total | 246 | 248 | 494 | 243 | 251 | 494 | ||
PA | 0.87 | 0.88 | 0.90 | 0.90 | ||||
Overall accuracy | 0.88 | kappa statistics | 0.75 | Overall accuracy | 0.90 | kappa statistics | 0.80 | |
Sentinel-2 band combination from Hyperion data | ||||||||
Korean pine | 217 | 28 | 245 | 0.89 | 220 | 25 | 245 | 0.90 |
Japanese larch | 40 | 209 | 249 | 0.84 | 28 | 221 | 249 | 0.89 |
Total | 257 | 237 | 494 | 248 | 246 | 494 | ||
PA | 0.84 | 0.88 | 0.89 | 0.90 | ||||
Overall accuracy | 0.86 | kappa statistics | 0.72 | Overall accuracy | 0.89 | kappa statistics | 0.79 |
147 versus 55 Using Random Forest | 147 versus 55 Using Support Vector Machine | |
---|---|---|
Classification 1 | 0.96 | 0.92 |
Classification 2 | 0.96 | 0.93 |
Classification 3 | 0.97 | 0.94 |
RF | SVM | |||||||
---|---|---|---|---|---|---|---|---|
Classification | Korean Pine | Japanese Larch | Total | UA | Korean Pine | Japanese Larch | Total | UA |
Korean pine | 173 | 28 | 201 | 0.86 | 169 | 33 | 202 | 0.84 |
Japanese larch | 16 | 167 | 183 | 0.91 | 20 | 162 | 182 | 0.89 |
Total | 189 | 195 | 384 | 189 | 195 | 384 | ||
PA | 0.92 | 0.86 | 0.89 | 0.83 | ||||
Overall accuracy | 0.89 | kappa statistics | 0.77 | Overall accuracy | 0.86 | kappa statistics | 0.72 |
RF | SVM | |||||||
---|---|---|---|---|---|---|---|---|
MTB KNA | Korean Pine | Japanese Larch | Total | UA | Korean Pine | Japanese Larch | Total | UA |
Korean pine | 325 | 253 | 578 | 0.56 | 336 | 328 | 664 | 0.51 |
Japanese larch | 11 | 75 | 86 | 0.87 | 0 | 0 | 0 | 0 |
Total | 336 | 328 | 664 | 336 | 328 | 664 | ||
PA | 0.97 | 0.23 | 1.00 | 0.00 | ||||
Overall accuracy | 0.60 | kappa statistics | 0.20 | Overall accuracy | 0.51 | kappa statistics | 0.00 | |
MTB | ||||||||
Korean pine | 335 | 9 | 344 | 0.97 | 333 | 8 | 341 | 0.98 |
Japanese larch | 1 | 319 | 320 | 1.00 | 3 | 320 | 323 | 0.99 |
Total | 336 | 328 | 664 | 336 | 328 | 664 | ||
PA | 1.00 | 0.97 | 0.99 | 0.98 | ||||
Overall accuracy | 0.98 | kappa statistics | 0.97 | Overall accuracy | 0.98 | kappa statistics | 0.97 | |
MTB CM | ||||||||
Korean pine | 335 | 8 | 343 | 0.98 | 330 | 10 | 340 | 0.97 |
Japanese larch | 1 | 320 | 321 | 1.00 | 6 | 318 | 324 | 0.98 |
Total | 336 | 328 | 664 | 336 | 328 | 664 | ||
PA | 1.00 | 0.98 | 0.98 | 0.97 | ||||
Overall accuracy | 0.98 | kappa statistics | 0.97 | Overall accuracy | 0.98 | kappa statistics | 0.97 | |
KNA CM | ||||||||
Korean pine | 171 | 28 | 199 | 0.86 | 169 | 25 | 194 | 0.87 |
Japanese larch | 18 | 167 | 185 | 0.90 | 20 | 170 | 190 | 0.89 |
Total | 189 | 195 | 384 | 189 | 195 | 384 | ||
PA | 0.90 | 0.86 | 0.89 | 0.87 | ||||
Overall accuracy | 0.88 | kappa statistics | 0.76 | Overall accuracy | 0.88 | kappa statistics | 0.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Kim, K.-M.; Jin, R. Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. ISPRS Int. J. Geo-Inf. 2019, 8, 150. https://doi.org/10.3390/ijgi8030150
Lim J, Kim K-M, Jin R. Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. ISPRS International Journal of Geo-Information. 2019; 8(3):150. https://doi.org/10.3390/ijgi8030150
Chicago/Turabian StyleLim, Joongbin, Kyoung-Min Kim, and Ri Jin. 2019. "Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China" ISPRS International Journal of Geo-Information 8, no. 3: 150. https://doi.org/10.3390/ijgi8030150
APA StyleLim, J., Kim, K. -M., & Jin, R. (2019). Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. ISPRS International Journal of Geo-Information, 8(3), 150. https://doi.org/10.3390/ijgi8030150