Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015
<p>Geographic location of the study area and the Landsat OLI image of Ningbo as a false colour composite image (R: band 7, G: band 5, B: band 3).</p> "> Figure 2
<p>Flowchart of spatio-temporal change detection of Ningbo coastline during 1976–2015.</p> "> Figure 3
<p>Process of coastline extraction in Hangzhou Bay (the first column is the false colour composite image (R: band 7, G: band 5, B: band 3).</p> "> Figure 4
<p>Coastline extracting errors between the reference coastline produced from the ZY-3 multispectral image (<b>yellow</b>) and the coastline produced from the Landsat OLI image (<b>red</b>) in 2015.</p> "> Figure 5
<p>Coastlines of Ningbo since 1976 to 2015.</p> "> Figure 6
<p>Changes of coastline length and FD values during 1976–2015.</p> "> Figure 7
<p>Illustrations of time-series coastlines of Hangzhou Bay from 1976 to 2015: (<b>a</b>) multi-temporal positions of coastlines; (<b>b</b>) changes of coastline length and fractal dimension; and (<b>c</b>) displacements along the coastlines.</p> "> Figure 8
<p>Illustrations of time-series coastlines of Xiangshan Bay from 1976 to 2015: (<b>a</b>) multi-temporal positions of coastlines and land exploitation projection; (<b>b</b>) changes of coastline length and fractal dimension; and (<b>c</b>) displacements along the coastlines.</p> "> Figure 9
<p>Illustrations of Sanmen Bay coastline from 1976 to 2015: (<b>a</b>) multi-temporal positions of coastlines; (<b>b</b>) changes of coastline length and fractal dimension; and (<b>c</b>) displacements along the coastlines.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data Sources
3.2. Methodology
3.2.1. Image Pre-Processing
3.2.2. Coastline Extraction
Producing Spectral Water Indices
Water Body Mapping Using the OTSU Algorithm
Coastline Extracting from Water Body Maps
3.2.3. Coastline Change Estimating
Fractal Dimension
Transect-from-Baseline Approach
Subdivision of the Study Area
4. Results and Discussion
4.1. Accuracy Assessment
4.2. General Coastline Change
4.3. Change in a Typical Coastal Area: Hangzhou Bay
4.4. Change in a Typical Coastal Area: Xiangshan Bay
4.5. Change in a Typical Coastal Area: Sanmen Bay
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nicholls, R.J.; Small, C. Improved estimates of coastal population and exposure to hazards released. Eos Trans. Am. Geophys. Union 2002, 83, 301–305. [Google Scholar] [CrossRef]
- Marfai, M.A.; Almohammad, H.; Dey, S.; Susanto, B.; King, L. Coastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang Indonesia. Environ. Monit. Assess. 2008, 142, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Lin, L.; Pan, Z.; Kang, X.; Ye, N. The coastline extraction for Fujian province based on long time series of remote sensing image. In Proceedings of the 2013 The International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 26–28 July 2013; Atlantis Press: Amsterdam, The Netherlands, 2013; pp. 63–66. [Google Scholar]
- Jin, D.; Hoagland, P.; Au, D.K.; Qiu, J. Shoreline change, seawalls, and coastal property values. Ocean Coast. Manag. 2015, 114, 185–193. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Yu, K.; Hu, C.; Muller-Karger, F.E.; Lu, D.; Soto, I. Shoreline changes in west-central Florida between 1987 and 2008 from Landsat observations. Int. J. Remote Sens. 2011, 32, 8299–8313. [Google Scholar] [CrossRef]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Tamassoki, E.; Amiri, H.; Soleymani, Z. Monitoring of shoreline changes using remote sensing (case study: Coastal city of Bandar Abbas). In Proceedings of the IOP Conference Series: Earth & Environmental Science, Kuala Lumpur, Malaysia, 22–23 April 2014; p. 12023.
- Dewi, R.S.; Bijker, W.; Stein, A.; Marfai, M.A. Fuzzy classification for shoreline change monitoring in a part of the northern coastal area of java, Indonesia. Remote Sens. 2016, 8, 190. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Chen, L.C. Detection of shoreline changes for tideland areas using multi-temporal satellite images. Int. J. Remote Sens. 1998, 19, 3383–3397. [Google Scholar] [CrossRef]
- Di, K.; Wang, J.; Ma, R.; Li, R. Automatic shoreline extraction from high-resolution IKONOS satellite imagery. In Proceedings of the ASPRS 2003 Annual Conference, Anchorage, AK, USA, 5–9 May 2003; Available online: https://www.researchgate.net/profile/Kaichang_Di/publication/241058589_Automatic_shoreline_extraction_from_high_resolution_IKONOS_satellite_imagery/links/004635383f740ac468000000.pdf (accessed on 1 March 2017).
- Puissant, A.; Lefevre, S.E.B.; Weber, J. Coastline extraction in VHR imagery using mathematical morphology with spatial and spectral knowledge. In Proceedings of the SPRS Congress Beijing 2008, Beijing, China, 3–11 July 2008; pp. 1305–1310.
- Lee, J.; Jurkevich, I. Coastline detection and tracing in SAR images. IEEE Trans. Geosci. Remote Sens. 1990, 28, 662–668. [Google Scholar]
- Niedermeier, A.; Romaneessen, E.; Lehner, S. Detection of coastlines in SAR images using wavelet methods. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2270–2281. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery. Photogramm. Eng. Remote Sens. 2004, 70, 605–616. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Sherman, D.J.; Wu, Q.; Su, H. Algorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR data. J. Geogr. Inf. Syst. 2011, 3, 99–119. [Google Scholar] [CrossRef]
- Dellepiane, S.; de Laurentiis, R.; Giordano, F. Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recogn. Lett. 2004, 25, 1461–1470. [Google Scholar] [CrossRef]
- Baselice, F.; Ferraioli, G. Unsupervised coastal line extraction from SAR images. IEEE Geosci. Remote Sens. 2013, 10, 1350–1354. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Ryu, J.; Won, J.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Liu, Q.; Li, X.; Tan, Q. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China. Ocean Coast. Manag. 2005, 48, 65–83. [Google Scholar] [CrossRef]
- El-Asmar, H.M.; Hereher, M.E. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci. 2011, 62, 769–777. [Google Scholar] [CrossRef]
- Cui, B.; Li, X. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 2011, 127, 32–40. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, F.; Wei, Y. Water body extraction from Landsat ETM+ image using MNDWI and KT transformation. In Proceedings of the IEEE 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; pp. 1–5.
- Shen, L.; Li, C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the IEEE 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4.
- Li, L.; Li, Y.; Liu, K.; Wang, P. The assessment and influence factors analysis of development level of node cities on the maritime silk route. In Proceedings of the 2016 International Conference on Education, Management Science and Economics, Beijing, China, 28–29 May 2016; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 478–484. [Google Scholar]
- Yang, H. Definition of the management boundary between river and sea in Ningbo. J. Mar. Sci. 2009, 27, 64–75. (In Chinese) [Google Scholar]
- Ni, H.; Yi, B.; Yin, J.; Fang, T.; He, T.; Du, Y.; Wang, J.; Zhang, H.; Xie, L.; Ding, Y.; et al. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Ningbo, China, 2008–2011. J. Clin. Virol. 2012, 54, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, C.; Zhang, C.; Walker, H.J. Geomorphological development and sedimentation in qiantang estuary and Hangzhou bay. J. Coast. Res. 1990, 3, 559–572. [Google Scholar]
- Yang, H.; Xue, B.; Jin, L.; Zhou, S.; Liu, W. Polychlorinated biphenyls in surface sediments of Yueqing Bay, Xiangshan Bay, and Sanmen Bay in East China Sea. Chemosphere 2011, 83, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Lou, H.F.; Xie, Y.L.; Hu, J.J. Hydrodynamic environment and its effects in the Xiangshan Bay. In Proceedings of the International Conference on Estuaries and Coasts, Hangzhou, China, 9–11 Novermber 2003; pp. 9–11.
- Li, W.; Yang, H.; Gao, Q.; Pan, H.; Yang, H. Residues of organochlorine pesticides in water and suspended particulate matter from Xiangshan Bay, East China Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, T.; Li, J.; Chen, P.; Chen, Y. Suitability evaluation of land use in coastal zones: A case study in southern Hangzhou Bay. Geogr. Res. 2015, 34, 701–710. (In Chinese) [Google Scholar]
- Chen, X.; Zhang, J.; Ma, Y.; Cui, T. Monitoring and analysis of coastline changes of the Sanmen Bay with remote sensing during the past 40 years. Mar. Sci. 2015, 39, 43–49. (In Chinese) [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Zhang, Q.; Lu, X. Remotely Sensed Trajectory Analysis of Channel Migration in Lower Jingjiang Reach during the Period of 1983–2013. Remote Sens. 2015, 7, 16241–16256. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 5, 589–595. (In Chinese) [Google Scholar]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B.B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 1994, 24, 115–120. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, Y.; Yang, X. On fractal dimensions of China’s coastlines. Math. Geol. 2004, 36, 447–461. [Google Scholar]
- Smith, M.J.; Cromley, R.G. Measuring historical coastal change using GIS and the change polygon approach. Trans. GIS 2012, 16, 3–15. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0-An. ArcGIS Extension for Calculating Shoreline Change; Open-File Report 2008–1278 (Updated for Version 4.3); U.S. Geological Survey: Woods Hole, MA, USA, 2009; pp. 1–81.
- Louati, M.; Saïdi, H.; Zargouni, F. Shoreline change assessment using remote sensing and GIS techniques: A case study of the Medjerda delta coast, Tunisia. Arab. J. Geosci. 2015, 8, 4239–4255. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhang, J.; Song, D. A study on coastline extraction and its trend based on remote sensing image data mining. Abstr. Appl. Anal. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Li, D.; Tang, X.; Jiang, Y.; Pan, H.; Zhu, X.; Fang, C. Geometric accuracy validation for ZY-3 satellite imagery. IEEE Geosci. Remote Sens. 2014, 11, 1168–1171. [Google Scholar] [CrossRef]
- Kaergaard, K.; Fredsoe, J. A numerical shoreline model for shorelines with large curvature. Coast. Eng. 2013, 74, 19–32. [Google Scholar] [CrossRef]
- Young, I.T. Proof without prejudice: Use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 1977, 7, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Wang, Z.; Gao, S.; de Vriend, H.J. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
Phase | Image Type | Acquisition Day | Path | Row | Local Time (UTC) | Tidal Level (cm) | Tidal Difference (cm) |
---|---|---|---|---|---|---|---|
1976 | Landsat-2 MSS | 7 January 1976 | 127 | 39 | 1:40 | 208 | - |
Landsat-2 MSS | 7 January 1976 | 127 | 40 | 1:40 | 208 | - | |
1983 | Landsat-4 MSS | 9 December 1983 | 118 | 39 | 1:54 | 208 | 0 |
Landsat-4 MSS | 9 December 1983 | 118 | 40 | 1:54 | 208 | 0 | |
1990 | Landsat-5 TM | 4 December 1990 | 118 | 39 | 1:45 | 158 | −50 |
Landsat-5 TM | 4 December 1990 | 118 | 40 | 1:45 | 158 | −50 | |
1996 | Landsat-5 TM | 18 November 1996 | 118 | 39 | 1:48 | 156 | −52 |
Landsat-5 TM | 18 November 1996 | 118 | 40 | 1:48 | 156 | −52 | |
2001 | Landsat-7 ETM+ | 24 November 2001 | 118 | 39 | 2:14 | 209 | 1 |
Landsat-7 ETM+ | 24 November 2001 | 118 | 40 | 2:14 | 209 | 1 | |
2008 | Landsat-5 TM | 5 December 2008 | 118 | 39 | 2:09 | 148 | −60 |
Landsat-5TM | 5 December 2008 | 118 | 40 | 2:09 | 148 | −60 | |
2015 | Landsat-8 OLI | 12 March 2015 | 118 | 39 | 2:25 | 154 | −54 |
Landsat-8 OLI | 12 March 2015 | 118 | 40 | 2:25 | 154 | −54 |
Phase | 1976 | 1983 | 1990 | 1996 | 2001 | 2008 | 2015 |
---|---|---|---|---|---|---|---|
Image Type | MSS | MSS | TM | TM | ETM+ | TM | OLI |
Index | NDWI | NDWI | MNDWI | MNDWI | MNDWI | MNDWI | MNDWI |
Year | Length Change (km) | Length Change Rate (km/Year) | Average NSM (m) | Average Annual NSM (m/Year) |
---|---|---|---|---|
1976–1983 | −59 | −8 | 187 | 27 |
1983–1990 | −43 | −7 | −53 | −8 |
1990–1996 | 103 | 16 | 561 | 85 |
1996–2001 | 72 | 15 | −28 | −6 |
2001–2008 | 21 | 3 | 293 | 42 |
2008–2015 | −19 | −3 | 298 | 48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. https://doi.org/10.3390/ijgi6030068
Wang X, Liu Y, Ling F, Liu Y, Fang F. Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. ISPRS International Journal of Geo-Information. 2017; 6(3):68. https://doi.org/10.3390/ijgi6030068
Chicago/Turabian StyleWang, Xia, Yaolin Liu, Feng Ling, Yanfang Liu, and Feiguo Fang. 2017. "Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015" ISPRS International Journal of Geo-Information 6, no. 3: 68. https://doi.org/10.3390/ijgi6030068
APA StyleWang, X., Liu, Y., Ling, F., Liu, Y., & Fang, F. (2017). Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. ISPRS International Journal of Geo-Information, 6(3), 68. https://doi.org/10.3390/ijgi6030068